7.0. TECHNICAL SPECIFICATIONS

The specifications are measured under the following channel conditions unless otherwise indicated:

- RF Input Frequency = 900/1800 MHz sinewave
- RF Input Level = -10 dBm nominal (Input Reference Level set 3.0 dB less then input overload)
- Output Attenuator = 0 dB
- LO Input Level = +13 dBm
- LO Input Frequency = RF Input Frequency 140 MHz
- One Path On, Path Modulation = none, Path Loss = 0 dB, Path Delay = 0 μs

7.1. RF Channel Specifications

RF Input Signal Frequency Range*:

25 to 3000 MHz

RF Bandwidth:

6 MHz, 15 MHz or 26 MHz

Number of Independent RF Channels

1 or 2

RF Input Signal Level

Minimum -30 dBm
Nominal -10 dBm
Maximum +5 dBm
Damage Level +20 dBm

Automatic Reference Level Range

0 to -25 dBm

Path Insertion Delay

RF In to RF Out 4.0 μs maximum

Variation path to path within a channel at band center

10 ns maximum

Group Delay Distortion

6 MHz Bandwidth System ±50 ns typical

±100 ns maximum

15 or 26 MHz Bandwidth System ±30 ns typical

±70 ns maximum

Technical Specifications are subject to change without notice.

*Consult factory for other available ranges

RF Bandwidth Peak to Peak Amplitude Variation

6 MHz Bandwidth System (6 MHz Bandwidth)

1 dB typical

15 MHz Bandwidth System

(8 MHz Bandwidth) 1 dB typical (12 MHz Bandwidth) 2 dB typical (15 MHz Bandwidth) 3 dB typical

26 MHz Bandwidth System

(26 MHz Bandwidth) 3 dB typical

Path Insertion Loss

Band Center 900 MHz 9 dB typical

13 dB maximum

Band Center 1800 MHz 12 dB typical

16 dB maximum

Insertion Loss Variation (Path to path within a channel)

6 MHz Bandwidth System <0.2 dB

15 or 26 MHz Bandwidth System <0.5 dB

Path On/Off Ratio 55 dB minimum

Spurious Emission Levels on RF Out

Nonharmonic within RF Bandwidth

6 or 15 MHz Bandwidth System -50 dBc maximum -40 dBc maximum

Harmonic within RF Bandwidth

6 or 15 MHz Bandwidth System -45 dBc maximum 26 MHz Bandwidth System -40 dBc maximum (except $127 \le f_c \le 143$ MHz) -30 dBc typical

Image Feedthrough = RF OUT level

LO Feedthrough 0 dBm maximum

Physical Interface Characteristics

Impedance 50 ohms

SWR < 1.5

Connector Type Type N Female

7.2. RF Channel Options

RF Output Attenuator

ŀ	1	T	T	1	٠

Attenuation Range 0 to 80 dB Resolution 0.1 dB steps Frequency Range 800 to 2500 MHz Accuracy 0 to 10 dB attenuation ±0.5 dB >10 to 20 dB attenuation ±1.25 dB >20 to 30 dB attenuation ±1.75 dB >30 to 45 dB attenuation $\pm 2.5 \text{ dB}$ >45 to 60 dB attenuation ±2.75 dB >60 to 80 dB attenuation ±4.0 dB Additional Insertion Loss 900 MHz 2.5 dB maximum

900 MHz 2.5 dB maximum 1800 MHz 2.5 dB maximum

ATT2:

Attenuation Range 0 to 95.5 dB
Resolution 0.5 dB steps
Frequency Range 25 to 3000 MHz

Accuracy (25 to 2700 MHz)

 0 to 19.5 dB attenuation
 ±1.0 dB

 20 to 39.5 dB attenuation
 ±2.0 dB

 40 to 59.5 dB attenuation
 ±3.0 dB

 60 to 79.5 dB attenuation
 ±4.0 dB

 80 to 95.5 dB attenuation
 ±6.0 dB

Additional Insertion Loss

900 MHz 2.5 dB maximum 1800 MHz 3.5 dB maximum

RF Image and LO Feedthrough Suppression (EFX Option)

Frequency Range 800 to 3000 MHz
Image Feedthrough on RF Out -50 dBc maximum
LO Feedthrough on RF Out -55 dBc maximum

Additional Insertion Loss 4 dB typical, 6 dB maximum

Additional Amp. vs. Freq. Variation 1 dB typical

RF Channel Bypass (CBP Option)

Insertion Loss with Channel Bypassed 1 dB typical

7.3. Channel Characteristics Emulation

Number of Independent Paths per Channel

3 or 6

Path Modulation

None, Rayleigh, Frequency Shift, Phase Shift, GSM Rician, Rayleigh with Frequency Shift, Nakagami, Programmable Rician

Fading Emulation Method

Programmable in 2 modes:

Jakes, Filtered Noise

Fading (Rayleigh) Amplitude Distribution

Deviation from Theoretical CPDF exceeds the following IS-55/56, IS-137/138, and IS-97/98 requirements:

From +10 to -30 dB of mean power level

 $\pm 0.5 dB$

Level Crossing Rate (LCR) Accuracy exceeds following IS-55/56, IS-137/138, and IS-97/98 requirements:

From +3 to -30 dB of mean power level

 $< \pm 2.5\%$ deviation

theoretical LCR curve of the simulated vehicle velocity

Fading Power Spectrum

Emulation Method = Jakes

Programmable in 2 modes:

Classical 6 dB, Flat

Emulation Method = Filtered Noise

Programmable in 4 modes:

Classical 6 dB, Flat, Classical 3 dB, Rounded

Fading Repetition Interval

Emulation Method = Jakes

Simulated Doppler frequency $\leq 500 \text{ Hz}$

> 20 minutes

Simulated Doppler frequency > 500 Hz

> 10 minutes

Emulation Method = Filtered Noise

Programmable in three nominal ranges:

20 minutes, 27 seconds,

24 hours

Correlation Coefficient

(Between Channel 1 and Channel 2 Paths)

Range 0 to 1

Resolution 0.01

Velocity

Range ($f_c = 900 \text{ MHz}$) $\pm 1.2 \text{ to } \pm 885.0 \text{ km/hr}$

 $(\pm 0.74 \text{ to } \pm 550 \text{ mph})$

Resolution 0.1 units

Units m/sec, km/hr, feet/sec,

miles/hr

Doppler Frequency (Frequency Shift or Fading)

Range $\pm 1 \text{ to } \pm 740 \text{ Hz}$

Resolution 0.1 Hz

Relative Phase Between Paths

(Modulation = Phase)

Range 0 to 360 degrees

Resolution 0.1 degrees

Rician K Factor

(Modulation = Rician)

Range -30 to + 30 dB

Resolution 0.1 dB

Nakagami M Value

(Modulation = Nakagami)

Values 1, 3, 5, 10, 15, 25, 100

Rayleigh Fading Shift Frequency (Only available when Emulation Method = Jakes)

(Madulation = Payloids with Frequency Shift)

(Modulation = Rayleigh with Frequency Shift)

Range -240 to + 240 Hz

Resolution 0.1 Hz

Relative Path Delay

Kange	
6 MHz Bandwidth System	0 to 200 μsec
Extended Delay Option	0 to 1600 μsec
15 MHz Bandwidth System	0 to 100 μsec
Extended Delay Option	0 to 800 µsec
26 MHz Bandwidth System	0 to 66.666 µsec
Extended Delay Option	0 to 533.328μsec
Resolution	1 nsec

Accuracy

6 or 26 MHz Bandwidth System ± 10 nsec maximum ± 5 nsec maximum 15 MHz Bandwidth System

Relative Path Loss

(measurement performed with Modulation=Rayleigh)

R	an	ge
7.	au	Jan 6

6 MHz Bandwidth System	0 to 50 dB
15 MHz Bandwidth System	0 to 40 dB
26 MHz Bandwidth System	0 to 30 dB
Resolution	0.1 dB
Accuracy	

Acc

curacy	
6 MHz Bandwidth System	
0 to 30 dB attenuation	±0.3 dB
>30 to 40 dB attenuation	±1.0 dB
>40 to 50 dB attenuation	±3.0 dB
15 MHz Bandwidth System	
0 to 20 dB attenuation	±0.3 dB
>20 to 30 dB attenuation	±1.0 dB
>30 to 40 dB attenuation	±3.0 dB
26 MHz Bandwidth System	
0 to 20 dB attenuation	±0.3 dB
>20 to 30 dB attenuation	$\pm 1.0~\mathrm{dB}$

Log Normal Fading Standard Deviation

(Relative Path Loss = 25 dB)

Range	0 to 12 dB
Resolution	1 d B

Log Normal Fading Rate

Range	0 to 20 Hz
Resolution	0.001 Hz

7.4. Dynamic Parameter Emulation

NOTE: Dynamic Parameter Emulation is available via the remote connection only. The front panel interface is disabled while in Dynamic Parameter Emulation mode. Dynamic Parameter Emulation is not available on 26 MHz bandwidth systems.

Number of States:

1 to 512

State Duration

Range

0.1 to 3276.7 sec.

Resolution

0.1 sec.

State Transitions

automatic looping, automatic single pass, single step, jump

All other specifications in Section 7.0. are valid with the following exceptions:

Relative Path Delay Resolution

6 MHz Bandwidth System

50 nsec

15 MHz Bandwidth System

25 nsec

Fading Emulation Method:

Filtered Noise Only

Log Normal Fading:

Not Available

7.5. Local Oscillator (LO) Characteristics

Internal Local Oscillators (optional)

(All specs refer to LO OUT unless noted)

LO Frequency Range

LO 3 option 200-400 MHz LO 4 option 940-2860 MHz

Carrier Frequency Range (RF IN)

LO 3 option 60 - 260, 340-540 MHz

LO 4 option 800-3000 MHz

Frequency Resolution 100 kHz

Frequency Accuracy 2 kHz

Level +13 dBm typical

Off Level (wideband) -40 dBm maximum

Phase Noise (1 kHz offset)

LO 3 or LO 4 option -75 dBc/Hz

Harmonics <-10 dBc

External Local Oscillators

(All specs refer to LO IN unless noted)

LO Frequency Range 165-2860 MHz

LO Offset from Carrier Frequency (F_c)

 $F_c \ge 800 \text{ MHz}$ $F_c - 140 \text{ MHz}$ $F_c + 140 \text{ MHz}$

Level

Nominal +13 dBm Minimum +10 dBm Maximum +15 dBm Damage +23 dBm

Nominal LO Impedance 50Ω

7.6. General

Power Requirements

Voltage 85-265 VAC (auto sensing)

Frequency 47 - 63 Hz

Fuse Type 8.0 Amp, 250 Volt slo-blo

Number of Fuses 2

Fuse Location Hot conductor, Neutral conductor

Operating Environment

Temperature 0 to 50 degrees C (32 to 122 degrees F)

Humidity 10% to 90%, noncondensing

Dimensions and Weight

Height 6.9 inches

Width 17.7 inches

Depth 19.9 inches

Weight 45 pounds

Control Interfaces

Interfaces Provided RS-232 (DCE) and IEEE-488 (GPIB)

Serial Control Port Parameters

Bit Rates 300, 1200, 2400, 4800, 9600

Format asynchronous

Bits/Char. 7 or 8

Parity none, odd, even

Stop Bits 1, 1.5, 2

External 10 MHz Reference Requirements

Input Frequency 10.000 MHz

Input Power Level +5.0 dBm