MSO2000B and DPO2000B Series
Oscilloscopes
Specifications and Performance Verification
Technical Reference

MSO2000B and DPO2000B Series
Oscilloscopes
Specifications and Performance Verification
Technical Reference

Revision A

This document supports firmware version 1.52 and above for both MSO2000B Series instruments and DPO2000B Series instruments.

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

www.tektronix.com

077-0735-00

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Tektronix is an authorized licensee of the CompactFlash trademark.

Contacting Tektronix

Tektronix, Inc. 14150 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

General safety summary	iii
Specifications	1
Performance Verification	11
Upgrade the Firmware	12
Test Record	13
Performance Verification Procedures	16

List of Tables

Table 1: Analog channel input and vertical specifications	1
Table 2: Digital channel input specifications, MSO2000B only	4
Table 3: Horizontal and acquisition system specifications.	5
Table 4: Trigger specifications	6
Table 5: Display specifications.	8
Table 6: Input/Output port specifications	8
Table 7: Power source specifications	9
Table 8: Data storage specifications	9
Table 9: Environmental specifications	9
Table 10: Mechanical specifications.	10
Table 11: DC Gain Accuracy Worksheet	20

General safety summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

To avoid fire or personal injury

Use proper power cord. Use only the power cord specified for this product and certified for the country of use.

Connect and disconnect properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Ground the product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe all terminal ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Connect the probe reference lead to earth ground only.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Power disconnect. The power cord disconnects the product from the power source. Do not block the power cord; it must remain accessible to the user at all times.

Do not operate without covers. Do not operate this product with covers or panels removed.

Do not operate with suspected failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Avoid exposed circuitry. Do not touch exposed connections and components when power is present.

Use proper AC adapter. Use only the AC adapter specified for this product.

Do not operate in wet/damp conditions.

Do not operate in an explosive atmosphere.

Keep product surfaces clean and dry.

Provide proper ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Terms in this manual

These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and terms on the product

These terms may appear on the product:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

The following symbol(s) may appear on the product:

(Earth) Terminal

Chassis Ground

Specifications

This chapter contains specifications for the MSO2000B and the DPO2000B series oscilloscopes. All specifications are guaranteed unless noted as "typical." Typical specifications are provided for your convenience but are not guaranteed. Specifications that are marked with the ν symbol are checked in *Performance Verification*.

All specifications apply to all MSO2000B and DPO2000B models unless noted otherwise. To meet specifications, two conditions must first be met:

- The oscilloscope must have been operating continuously for twenty minutes within the operating temperature range specified.
- You must perform the Signal Path Compensation (SPC) operation prior to evaluating specifications. (See page 17, *Signal Path Compensation (SPC)*.) If the operating temperature changes by more than 10 °C (18 °F), you must perform the SPC operation again.

Table 1: Analog channel input and vertical specifications

Characteristic	Description			
Number of input channels	MSO2022B, MSO2012B, MSO2002B, DPO2022B, DPO2012B, DPO2002B	MSO2024B, MSO2014B, MSO2004B, DPO2024B, DPO2014B, DPO2004B		
	2 analog, digitized simultaneously	4 analog, digitized simultaneously		
Input coupling	DC, AC, or GND			
	AC coupling connects a capacitor in series with the input circuitry.			
	GND coupling provides a reference waveform derived from the values identified during SPC. This reference waveform shows visually where ground is expected to be.			
Input resistance, DC coupled	1 MΩ ±2%			
Input capacitance, DC coupled	11.5 pF ±2 pF			
Maximum input voltage	The maximum input voltage at the BNC, between the center conductor and shield is $450 \text{ V}_{\text{peak}}$ (<100 ms duration), $300 \text{ V}_{\text{RMS}}$ to 4 MHz, derated to 6 V_{RMS} at 200 MHz.			
✓ DC Balance	±(1 mV + 0.1 div)			
Deskew range	±100 ns, analog channels only			

Table 1: Analog channel input and vertical specifications (cont.)

Characteristic	Description					
Crosstalk (channel isolation), typical	MSO2024B, MSO2022B, DPO2024B, DPO2022B	≥100:1 with 200 MHz s	inewave and equal V/div s	ettings on each channel.		
	MSO2014B, MSO2012B, DPO2014B, DPO2012B,	≥100:1 with 100 MHz s	inewave and equal V/div s	ettings on each channel.		
	MSO2004B, MSO2002B, DPO2004B, DPO2002B	≥100:1 with 70 MHz sir	newave and equal V/div se	ttings on each channel.		
TekVPI Interface	The probe interface offering a variety of	allows installing, powering, confeatures	npensating, and controlling	a wide range of probes		
	If a probe requires a	ny power, it must be supplied b	y the Optional External Po	wer Adapter.		
	The interface is ava	ilable on all front panel inputs ir	cluding Aux In			
Total probe power	50 W from optional	50 W from optional 12 V VPI External Power Adapter				
-	No power without or	otional External Power Adapter.				
Number of digitized	8 bits					
bits	Displayed vertically with 25 digitization levels (DL) per division, 10 divisions dynamic range. Only 8 vertical divisions are displayed					
"DL" is the abbreviation for "digitization level." A DL is the smallest voltage level char resolved by the 8-bit A-D Converter. This value is also known as the LSB (least signif						
Sensitivity range	2 mV/div to 5 V/div i	2 mV/div to 5 V/div in a 1-2-5 sequence with probe attenuation set to 1X				
✓ Position range	±4 divisions					
✓ Analog bandwidth, DC coupled	Instrument	5 mV/div to 5 V/div with an ambient temperature of 0 °C to 40 °C (0 °F to 104 °F)	5 mV/div to 5 V/div with an ambient temperature of 0 °C to 50 °C (0 °F to 122 °F)	<5 mV/div		
	MSO2024B, MDO2022B, DPO2024B, DPO2022B	DC to ≥200 MHz	DC to ≥160 MHz	20 MHz		
	MSO2014B, MSO2012B, DPO2014B, DPO2012B	DC to ≥100 MHz		20 MHz		
	MSO2004B, MSO2002B, DPO2004B, DPO2002B	DC to ≥70 MHz		20 MHz		

Table 1: Analog channel input and vertical specifications (cont.)

Characteristic	Description			
Calculated rise time	The rise time is calculated from the bandwidth of the oscilloscope. The formula accounts for the rise time contribution of the oscilloscope independent of the rise time of the signal source.			
	Instrument	Risetime		
	MSO2024B, MSO2022B, DPO2024B, DPO2022B	2.1 ns		
	MSO2014B, MSO2012B, DPO2014B, DPO2012B	3.5 ns		
	MSO2004B, MSO2002B, DPO2004B, DPO2002B	5.0 ns		
Common mode rejection ratio (CMRR), typical	100:1 at 60 Hz, reducing to 10:1 with 50 MHz sinewave with equal Volts/div and Coupling settings on each channel.			
Lower frequency limit, AC coupled, typical	≤10 Hz			
Upper frequency limit, 20 MHz bandwidth limited, typical	20 MHz, +50%, -0%			
✓ DC gain accuracy	±3%, 5 V/div through 10 m	V/div		
	±4%, 5 mV/div and 2 mV/div			
	More than shown above wh	nen using variable gain		
DC voltage	Measurement type		DC Accuracy (in volts)	
measurement accuracy, Average acquisition mode, typical	Average of ≥ 16 waveforms	S	±((DC gain accuracy) × reading - (offset - position) + Offset Accuracy + 0.11 div + 1 mV)	
	Delta Volts between any tw waveforms acquired with th setup and ambient conditio	ie same oscilloscope	±(DC gain accuracy × reading + 0.08 div + 1.4 mV)	
	Note: Offset, position, and the constant offset term must be converted to volts by multiplying by the appropriate volts/div term.			
		elta volt accuracy specificat	y sample and to the following measurements: High, tion applies to subtractive calculations involving	
	The delta volts (difference v Positive Overshoot, Negativ		tion applies directly to the following measurements: Amplitude.	

Table 1: Analog channel input and vertical specifications (cont.)

Characteristic	Description		
Vertical offset ranges	Volts/div setting	Offset range	
	2 mV/div to 200 mV/div	±1 V	
	>200 mV/div to 5 V/div	±25 V	
Vertical offset	±[0.01 × offset - position + DC Balance	re]	
accuracy	Note: Both the position and constant offset term must be converted to volts by multiplying by the appropriate volts/div term.		

Table 2: Digital channel input specifications, MSO2000B only

Characteristic	Description		
Threshold voltage range	-20 V to +20 V, selectable in two groups of 8		
✓ Digital threshold accuracy	±[100 mV + 3% of the threshold setting after calibration]		
Digital channel timing resolution,	1 ns when the lower ordered group of 8 inputs on the digital probe cable are used exclusively		
sample rate	2 ns whenever inputs from the upper ordered group of 8 inputs on the digital probe cable are used. That is, all 16 digital channels would be sampled at 2 ns intervals		
Min Detectable Pulse, typical	5 ns		
Number of Input Channels	16 Digital Inputs		
Input Resistance, typical	101 $k\Omega$ to ground		
Input Capacitance, typical	8 pF		
Min Input Signal Swing, typical	500 mV _{p-p}		
Peak Input Voltage Range (DC + Peak AC)	±40 V		
Digital Channel to Digital Channel Skew	2 ns, typical		
	3 ns, maximum		
Digital Record Length	1 Million Samples at all time base settings when a single set of 8 inputs are used, all from the same physical half of the digital probe cable		
	1 Million Samples at time base settings from 100 sec/div to 200 μs/div when inputs from both halves of the digital probe cable are used		
	500,000 Samples at time base settings from 100 μs/div to 2 ns/div when inputs from both halves of the digital probe cable are used		

Table 3: Horizontal and acquisition system specifications

Characteristic	Description		
Long-term sample rate and horizontal position time accuracy	±25 ppm over any ≥1 ms time interval		
Delta time measurement accuracy	The limits below are for signals having amplitude >5 divisions, slew rate at the measurement points of >2.0 divisions/ns, and acquired at >10 mV/div:		
	Condition	Time Measurement Accuracy	
	Single shot, full bandwidth selecte	d ±[1 Sample Interval + 25 ppm × reading + 0.6 ns]	
	>16 averages, full bandwidth selec	ted ±[1 Sample Interval + 25 ppm × reading + 0.4 ns]	
	Note: The Sample Interval is the t	me between the samples in the waveform record	
Seconds/Division range	Instrument Range		
	MSO2024B, 2 ns/div to MSO2022B, DPO2024B, DPO2022B	100 sec/div in a 1-2-4 sequence	
	MSO2014B, 4 ns/div to MSO2012B, MSO2004B, MSO2002B, DPO2014B, DPO2012B, DPO2004B, DPO2002B	o 100 sec/div	
FilterVu Peak Detect data record	The minimum single pulse widths for guaranteed 50% or greater amplitude capture:		
pulse response	Instrument Minimum	pulse width	
	MSO2024B, 3.5 ns MSO2022B, DPO2024B, DPO2022B		
	MSO2014B, 7 ns MSO2012B, DPO2014B, DPO2012B		
	MSO2004B, 10 ns MSO2002B, DPO2004B, DPO2002B		
Sample-rate	1 GS/s		
Waveform Interpolation	Only (sin x)/x interpolation is prov	ded	
Record length	1 Million or 100,000 samples per record, user selectable		
Waveform update rate	Minimum triggered acquisition rate	e is 5,000 wfm/sec	

Table 4: Trigger specifications

Characteristic	Description		
Aux In (External) trigger maximum input voltage	At the BNC, between center conductor and shield, is 300 V_{RMS} , installation category II; derate above 4 MHz to 6 V_{RMS} at 200 MHz		
	For non-sinusoidal waveforms, peak value must be less than 450 V. Excursion above 300 V should be less than 100 ms duration. Signal level must be limited to 300 V_{RMS} . If these values are exceeded, damage to the instrument may result		
Aux In (External) trigger input resistance	1 MΩ ±2%		
Aux In (External) trigger input capacitance	11.5 pF ±2 pF		
Line Trigger	Line Trigger mode provides a source	to synchronize the trigger with the AC line input	
	Matches the AC power Source Voltage and Source Frequency listed in the Power Supply System section		
Edge-type trigger sensitivity, DC	Trigger Source	Sensitivity	
coupled	Analog inputs	DC to 50 MHz: 0.4 div	
		>50 MHz to 100 MHz: 0.6 div	
		>100 MHz to 200 MHz: 0.8 div	
	Aux in (External Trigger)	200 mV from DC to 100 MHz, X1 attenuation	
Edge trigger sensitivity, not DC	Trigger Coupling	Typical Sensitivity	
coupled, typical	HF REJ	Same as DC Coupled limits from DC to 85 kHz. Attenuates signals above 85 kHz	
	LF REJ	1.2 times the DC Coupled limits for frequencies above 65 kHz. Attenuates signals below 65 kHz	
	NOISE REJ	2.5 times the DC Coupled limits	
Trigger level ranges	Source	Sensitivity	
	Any input channel	±4.92 divisions from center of screen	
	Aux In (External)	±6.25 V, X1 probe attenuation ±12.50 V, X10 probe attenuation	
Lowest frequency for successful operation of "Set Level to 50%" function, typical	50 Hz		
Trigger level accuracy, DC coupled,	±0.2 div for signals within ±4 div from center screen, with rise/fall times ≥20 ns		
ypical	Aux In: ±200 mV for signals less than ±800 mV, X1 attenuation		
Video-type trigger sensitivity, typical	Any analog channel, 0.6 divisions of video sync tip		
	Aux In does not support Video trigger		
Video-type trigger formats and field rates	Triggers from negative sync composite video, field 1 or field 2 for interlaced systems, on any field, specific line, or any line for interlaced or non-interlaced systems. Supported systems include NTSC, PAL, and SECAM.		
Logic-type or logic qualified trigger	0.75 division from DC to maximum bandwidth		
sensitivity, DC coupled, typical	Aux In does not support Logic trigger		

Table 4: Trigger specifications (cont.)

Characteristic	Description				
Pulse-type runt trigger sensitivity,	0.75 division from D0	C to maximum bandwid	th		
typical	Aux In does not supp	oort Pulse trigger			
Pulse-type trigger width sensitivity,	3.5 ns when only usi	ng digital channels D0-	D7		
typical	4.5 ns when using ar	ny of the digital channel	s D8-D15		
	Aux In does not supp	oort Pulse trigger			
Logic-type triggering, minimum logic	For all vertical setting	gs, the minimums are:			
or rearm time, typical	Trigger type	Pulse width	Re-arm time	Time between channels ¹	
	Logic	Not applicable	2 ns	1 ns	
	Time Qualified Logic	4 ns	2 ns	1 ns	
	Aux in does not supp	oort Logic trigger			
	more than one chanr between a main and	delayed event that will I	gnized. For Events, the be recognized if more t	e time is the minimum time han one channel is used.	
Minimum clock period for setup/hold time violation trigger, typical	User Setup Time + U	Jser Hold Time + 2 ns, v	with positive User Time	S	
Setup/hold violation trigger, setup	Feature	Min	Max		
and hold time ranges	Setup time	–100 ns	2 s		
	Hold time	–1 ns	2 s		
	Setup + Hold time	2 ns (Setup and hold times cannot both be negative)	4 s		
	Input coupling on clock and data channels must be the same.				
	For Setup time, positive numbers mean a data transition before the clock.				
	For Hold time, positive numbers mean a data transition after the clock edge.				
	Setup + Hold time is the algebraic sum of the Setup Time and the Hold Time programmed by the user.				
	Aux in does not supp	oort this trigger type			
Pulse type trigger, minimum pulse, rearm time, minimum transition time	Pulse class	Minimum pulse width	Minimum rearm til	me	
	Runt	2 ns	2 ns		
	Width	2 ns	2 ns		
	Rise/Fall time	2 ns	2 ns		
	For the trigger class width and the trigger class runt, the pulse width refers to the width of the pulse being measured. The rearm time refers to the time between pulses.				
	For the trigger class Rise/Fall time, the pulse width refers to the delta time being measured. The rearm time refers to the time it takes the signal to cross the two trigger thresholds again.				
Rise.fall time trigger, delta time	fall time trigger, delta time 4 ns to 8 s				
range Aux in does not support this trigger type		port this trigger type			

Table 4: Trigger specifications (cont.)

Characteristic	Description
Time range for pulse width or runt	4 ns to 8 s
triggering	Aux In does not support this trigger type.
	The digital inputs do not support the runt trigger type
Time accuracy for Pulse Width triggering	±2 ns
Time Resolution, Logic Type Triggers	1 ns
Trigger Frequency Counter	Provides the user a higher accuracy means of identifying the frequency of trigger signals. Averaging takes place over a longer time span, so the number of stable digits is improved over the Automatic Measurement of the same type
Trigger Frequency Counter Resolution	6 digits
Trigger Frequency Counter Accuracy	±25 ppm including all reference errors and ±1 count errors
Trigger Frequency Counter Frequency Range	AC coupled, 10 Hz minimum to rated bandwidth
Trigger Frequency Counter Signal Source	Edge selected trigger source only

For Logic, time between channels refers to the length of time a logic state derived from more than one channel must exist to be recognized. For Events, the time is the minimum time between a main and delayed event that will be recognized if more than one channel is used.

Table 5: Display specifications

Characteristic	Description
Display type	Display area: 154.8 mm (6.09 inches) (H) x 87.05 mm (3.43 inches) (V), 180 mm (7.0 inches) diagonal, 6-bit RGB full color, WQVGA (480 x 234) TFT liquid crystal display (LCD).
Display resolution	480 horizontal by 234 vertical displayed pixels
Luminance, typical	Maximum 400 cd/m ²

Table 6: Input/Output port specifications

Characteristic	Description		
Ethernet interface	Available as an optional accessory: DPO2CONN module		
USB interface	1 High Speed 2.0 Host and 1 High Speed Device connector (all models)		
GPIB interface	Available as an optional accessory that connects to USB Device and USB Host ports: TEK-USB-488 GPIB to USB Adapter.		
	Control interface is incorporated in the instrument user interface.		
Video signal output	Available as an optional accessory: DPO2CONN module		
	A 15 pin, VGA RGB-type connector		
Probe compensator output voltage	Output voltage: 0 V to 5 V ±10%		
and frequency, typical	Frequency: 1 kHz ±25%		

Table 7: Power source specifications

Characteristic	Description	
Source voltage 100 V _{RMS} to 240 V _{RMS} ±10%, installation category II		
Source frequency	(90 V to 264 V) 45 Hz to 65 Hz	
	(100 V to 132 V) 360 Hz to 440 Hz	
Power Consumption	<80 W at 85 to 275 V _{AC} input	

Table 8: Data storage specifications

Characteristic	Description
Nonvolatile memory retention time, typical	No time limit for front-panel settings, saved waveforms, setups, and calibration constants
Real-time clock	A programmable clock providing time in years, months, days, hours, minutes, and seconds

Table 9: Environmental specifications

Characteristic	Description		
Temperature	Operating:		
	0 °C to +50 °C (+32 °F to +122 °F), with 5 °C/minute maximum gradient, non-condensing, up to 3000 m altitude. Instrument will be in specification after a 10 minute settling time and performance of SPC		
	Nonoperating:		
	-40 °C to +71 °C (-40 °F to +160 °F), with 5 °C/minute maximum gradient. Instrument will be in specification after 5 minutes powered for each 5 °C change settling time and performance of SPC		
Humidity	Operating:		
	High: 5% to 60% relative humidity, 30 °C to 50 °C (86 °F to 122 °F) Low: 5% to 95% relative humidity, 0 °C to 30 °C (32 °F to 86 °F)		
	Nonoperating:		
	High: 5% to 60% relative humidity, 30 °C to 55 °C (86 °F to 131 °F) Low: 5% to 95% relative humidity, 0 °C to 30 °C (32 °F to 86 °F)		
Altitude	Operating: 3,000 m (9,843 ft)		
	Nonoperating: 12,000 m (39,370 ft)		
	Altitude is limited by possible damage to LCD at higher altitudes, independent of operation		
Pollution Degree	Pollution Degree 2, indoor use only		
· · · · · · · · · · · · · · · · · · ·			

Table 10: Mechanical specifications

Characteristic	Description			
Dimensions	Nominal, non-rack mount:			
	Height:			
	Handle down: 175 mm (6.89 in) Handle up: 180 mm (7.09 in)			
	Depth:			
	Handle down: 146 mm (5.74 in) Handle up: 134 mm (5.29 in)			
	Width: 377 mm (14.85 in) from handle hub to handle hub			
Weight	Nominal, non-rack mount:			
	Stand-alone instrument: 3.6 kg (7.9 lbs) Packaged for domestic shipment: 6.2 kg (13.7 lbs)			
Cooling method	Forced air cooled, one fan			
Clearance Requirements	The clearance requirement for adequate cooling is: 50 mm (2 in) on the left side (when looking at the front of the instrument)			

Performance Verification

This chapter contains performance verification procedures for the specifications marked with the \checkmark symbol. The following equipment, or a suitable equivalent, is required to complete these procedures.

Description	Minimum requirements	Examples	
DC voltage source	3 mV to 4 V, ±0.1% accuracy	Fluke 9500 Oscilloscope Calibrator with a	
Leveled sine wave generator	50 kHz to 1000 MHz, ±4% amplitude accuracy	9510 Output Module	
Time mark generator	1 ms period, ±1 ppm accuracy, rise time < 25 ns		
One 50 Ω BNC cable	Male-to-male connectors	Tektronix part number 012-0057-01	
One 50 Ω feedthrough termination	BNC male and BNC female connectors	Tektronix part number 011-0049-02	
For MSO2000B Series only:			
One P6316 digital probe	16 channel digital probe	Tektronix P6316	
One BNC-to-0.1 inch pin adapter	BNC to 0.1 inch spaced pins	An appropriate BNC-to-0.1 inch pin adapter for use between the Fluke 9500 and the P6316 probe	

You may need additional cables and adapters, depending on the actual test equipment you use.

These procedures cover all MSO2000B and DPO2000B models. Please disregard checks that do not apply to the specific model you are testing.

Print the test record, on the following pages, and use it to record the performance test results for your oscilloscope.

NOTE. Completion of the performance verification procedure does not update the stored time and date of the latest successful adjustment. The date and time are updated only when the adjustment procedures in the service manual are successfully completed.

The performance verification procedures verify the performance of your instrument. They do not adjust your instrument. If your instrument fails any of the performance verification tests, you should perform the factory adjustment procedures as described in the MSO2000B and DPO2000B Series Service Manual.

NOTE. If your oscilloscope firmware version is less than v1.52, it should be updated before performing the Performance Verification procedures. Download the latest firmware from www.tektronix.com/software.

Upgrade the Firmware

For the best functionality, you can upgrade the oscilloscope firmware. To upgrade the firmware, follow these steps:

- 1. Open up a Web browser and go to www.tektronix.com/software. Use the Software and Firmware Finder to locate the most recent firmware upgrade.
- 2. Download the latest firmware for your oscilloscope onto your PC.
- **3.** Unzip the files and copy the "firmware.img" file into the root folder of a USB flash drive.
- **4.** Power off your oscilloscope.
- **5.** Insert the USB flash drive into a USB Host port on the front of the oscilloscope.
- **6.** Power on the oscilloscope. The oscilloscope automatically recognizes the replacement firmware and installs it.

If the instrument does not install the firmware, first check the firmware version numbers. This update procedure will fail if the version you are trying to load is the same as the version that is in the instrument. If the version numbers are different, rerun the procedure. If the problem continues, contact qualified service personnel.

NOTE. Do not power off the oscilloscope or remove the USB flash drive until the oscilloscope finishes installing the firmware.

The oscilloscope displays a message when the installation is complete.

- 7. Power off the oscilloscope and remove the USB flash drive.
- **8.** Power on the oscilloscope.
- **9.** Push the **Utility** front-panel button.
- **10.** Push the **Utility Page** lower-bezel button.
- 11. Turn Multipurpose knob a to select Config.
- **12.** Push the **About** lower-bezel button. The oscilloscope displays the firmware version number.
- 13. Confirm that the version number matches that of the new firmware.

Test Record

Model	Serial	Procedure performed by	Date

Test	Passed	Failed	
Self Test			
Signal Path Compensation (SPC)			

Performance Checks

DC Balance

Channel	Coupling	Low limit	Test result	High limit
Channel 1	DC	-21 mV		21 mV
	GND	-21 mV		21 mV
Channel 2	DC	-21 mV		21 mV
	GND	-21 mV		21 mV
Channel 3 ¹	DC	-21 mV		21 mV
	GND	-21 mV		21 mV
Channel 4 ¹	DC	-21 mV		21 mV
	GND	-21 mV		21 mV

¹ Channels 3 and 4 are only on four channel oscilloscopes

DC Gain Accuracy

Channel	Vertical scale	Low limit	Test result	High limit
Channel 1	5 mV/div	33.6 mV		36.4 mV
	200 mV/div	1.358 V		1.442 V
	2 V/div	13.58 V		14.42 V
Channel 2	5 mV/div	33.6 mV		36.4 mV
	200 mV/div	1.358 V		1.442 V
	2 V/div	13.58 V		14.42 V
Channel 3 ¹	5 mV/div	33.6 mV		36.4 mV
	200 mV/div	1.358 V		1.442 V
	2 V/div	13.58 V		14.42 V
Channel 4 ¹	5 mV/div	33.6 mV		36.4 mV
	200 mV/div	1.358 V		1.442 V
	2 V/div	13.58 V		14.42 V

¹ Channels 3 and 4 are only on four channel oscilloscopes

Bandwidth

Channel	Low limit	Test result	High limit	
Channel 1	2.12 V			
Channel 2	2.12 V			
Channel 3 ¹	2.12 V			
Channel 4 ¹	2.12 V			

¹ Channels 3 and 4 are only on four channel oscilloscopes

Vertical Position Range

		Trace			
Channel	V/div setting	position	Offset	DC Voltage source	Pass/Fail
Channel 1	200 mV/div	Тор	–1 V	–1.800 V	
		Bottom	+1 V	+1.800 V	
	5 V/div	Тор	–25 V	–45.0 V	
		Bottom	+25 V	+45.0 V	
Channel 2	200 mV/div	Тор	–1 V	-1.800 V	
		Bottom	+1 V	+1.800 V	
	5 V/div	Тор	–25 V	–45.0 V	
		Bottom	+25 V	+45.0 V	
Channel 3 ¹	200 mV/div	Тор	–1 V	–1.800 V	
		Bottom	+1 V	+1.800 V	
	5 V/div	Тор	–25 V	–45.0 V	
		Bottom	+25 V	+45.0 V	
Channel 4 ¹	200 mV/div	Тор	–1 V	–1.800 V	
		Bottom	+1 V	+1.800 V	
	5 V/div	Тор	–25 V	–45.0 V	
		Bottom	+25 V	+45.0 V	

¹ Channels 3 and 4 are only on four channel oscilloscopes.

Sample Rate and Delay Time Accuracy	Low limit	Test result	High limit
Sample Rate and Delay Time Accuracy	-2.5 divisions		+2.5 divisions

Digital Threshold Accuracy, MSO2000B series only

Digital				Test result			
channel	Threshold	V _s .	V _{s+}	Low limit	V_{sAvg}	High limit	
D0	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D1	<u>0 V</u>			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D2	<u>0 V</u>			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D3	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D4	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D5	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D6	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D7	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D8	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D9	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D10	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D11	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D12	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D13	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D14	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	
D15	0 V			-0.1 V		0.1 V	
	4 V			3.78 V		4.22 V	

Performance Verification Procedures

NOTE. If your oscilloscope firmware version is v1.02, it should be updated before performing the Performance Verification procedures. Download the latest firmware from www.tektronix.com/software.

The following three conditions must be met prior to performing these procedures:

- 1. The oscilloscope must have been operating continuously for twenty (20) minutes in an environment that meets the operating range specifications for temperature and humidity.
- **2.** You must perform a signal path compensation (SPC) before beginning these procedures. (See page 17, *Signal Path Compensation (SPC)*.) If the operating temperature changes by more than 10 °C (18 °F), you must perform the signal path compensation again.
- 3. You must connect the oscilloscope and the test equipment to the same AC power circuit. Connect the oscilloscope and test instruments into a common power strip if you are unsure of the AC power circuit distribution. Connecting the oscilloscope and test instruments into separate AC power circuits can result in offset voltages between the equipment, which can invalidate the performance verification procedure.

The time required to complete the entire procedure is approximately one hour.

WARNING. Some procedures use hazardous voltages. To prevent electrical shock, always set voltage source outputs to 0 V before making or changing any interconnections.

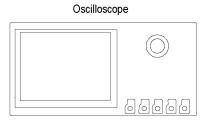
Self Test

This procedure uses internal routines to verify that the oscilloscope functions and passes its internal self tests. No test equipment or hookups are required. Start the self test with these steps:

- 1. Disconnect all probes and cables from the oscilloscope inputs.
- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **3.** Push the **Utility** menu button.
- **4.** Push the **Utility Page** lower-bezel button, and turn Multipurpose knob **a** to select **Self Test**.
- **5.** Push the **Self Test** lower-bezel button. The Loop X Times side-bezel menu will be set to **Loop 1 Times**.

- **6.** Push the **OK Run Self Test** side-bezel button
- 7. Wait while the self test runs. When the self test completes, a dialog box displays the results of the self test.
- **8.** Push the **Menu Off** button to clear the dialog box and Self Test menu.

Signal Path Compensation (SPC)


This process corrects for DC inaccuracies caused by temperature variations and/or long term drift.

- 1. Remove all input signals (probes and cables) from channel inputs. Input signals with AC components adversely affect SPC.
- 2. Push the front-panel Utility button, and then push the bottom-bezel Utility Page button.
- **3.** Use Multipurpose knob **a** to select Calibration.
- **4.** Push the bottom-bezel Signal Path button, and then push the side-bezel **OK Compensate Signal Paths** button.
- **5.** Wait while the Signal Path Compensation runs. On completion a dialog box informs you whether the Compensation completed successfully or not.
- **6.** Push the **Menu Off** button to clear the dialog box and Self Test menu.

Check DC Balance

This test checks the DC balance of each channel.

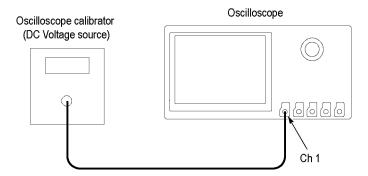
You do not need to connect the oscilloscope to any equipment to run this test.

- 1. Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 2. Turn the Horizontal Scale knob to 1 ms/div.
- **3.** Push the Trigger **Menu** front-panel button.

- **4.** Push the **Source** lower-bezel button
- 5. Select the AC Line trigger source with Multipurpose knob a. You do not need to connect an external signal to the oscilloscope for this DC Balance test.
- **6.** Push the front-panel **Acquire** button.
- 7. Push the **Average** lower-bezel button, and then push the **Average** side bezel button to turn averaging ON.

NOTE. When using averaging, allow the oscilloscope to acquire all the samples before taking the measurement.

- **8.** If needed, adjust the number of averages to **16** with Multipurpose knob **a**.
- **9.** Push the front-panel channel button for the oscilloscope channel to test, as shown in the test record (for example, 1, 2, 3, or 4).
- 10. Set the channel being tested to 200 mV/div using the Vertical Scale knob.
- 11. Attach a 50 Ω terminator to the oscilloscope input channel being tested.
- **12.** Push the lower-bezel **Coupling** button to select **DC** or **GND** coupling, as given in the test record.
- **13.** Push the front-panel Wave Inspector **Measure** button.
- **14.** Push the **Add Measurement** lower bezel button.
- **15.** Use Multipurpose knob **a** to select the **Mean** measurement.
- **16.** Push the **OK Add Measurement** side-bezel button, and then push the **Menu Off** button.
- 17. View the mean measurement value in the display and enter that mean value as the test result in the test record.
- **18.** Push the front-panel channel button, and repeat steps 12 through 17.
- **19.** Repeat steps 5 through 18 for each remaining channel.


Check DC Gain Accuracy

This test checks the DC Gain Accuracy of each channel.

- 1. Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- 2. Push the front-panel Horizontal **Acquire** button, then push the bottom-bezel **Average** button, and then push the side-bezel **Average** button, to turn averaging on.

NOTE. When using averaging, allow the oscilloscope to acquire all the samples before taking the measurement.

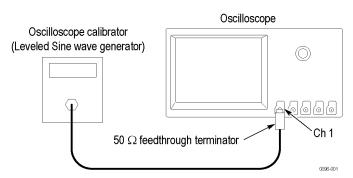
- **3.** If necessary, use Multipurpose knob **a** to set the number of averages to 16.
- **4.** Set the DC voltage source to 0 V, and then connect it to channel 1, as shown. If using a Fluke 9500 as the voltage source, connect the calibrator head to channel 1.

- 5. Push the front panel button to select the channel to be tested (1, 2, 3, or 4)
- **6.** Push the bottom-bezel **Probe Setup** button, and then push the **Set to 1X** side-bezel button.
- 7. Push the Wave Inspector **Measure** button, and then push the bottom-bezel **Add Measurement** button.
- 8. Use Multipurpose knob a to select the Mean measurement, then push the side-bezel OK Add Measurement button, and then push the Menu Off button.
- **9.** For each Volts/div line in the following worksheet, perform these steps:
 - a. Set the DC voltage source output level to the positive voltage listed and record the Mean measurement as V_{pos} .
 - **b.** Set the DC voltage source to the negative level listed, and record the Mean measurement as V_{neg} .

- c. Calculate $V_{\text{diff}} = V_{\text{pos}} V_{\text{neg}}$, and then enter V_{diff} in the test record. As an example, on the 5 mV/div setting, if V_{pos} is 17.4 mV and V_{neg} is -17.2 mV, then V_{diff} is 34.6 mV.
- **d.** Enter V_{diff} in the worksheet, and in the test record.

Table 11: DC Gain Accuracy Worksheet

	Volts/div	DC voltage source setting					Accuracy limits	
	setting	Positive	Negative	V_{pos}	\mathbf{V}_{neg}	V_{diff}	for V _{diff}	
Channel 1	5 mV/div	+17.5 mV	–17.5 mV				33.6 mV to 36.4 mV	
	200 mV/div	+700 mV	–700 mV				1.358 V to 1.442 V	
	2 V/div	+7.00 V	–7.00 V				13.58 V to 14.42 V	
Channel 2	5 mV/div	+17.5 mV	–17.5 mV				33.6 mV to 36.4 mV	
	200 mV/div	+700 mV	–700 mV				1.358 V to 1.442 V	
	2 V/div	+7.00 V	–7.00 V				13.58 V to 14.42 V	
Channel 3 ¹	5 mV/div	+17.5 mV	–17.5 mV				33.6 mV to 36.4 mV	
	200 mV/div	+700 mV	–700 mV				1.358 V to 1.442 V	
	2 V/div	+7.00 V	–7.00 V				13.58 V to 14.42 V	
Channel 4 ¹	5 mV/div	+17.5 mV	–17.5 mV				33.6 mV to 36.4 mV	
	200 mV/div	+700 mV	–700 mV				1.358 V to 1.442 V	
	2 V/div	+7.00 V	–7.00 V				13.58 V to 14.42 V	


¹ Channels 3 and 4 are only on four channel oscilloscopes.

- **10.** Set the DC voltage source to 0 V, and move the BNC cable to the next channel to be tested.
- 11. Repeat steps 5 through 10 for each remaining channel.

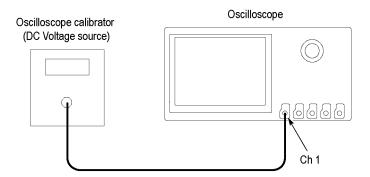
Check Bandwidth

This test checks the bandwidth of all input channels.

1. Connect the output of the leveled sine wave generator (for example, Fluke 9500) to the oscilloscope channel 1 input as shown below.

2. Push the front-panel **Default Setup** button to set the instrument to the factory default settings.

- **3.** Push the front-panel Trigger **Menu** button.
- **4.** Push the lower-bezel **Coupling** button, and then push the **Noise Reject (DC Low Sensitivity)** side-bezel button.
- **5.** Push the front-panel Trigger **Menu** button.
- **6.** Push the lower-bezel **Source** button and use Multipurpose knob **a** to select the channel being tested as the trigger source.
- 7. Push the **Menu Off** button, so you can see the screen.
- **8.** Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- **9.** Push the lower-bezel **Probe Setup** button, and then push the **Set to 1 X** side-bezel button.
- **10.** Push the front-panel **Measure** button, and then push the bottom-bezel **Add Measurement** button.
- 11. Use Multipurpose knob a to select the **Peak-to-peak** measurement, and then push the **OK Add Measurement** side-bezel button.
- 12. Turn the Vertical Scale knob to set the vertical scale to 500 mV/div.
- 13. Turn the Horizontal Scale knob to 400 µs/div.
- 14. Set the leveled sine wave generator frequency to 1 kHz.
- 15. Set the leveled sine wave generator output level so the peak-to-peak measurement is between 2.98 V and 3.02 V.
- **16.** Set the leveled sine wave generator to the frequency shown for the oscilloscope model:

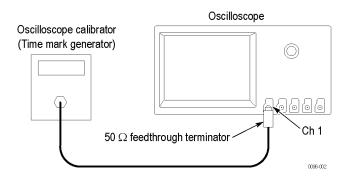

Model	Frequency
MSO2024B, MSO2022B, DPO2024B, DPO2022B	200 MHz
MSO2014B, MSO2012B, DPO2014B, DPO2012B	100 MHz
MSO2004B, MSO2002B, DPO2004B, DPO2002B	70 MHz

- 17. Use the Horizontal Scale knob to set the oscilloscope to 10 ns/div.
- **18.** Check that the peak-to-peak measurement is \geq **2.12** V. Enter this measurement in the test record.
- **19.** Move the input cable to the next channel to be tested.
- **20.** Repeat steps 8 through 19 for each remaining channel.

Check Vertical Position Range

This test checks the offset range for each channel.

1. Connect the oscilloscope to a DC voltage source to run this test. If using the Fluke calibrator as the DC voltage source, connect the calibrator head to the oscilloscope channel to test.


- **2.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **3.** Push the channel button (1, 2, 3, or 4) for the channel that you want to check.
- **4.** Push the bottom-bezel **Probe Setup** button, and then push the **Set to 1 X** side-bezel button.
- 5. Use the Vertical Scale knob to set the oscilloscope to 200 mV/div.
- **6.** Use the Vertical **Position** knob to place the trace at the bottom of the display (-4 divisions).
- 7. Set the **Offset** to +1 V:
 - **a.** Push the bottom-bezel **More** button to select **Offset**.
 - **b.** Use Multipurpose knob **a** to set the offset to 1.000 V.
- **8.** Set the DC Voltage source to +1.800 V.
- **9.** Check that the vertical trace is now within 0.2 divisions of the Zero volt line. Record Pass or Fail in the test record.
- 10. Set the DC Voltage source to 0 V.
- 11. Push the **Set to 0V** side-bezel button.
- **12.** Use the Vertical **Position** knob to place the trace at the top of the display (+4 divisions).
- **13.** Use Multipurpose knob **a** to set the offset to −1.000 V.
- **14.** Set the DC Voltage source to −1.800 V.
- **15.** Check that the vertical trace is now within 0.2 divisions of the Zero volt line. Record Pass or Fail in the test record.
- **16.** Set the DC Voltage source to 0 V.

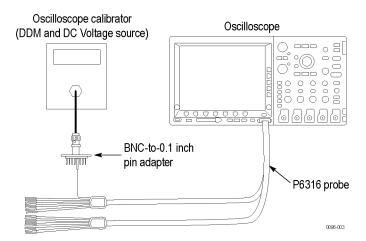
- 17. Push the **Set to 0V** side-bezel button.
- 18. Use the Vertical Scale knob to set the oscilloscope to 5 V/div.
- **19.** Use the Vertical **Position** knob to place the trace at the bottom of the display (-4 divisions).
- **20.** Use Multipurpose knob **a** to set the offset to +25.00 V.
- 21. Set the DC Voltage source to +45 V.
- **22.** Check that the vertical trace is now within 0.2 divisions of the Zero volt line. Record Pass or Fail in the test record.
- **23.** Set the DC Voltage source to 0 V.
- 24. Push the Set to 0V side-bezel button.
- **25.** Use the Vertical **Position** knob to place the trace at the top of the display (+4 divisions).
- **26.** Use Multipurpose knob **a** to set the offset to –25.00 V.
- **27.** Set the DC Voltage source to –45 V.
- **28.** Check that the vertical trace is now within 0.2 divisions of the Zero volt line. Record Pass or Fail in the test record.
- **29.** Set the DC Voltage source to 0 V.
- **30.** Push the **Set to 0V** side-bezel button.
- **31.** Move the DC Voltage source cable to the next channel to be tested.
- **32.** Push the channel button (1, 2, 3, or 4) for the next channel to check.
- **33.** Repeat steps 4 through 32 for each of the remaining channels.

Check Sample Rate and Horizontal Position Time Accuracy

This test checks the sample rate and horizontal position time accuracy (time base).

1. Connect the output of the time mark generator to the oscilloscope channel 1 input using a 50 Ω cable and 50 Ω feedthrough terminator.

- 2. Set the time mark generator period to 1 ms. Use a time mark waveform with a fast rising edge.
- **3.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **4.** Push the channel **1** button.
- **5.** Push the lower-bezel **Probe Setup** button, and then push the **Set to 1 X** side-bezel button.
- 6. Set the Vertical SCALE to 500 mV/div.
- 7. Set the Horizontal SCALE to 1 ms/div.
- 8. If adjustable, set the time mark generator amplitude to approximately 1 $V_{\text{p-p}}$.
- **9.** Push the Trigger Level knob, to set the trigger level to 50%.
- **10.** Adjust the Vertical **POSITION** knob to center the time mark signal vertically on the screen.
- 11. If necessary, adjust the Horizontal **POSITION** knob to move the trigger location to the center of the screen (50%).
- **12.** Turn the Horizontal **POSITION** knob counterclockwise to set the delay to close to **1 ms**.
- 13. Set the Horizontal Scale to 10 ns/div.


- **14.** If necessary, turn the Horizontal **Position** knob to set the delay to exactly **1.0000 ms**.
- 15. Compare the rising edge of the marker with the center horizontal graticule line. The rising edge should cross the 0 V center within ±2.5 divisions (±25 ns) of the center graticule line. Enter the deviation in the test record.

NOTE. One division of displacement from graticule center corresponds to a 10 ppm time base error.

Check Digital Threshold Accuracy (MSO2000B Series only)

For the MSO2000B series only, this test checks the threshold accuracy of the digital channels. This procedure applies to digital channels D0 through D15, and to channel threshold values of 0 V and +4 V.

1. Connect the P6316 digital probe to the MSO2000B series instrument.

2. Connect one of the digital channels, such as D0, to the DC voltage source to run this test.

If using the Fluke calibrator as the DC voltage source, connect the calibrator head to the digital channel to test. You will need a BNC-to-0.1 inch pin adapter to complete the connection. Be sure to connect the digital channel to the corresponding signal pin and to a ground pin on the adapter.

- **3.** Push the front-panel **Default Setup** button to set the instrument to the factory default settings.
- **4.** Push the front-panel **D15-D0** button.
- 5. Push the **D15-D0 On/Off** lower-bezel button.
- **6.** Push the **Turn On D7 D0** and the **Turn On D15 D8** side-bezel buttons. The instrument will display the 16 digital channels.
- 7. Push the **Thresholds** lower-bezel button.

8. Push the side-bezel **D7 - D0** button

Before you change the threshold value, push the **Fine** front-panel button to turn off the fine adjustment and make adjusting the value quicker.

- **9.** Use Multipurpose knob **a** to set the D7-D0 threshold level to **0** V.
- **10.** Use Multipurpose knob **b** to set the D15-D8 threshold level to **0** V.

The thresholds are now set for the 0 V threshold check, shown in steps 11 through 18.

- 11. Push the front-panel Trigger **Menu** button.
- **12.** Push the **Source** lower-bezel button, and turn Multipurpose knob **a** to select the appropriate channel, such as D0.

By default, the Type is set to Edge, Coupling is set to DC, Slope is set to Rising, Mode is set to Auto, and Level is set to match the threshold of the channel being tested.

13. Set the DC voltage source (Vs) to -400 mV. Wait 1 second. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level high, change the DC voltage source Vs to -500 mV.

14. Increment Vs by +10 mV. Wait 1 second and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high, record the Vs value as V_s in the 0 V row of the test record.

If the channel is a logic level low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 1 second, and check for a static logic high) until a value for V_{s-} is found.

- 15. Push the Slope lower-bezel button to change the slope to Falling.
- **16.** Set the DC voltage source (Vs) to +400 mV. Wait 1 second. Check the logic level of the corresponding digital channel in the display.

If the channel is a static logic level low, change the DC voltage source Vs to +500 mV.

17. Decrement Vs by -10 mV. Wait 1 second and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as V_{s+} in the 0 V row of the test record.

If the channel is a logic level high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 1 second, and check for a static logic low) until a value for V_{s+} is found.

18. Find the average, $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.

- Compare the test result to the limits. If the result is between the limits, continue with the procedure to test the channel at the +4 V threshold value.
- **19.** The remaining part of this procedure is for the +4 V threshold test. Push the front-panel **D15-D0** button. The **Thresholds** menu should display.
- **20.** With the Fine front-panel button turned off, turn Multipurpose knob **a** to set the D7–D0 threshold value to **4.00** V (+4.0 V/div).
- **21.** Turn Multipurpose knob **b** to set the D15–D8 threshold value to **4.00 V** (+4.0 V/div). To remove the menu from the display, push the front-panel **Menu Off** button.
- 22. Set the DC voltage source (Vs) to +4.4 V. Wait 1 second. Check the logic level of the corresponding digital channel in the display.
 - If the channel is a static logic level low, change the DC voltage source Vs to +4.5 V.
- 23. Decrement Vs by -10 mV. Wait 1 second and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level low, record the Vs value as V_{s+} in the 4 V row of the test record.
 - If the channel is a logic level high or is alternating between high and low, repeat this step (decrement Vs by 10 mV, wait 1 second, and check for a static logic low) until a value for V_{s+} is found.
- **24.** Push the front-panel Trigger **Menu** button.
- 25. Push the Slope lower-bezel button to change the slope to Rising.
- **26.** Set the DC voltage source (Vs) to +3.6 V. Wait 1 second. Check the logic level of the corresponding digital channel in the display.
 - If the channel is a static logic level high, change the DC voltage source Vs to +3.5 V.
- 27. Increment Vs by +10 mV. Wait 1 second and check the logic level of the corresponding digital channel in the display. If the channel is at a static logic level high, record the Vs value as V_{s} in the 4 V row of the test record.
 - If the channel is a logic level low or is alternating between high and low, repeat this step (increment Vs by 10 mV, wait 1 second, and check for a static logic high) until a value for V_{s-} is found.
- **28.** Find the average, $V_{sAvg} = (V_{s-} + V_{s+})/2$. Record the average as the test result in the test record.
 - Compare the test result to the limits. If the result is between the limits, the channel passes the test.
- **29.** Repeat the procedure starting with step 12 for each remaining digital channel, D1 through D15.

This completes the performance verification procedure.