

WaveRunner 6 Zi Oscilloscopes 400 MHz -4 GHz

Key Features

- 400 MHz 4 GHz bandwidths
- Up to 40 GS/s sample rate
- 12.1" touch screen display

Advanced Tools

- Spectrum Analyzer Mode
- WaveScan Search and Find
- LabNotebook Documentation and Report Generation
- History Mode Waveform Playback
- Comprehensive set of serial data analysis, debug, validation and compliance tools
- Advanced Triggering with TriggerScan and Measurement Trigger
- WaveRunner 620MZi complete debug bundle available
- 18 digital channels with 2 GS/s
 - Analog and Digital
 Cross-Pattern Triggering
 - Digital Pattern Search and Find
 - Analog and Digital Timing Measurements
 - Logic Gate Emulation
 - Activity Indicators

The WaveRunner 6 Zi oscilloscope family features 400 MHz - 4 GHz of bandwidth, 40 GS/s sampling rate, exceptional signal fidelity, and fast operation, helping to get the job done quickly and accurately. The versatile toolset provides every necessity for an engineer to validate a design, debug errors at board bring up, and offer powerful analysis capabilities to characterize an embedded system. The WaveRunner 6 Zi is the ultimate debug machine.

Superior Validation, Debug, Analysis

The WaveRunner 6 Zi defines superiority in a test instrument with a powerful feature set including a wide range of application packages, advanced triggering to isolate events, a user interface developed for quick and easy navigation, a wide range of probing options, and lightning-fast performance.

Excellent Signal Fidelity

The WaveRunner 6 Zi features a pristine signal path that offers unmatched signal fidelity with low noise, providing accuracy which can be counted on. This performance is augmented by a huge offset and timebase delay adjustment to allow easy signal and amplifier performance assessment and zooming on vertical and horizontal signal characteristics.

Most Comprehensive Serial Data Analysis

WaveRunner 6 Zi offers the most tools for serial data analysis. With over 30 trigger, decode, and compliance solutions, WaveRunner 6 Zi can address problems with unique, powerful views and automated tools. The SDAII serial data analysis package performs eye diagram and jitter testing which is ideal for characterization and debug.

WaveRunner 620MZi

The WaveRunner 620MZi model includes some of the most commonly used options as part of the standard configuration, reducing confusion when choosing a powerful toolset for debugging. In addition to the versatile software options, it is equipped with 40 GS/s and 128 Mpts of memory to ensure common debug needs are covered.

COMPLETE DEBUG SOLUTION FROM 400 MHz-4 GHz

WaveRunner 6 Zi combines the power of a fully featured multi-purpose oscilloscope, a dedicated logic analyzer for mixed signal design, and a protocol analyzer for serial data debug.

- 1. Industry leading performance-400 MHz-4 GHz, 40 GS/s, 128 Mpts of analysis memory
- 2. 12.1" Widescreen (16x9) high resolution WXGA color touch screen display
- 3. 90° rotating and tilting display for optimal viewing of signals
- 4. Small footprint, only 8.1" deep
- 5. Easy connectivity with two convenient USB ports on the front, two on the side
- 6. USBTMC (Test and Measurement Class) port simplifies programming
- 7. Deepest toolbox with more measurement, more math, more power

3

Largest selection of serial triggers and decoders—more than 20—available to provide a total system view

- Serial trigger captures signals up to 3 Gb/s
- WavePilot consolidates important oscilloscope debug features in one place. LEDs illuminate to indicate navigation options and active oscilloscope features
- The SuperKnob provides joystick control to easily navigation to key debug and documentation features
- **12.** LBUS provides easy connection to the optional mixed signal feature, providing up to 36 digital channels
- **13.** Wide array of probes and accessories to accommodate any probing challenge

	e Conta Managa Mari Analys a A	1944 - 1944 		and a The second s
		<u>uunn</u>	N WILLI	
<u> </u>			N MULU	
	UNIA	UMI		
				Traditions in the Property of
Anaver Inserting Crite	ин на ла ла л	81.84 CRos		The Date for
sterotet	11 March 2016 11 45 04 13 March 2016 11 45 04 14 March 2016 11 45 04 15 March 2016 11 45 04 11 March 2016 11 45 04 11 March 2016 11 45 04 11 March 2016 11 45 04	10.0010 (Segment) 10.00100 and 10.00100 and 10.0000 and 10.00000 and 10.0000 and 10.0000 and 10.0000 and 10.0000 and 10.0000	10.1102/01.00 10.1102/01.00 10.002/01 10.002/00	

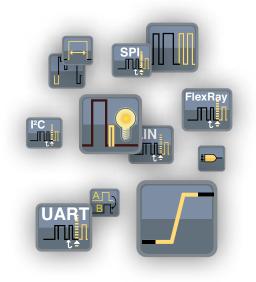
Sequence Mode Acquisition

Sequence mode enables capture of fine details of complex event sequences occurring over long time intervals, while ignoring the intervals between events, allowing for the most efficient use of the oscilloscope's memory. Timestamps are provided for each acquisition and dead-time between triggers is minimized to less than 1 µs. Combine Sequence mode with advanced triggers to isolate rare events over time and analyze afterwards.

TriggerScan[™]

TriggerScan uses high-speed hardware triggering capability with persistence displays to capture only the signals of interest and provide answers up to 100 times faster than other methods. Traditional fast display update modes work best on frequent events occurring on slow edge rates while TriggerScan excels in finding infrequent events on fast edge rates.

WaveScan Advanced Search


WaveScan provides powerful isolation capabilities that hardware triggers can't provide in order to locate runts, glitches, and other waveform anomalies. WaveScan allows searching analog, digital or parallel bus signals in a single acquisition using more than 20 different criteria. Or, set up a scan condition and scan for an event over hours or even days.

History Mode

History mode lets you scroll back in time to isolate those anomalies, measure them with parameters or cursors, and quickly find the source of the problem. History mode is always buffering waveforms, so no user action is required to save traces, only to invoke the viewer.

Advanced Trigger Capabilities

A powerful combination of high bandwidth edge and 10 different SMART triggers, four stage cascade triggering, measurement trigger, and triggerscan are all standard. These features allow you to isolate the problem quickly and begin focusing on the cause. The measurement trigger offers a powerful option to qualify a trigger event based on a qualified measurement with great resolution. A high-speed serial trigger enables triggering on up to 3 Gb/s serial patterns of up to 80-bits in length. A full range of serial triggers (I²C, SPI, UART, RS-232, Audio (I2S, LJ, RJ, TDM), CAN, LIN, FlexRay, MIL-STD-1553, SATA, 8b/10b, USB and many others) are also available.

DISPLAY OPTIMIZED FOR ANALYSIS

Graphical Track, Trend, and **Histogram Views**

The track math function plots measurement values on the Y-axis and time on the X-axis to display a measurement change time-correlated to the original channel acquisition; perfect for intuitive understanding of behaviors in frequency modulated (FM) or pulse width modulated (PWM) circuits and jitter measurements, including modulation or spikes. Histograms provide a visual distribution representation of a large sample of measurements, allowing faster insight. The trend math function is ideal for plotting slow changes in measurement values.

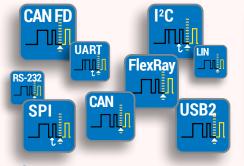
Rotating Display

The 12.1" high resolution WXGA wide screen is designed to provide the best view of any signal type on the display.

The widescreen is ideal for a variety of signals where long records are required and zooming or scrolling results in a large block of data.

Rotate the screen 90° degrees to optimize the display for viewing digital signals, jitter tracks, eye diagrams, and frequency plots. The screen image will adjust automatically when rotated.

Tilt the display up or down in either orientation to minimize reflections or glare.



A TOTAL SOLUTION FOR SERIAL DATA

The WaveRunner 6 Zi features the most complete serial data solutions. Solving serial data problems requires intimate knowledge of the protocol to get started. With the WaveRunner 6 Zi, the oscilloscope is the expert. Simply connect your probes or cables and the scope can provide the correct level of detail needed to view, debug, and analyze the serial data signals.

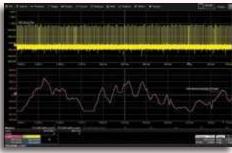
Solutions address the Embedded. Military and Avionics, Handset/ Mobile/Cellular, and Storage/ Peripherals/Interconnects, with a combination of decode, trigger, measure/graph, ProtoSync, and compliance tools.

Whether the protocol under test is a new emerging standard requiring jitter and eye diagram testing, a mature standard requiring compliance testing, or an embedded standard requiring protocol measurement and timing analysis, WaveRunner 6 Zi has it all.

Trigger

Powerful, flexible triggers designed by people who know the standards, with the unique capabilities you want to isolate unusual events. Conditional data triggering permits maximum flexibility and highly adaptable error frame triggering is available to isolate error conditions. Efficiently acquire bursted data using Sequence Mode to maximize the oscilloscope's memory usage. Sequence Mode enables the oscilloscope to ignore idle time and acquire only data of interest.

Decode


Decoded protocol information is colorcoded to specific portions of the serial data waveform and transparently overlaid for an intuitive, easy-tounderstand visual record. All decoded protocols are displayed in a single time-interleaved table. Touch a row in the interactive table to quickly zoom to a packet of interest and select a column header to create filter criteria, as is commonly done in spreadsheets. Easily search through long records for specific protocol events using the builtin search feature.

ProtoSync

ProtoSync combines the oscilloscope view with a simultaneous view of data link layer decodes on the same instrument. This combination makes ProtoSync very effective in debugging PCI Express negotiation rates.

Compatible with PCI Express, USB 2, SAS, SATA, and Fibre Channel.

Measure/Graph

Quickly validate cause and effect with automated timing measurements to or from an analog signal or another serial message. Make multiple measurements in a single long acquisition to quickly acquire statistics during cornercase testing. Serial (digital) data can be extracted to an analog value and graphed to monitor system performance over time, as if it was probed directly. Complete validation faster and gain better insight.

Eye Diagram

Rapidly display an eye diagram of your packetized low-speed serial data signal without additional setup time. Use eye parameters to quantify system performance and apply a standard or custom mask to identify anomalies. Mask failures can be indicated and can force the scope into Stop mode.

SDAII or DDR Debug (optional) create eye diagrams of streaming NRZ serial data or DDR signals, and measure and analyze jitter breakdown.

QualiPHY / Compliance

Compliance testing is a critical part of the design cycle in order to ensure that requirements are met. The QualiPHY framework provides an automated and easy-to-use compliance testing platform for a number of serial data standards.

				LCHOY
1	1	Law interior	+	1
1211	Cer all and	And southern		_
1000	NO. COLOR	-		
in	1			
			1	3
			E	3 -

I²C•• <t< th=""><th>:</th><th>WaveRunner 6 Zi Serial Data Protocol Support</th><th>Trigger</th><th>Decode</th><th>Measure/Grant</th><th>Eye Diagram</th><th>ProtoSync</th><th>QualipHy</th></t<>	:	WaveRunner 6 Zi Serial Data Protocol Support	Trigger	Decode	Measure/Grant	Eye Diagram	ProtoSync	QualipHy
Unit Unit <th< td=""><td></td><td>l²C</td><td>•</td><td>•</td><td></td><td></td><td></td><td></td></th<>		l ² C	•	•				
USB2-HSICIIIIICANIIIIIICAN FDIIIIIIFlexRayIIIIIIIIINIIIIIIIISENTIIIIIIIIIMOST50/150IIIIIIIIIBroadR-ReachIIIIIIIIIMIL-STD-1553IIIIIIIIIISPACEWIREIIIIIIIIIIIIBroadR-ReachIII <td></td> <td>SPI</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td>		SPI		•		•		
CAN <t< td=""><td></td><td>UART-RS232</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td><td></td></t<>		UART-RS232	•	•	•	•		
CAN FD•• <td></td> <td>USB2-HSIC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		USB2-HSIC						
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<		CAN	•			•		
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<	strial	CAN FD						
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<	snpu	FlexRay						
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<	/e +	LIN						
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<	moti	SENT						
BroadR-ReachIIIIIIIARINC429IIIIIIIMIL-STD-1553IIIIIIISPACEWIREIIIIIIIEthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthernetIIIIIIIIthereIIIIIIIIthere<	Auto	MOST50/150						•
MIL-STD-1553 Image: Mile STD-1553 Image: Mile STD-1		BroadR-Reach						•
SPACEWIRE •	ş	ARINC429						
SPACEWIRE •	ionic	MIL-STD-1553						
(10/100Base-T) • <	A	SPACEWIRE						
(1000Base-T) I I I I I MDIO I I I I I I I USB 2.0 I I I I I I I I Bb/10b I I I I I I I I Fibre Channel I I I I I I I I SATA (1.5 & 3 Gb/s) I I I I I I I I SAS (1.5 & 3 Gb/s) I		(10/100Base-T)		•				•
MDIO I I I I I USB 2.0 I I I I I I Bb/10b I I I I I I Fibre Channel I I I I I I SATA (1.5 & 3 Gb/s) I I I I I I SAS (1.5 & 3 Gb/s) I I I I I I PCI Express (Gen1) I I I I I I I DDR2 I I I I I I I I DDR3 I I I I I I I I I DigRF3G I I I I I I I I I Muito (I*S, LJ, RJ, TDM) I I I I I I I Muato (I*S, LJ, RJ, TDM) I I								•
SAS (1.5 & 3 Gb/s) .	ıting, rals			•				
SAS (1.5 & 3 Gb/s) .	iphe	USB 2.0						•
SAS (1.5 & 3 Gb/s) .	ed Co +Per	8b/10b	•	•		•		
SAS (1.5 & 3 Gb/s) .	Sperrage	Fibre Channel		•				
PCI Express (Gen1) •	High	SATA (1.5 & 3 Gb/s)	•	•			•	
LPDDR2 I <td></td> <td>SAS (1.5 & 3 Gb/s)</td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td>		SAS (1.5 & 3 Gb/s)		•			•	
DDR2 I		PCI Express (Gen1)		•			•	
DDR3 •	_	LPDDR2				•		•
DDR3 •	Cioma	DDR2				•		•
D-PHY/CSI-2/DSI I	Me	DDR3				•		•
DigRF3G I I I I DigRF3G I I I I I DigRFV4 I I I I I UniPro I I I I I M-PHY I I I I I Audio (I²S, LJ, RJ, TDM) I I I I Manchester I I I I I		SPMI		•				
DigRFv4 • </td <td></td> <td>D-PHY/CSI-2/DSI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>		D-PHY/CSI-2/DSI						•
DigRFv4 • </td <td>₌</td> <td>DigRF3G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	₌	DigRF3G						
M-PHY 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Σ	DigRFv4						
Audio (I ² S, LJ, RJ, TDM) • • • • Manchester • • • •		UniPro		•				
Manchester •		M-PHY						
		Audio (I ² S, LJ, RJ, TDM)						
	ther	Manchester						
	0	NRZ	•	•		•		

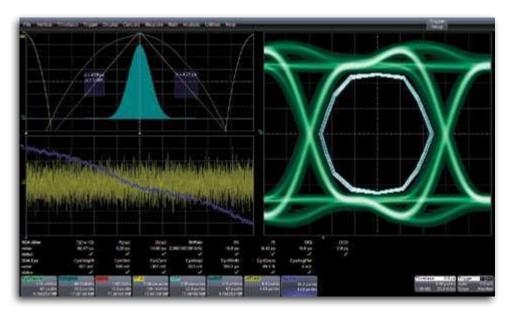
APPLICATION SPECIFIC SOLUTIONS

QualiPHY

QualiPHY is designed to reduce the time, effort, and specialized knowledge needed to perform compliance testing on high-speed serial buses.

- Guides the user through each test setup
- Performs each measurement in accordance with the relevant test procedure
- Compares each measured value with the applicable specification limits
- Fully documents all results
- QualiPHY helps the user perform testing the right way every time

Supported Standards:

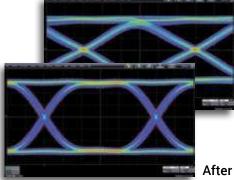

- ENET
- USB
- DDR2, DDR3, LPDDR2
- MIPI-DPHY
- BroadR-Reach
- MOST50, MOST150

SDA II - Advanced Tools to **Isolate and Analyze** (WR6Zi-SDAII)

Unleash the power of serial data analysis for understanding and characterizing a design, proving compliance, and understanding why a device or host fails compliance. The SDAII architecture provides fast updates and eye diagram creation. Combined with up to 128 Mpts record lengths and more complete jitter decomposition tools, SDA II provides a fast and complete understanding of why serial data fails a compliance test. Whether debugging eye pattern or other compliance test failures, the WaveRunner 6 Zi Series rapidly isolates the source of the problem.

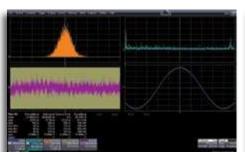

-			LECROY	Qual	IPHY
	ETT	lest I	Report	0.000	
		sult: P	(1.4.) T		
-		000000	7557:		
Time i Opera Temp	d senses of		Center 2 Test our 1 GARDONS 11 T3 51 BM 30° C BNAT		
Units Decili Chicilis Climp Oldillis	d num puration in u in use scope Nam scope Serio ular:	10. 11.9 11.94	30150400 Y1-13.50 Densi 10000436.7 Detsuit BAMIT-NBWY Muder INNEADD BAMIT-NBWY BAMIT-NBWY BAMIT-SAWY 0.7.7.4 (Suita 20060) 7.7.1.3 (Suita 20060) 7.7.1.3 (Suita 20060)		
	NY surpt of		7.7.5.2		
	hefy surget of feesel correct		7732 1208		
01,144	head service		1208		
Su	mma		1208		
Su	mma	iry Ta	ble	Current Volum	The City
Su	mma	iry Ta	1288 ble Management	Current Value	Contractory of
Su	mma	Test 40.6124	1288 blo Messariement Transmiss Destroy Hole Kirne Aj	PMWY	A = 10.00 m
Su	mma	Test 408124	1288 blo I Measurement Transmiss Datarian (Note C)/Net A) Transmiss Datarian (Note C)/Net A)	T M HV	a = 10.00 m a = 10.00 m
Su	mma	Test 40.6.1.2.4 40.6.1.2.4	1288 blo I Measurement Descents Descent Note 4 (1944 A) Descents Descent Note 4 (1944 A) Descents Descent Note 4 (1944 A)	7.84 mV 7.84 mV 7.84 mV	a = 10.00 m a = 10.00 m a = 10.00 m
Su	mma	Test 40.6.1.2.4 40.6.1.2.4 40.6.1.2.4 40.6.1.2.4	1284 ble I Measurement Deserve Ander (John A) Deserve Ander Ander (John A) Deserve Ander Ander (John A) Deserve Ander Ander (John A)	7.84 mV 7.84 mV 7.84 mV 7.84 mV	a = 10.00 m a = 10.00 m a = 10.00 m a = 10.00 m
Su	mma	Test 40.6.12.4 40.6.12.4 40.6.12.4 40.6.12.5	12.84 ble Messardement Tamente Destruct Mode 50 Over 51 Tamente Destruct Mode 51 Over 51 Tamente Destruct Mode 51 Over 51 Tamente Destruct Mode 51 Over 52 Tamente Destruct Mode 51 Over 52 Tamente Destruct Mode 51 Over 52 Tamente State Destruct Mode 51 Tamente State Destruct Mode 51 Tamente State State Destruct Mode 51 Tamente State Stat	7.84 mV 7.84 mV 7.84 mV	a = 10.00 m a = 10.00 m a = 10.00 m
Su	mma	Test 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.5	12.84 blo Measurement Transmiss Desires Mode (Criter A) Transmiss Desires Mode (Criter A) Transmiss Desires Mode (Criter B) Transmiss Desires Mode (Criter B) Desires D Sense (Criter B) Mode 1 Mode (Criter B) Mode 1 Mode (Criter B)	7.84 mV 7.84 mV 7.84 mV 7.84 mV 7.84 mV 204 ps	x = 10.00 m x = 10.00 m x = 10.00 m x = 10.00 m x < 1.400 m
Su	mma	Test 40.5124 40.5124 40.5124 40.5124 40.5124 40.5125 40.5125 40.5125	12.84 ble Messardement Tamente Destruct Mode 50 Over 51 Tamente Destruct Mode 51 Over 51 Tamente Destruct Mode 51 Over 51 Tamente Destruct Mode 51 Over 52 Tamente Destruct Mode 51 Over 52 Tamente Destruct Mode 51 Over 52 Tamente State Destruct Mode 51 Tamente State Destruct Mode 51 Tamente State State Destruct Mode 51 Tamente State Stat	7 M mV 7 M mV 7 M mV 7 M mV 7 M mV 204 m 200 m	x = 10.00 m x = 10.00 m x = 10.00 m x = 10.00 m x = 1.000 m x = 1.400 m x = 1.400 m
Su	mma	Test 40.5124 40.5124 40.5124 40.5124 40.5124 40.5125 40.5125 40.5125 40.5125	12.0.0 blo Measurement Transmiss Datation (Note CONe A) Transmiss (Note CON	7 M mV 7 M mV 7 M mV 7 M mV 7 M mV 204 m 204 m	$\begin{split} a &= 10.00 \text{ m} \\ a &= 1.000 \text{ m} \\ a &= 3.00 \text{ m} \\ a &= 3.00 \text{ m} \end{split}$
Su	mma	Test 405124 405124 405124 405124 405124 405125 405125 405125 405125	12.84 bio Measurement Description Description Media (Linna A) Description Description Media (Linna A) Description Description Media (Linna B) Description Description Media (Linna B) Description Description Media (Linna A) Media (Linna A) Description (Linna A) Media (Linna A)	7 84 mV 7 84 mV 7 84 mV 7 84 mV 209 ps 200 ps 200 ps 200 ps 200 ps	x = 10.00 m x = 1.00 m
Su	mma	Test 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.4 40.8.12.5 40.8.12.5 40.8.12.5 40.8.12.5 40.8.12.5 40.8.12.5	12.84	7.64 mV 7.64 mV 7.64 mV 7.64 mV 206 ps 200 ps 200 ps 204 ps 204 ps 202 ps 204 ps	$\begin{split} & a = 10.00 \text{ m} \\ & a = 1.400 \text{ m} \\ & a = 3.00 \text{ gas} \\ & a = 1.400 \text{ m} \\ & x < 3.00 \text{ gas} \\ & x + 1.400 \text{ m} \end{split}$
Su	mma	Test 40.512.4 40.512.4 40.512.4 40.512.4 40.512.5 40.512.5 40.512.5 40.512.5	12.84	7 AM mV 7 AM mV 7 AM mV 7 AM mV 7 AM mV 204 ps 200 ps 204 ps 204 ps 205 ps 204 ps 205 ps 205 ps	$\begin{array}{c} a = 10.00 \mbox{ m} \\ a = 1.400 \mbox{ m} \\ a = 300 \mbox{ m} \\ a = 1.400 \mbox{ m} \\ a = 300 \mbox{ m} \\ a = 300 \mbox{ m} \end{array}$

Compliance Reports contain all of the tested values, the specific test limits and screen captures. Compliance Reports can be created as HTML, PDF or XML.


Advanced jitter decomposition methodologies and tools provide more information about root cause. Ti Analysis, RjBUj Analysis and DDj

Analysis are made simple with the deepest toolset dedicated to providing the highest level of insight into your serial data signals.

DDR Debug Toolkit (WR6Zi-DDR3-Toolkit)


The DDR Debug Toolkit provides test, debug and analysis tools for the entire DDR design cycle. The unique DDR analysis capabilities provide automatic Read and Write burst separation, bursted data jitter analysis and DDR-specific measurement parameters. The WaveRunner 6 Zi supports both standard and custom speed grades of DDR2 and DDR3.

Before

Eye Doctor II (WR6Zi-EYEDRII)

The Eye Doctor II advanced signal integrity toolkit enables a complete set of channel emulation, de-embedding, and receiver equalization simulation tools. It provides capability to emulate a serial data link, de-embed or embed a fixture, cable or serial data channel, add or remove emphasis, and perform CTLE, FFE, or DFE equalization.

Jitter and Timing Analysis Option (WR6Zi-JITKIT)

JITKIT makes it simple and easy to understand the basic system jitter performance of clock signals and clock-data activities, including period, half period, cycle-cycle, skew, amplitude, differential voltage crossing, slew rate, and a wide variety of other common jitter measurements.

Power Analyzer Software Option (WR6ZI-PWR)

Quickly measure and analyze operating characteristics of power conversion circuits. Make automatic switching device measurements and identify areas of loss and conduction with color-coded overlay. Control loop modulation analysis and line power harmonic testing are all simplified with a dedicated user interface.

Advanced Probe Interface

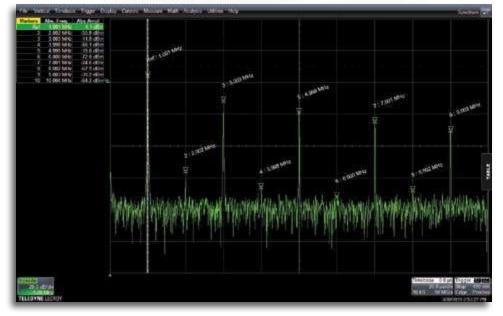
The advanced active probe interface gives tremendous flexibility for measuring high voltages, high frequencies, currents, or differential signals.

High Impedance Active Probes

High Bandwidth Differential Probes

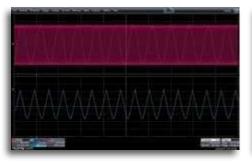
High Voltage Differential Probes

High Voltage Passive Probes


Current Probes

WAVERUNNER 620MZI

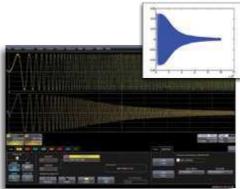
Having the most commonly used debug tools as part of the standard configuration, the WaveRunner 620MZi model provides a powerful set of analysis tools for effective debugging. By combining 40 GS/s sample rate and 128 Mpts of memory with a powerful set of triggers, signals of interest can be isolated with ease. The inclusion of the Spectrum Analyzer and Serial Trigger and Decode options creates a powerful multi-instrument tool for looking at a system under test from multiple perspectives. The XDEV customization option and digital filtering package allow the debug setup to emulate custom applications.



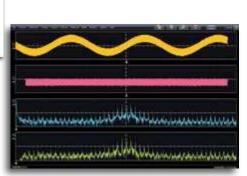
What's included with the WaveRunner 620MZi?

- 128 Mpts of Memory
- 40 GS/s Sample Rate
- Spectrum Analyzer Software
- Digital Filter Software
- XDEV Customization Package
- I²C Trigger and Decode
- SPI Trigger and Decode
- UART Trigger and Decode

Spectrum Analyzer Option (WR6Zi-SPECTRUM)


The Spectrum Analyzer mode provides a spectrum analyzer style user interface with controls for start/stop frequency or center frequency and span. The resolution bandwidth is automatically set for best analysis or can be manually selected. Vertical Scale can be selected in the desired units and the unique peak search automatically labels spectral components and presents frequency and level in an interactive table. To monitor how the spectrum changes over time, view the spectrogram which can display a 2D or 3D history of the frequency content.

40 GS/s Sample Rate and 128 Mpts of Long Memory


A 40 GS/s sample rate allows for a detailed edge reconstruction even for signals with the fastest rise times. This is critical for detecting signal integrity issues such as reflections.

Deep memory of 128 Mpts is ideal for debugging long term behavior on high speed serial data buses. For example, slowly varying physical-layer characteristics such as Spread Spectrum Clocking (SSC) must be analyzed over periods of milliseconds.

XDEV Customization Option (WR6Zi-XDEV)

With the XDEV option, third party programs can be completely integrated into the oscilloscope's processing stream. Create customized math functions and parameters using C/C++, MATLAB, Excel, JScript or Visual Basic without ever leaving the oscilloscope application - and view the results directly on the oscilloscope, in real-time.

Digital Filter Software Option (WR6Zi-DFP2)

DFP2 lets you implement Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters to eliminate undesired spectral components, such as noise, and enhances your ability to examine important signal components. You can choose from a standard set of FIR or IIR filters or you can also design your own custom filters. Create and apply a variety of FIR and IIR digital filters to your capture waveforms or processed traces.

I²C, SPI, and UART Trigger and Decode (WR6Zi-EMB)

A serial data trigger will quickly isolate events on a bus eliminating the need to set manual triggers and hoping to catch the right information. Trigger conditions can be entered in binary or hexadecimal formats and conditional trigger capabilities even allow triggering on a range of different events.

Protocol decoding is shown directly on the waveform with an intuitive, color-coded overlay and presented in binary, hex or ASCII. Decoding is fast even with long memory, and zooming in to the waveform shows precise byte by byte decoding.

	WaveRunner 604Zi	WaveRunner 606Zi	WaveRunner 610Zi		
Vertical System					
Analog Bandwidth @ 50 Ω (-3 dB)	400 MHz (≥ 2 mV/div)	600 MHz (≥ 2 mV/div)	1 GHz (≥ 2 mV/div)		
Analog Bandwidth @ 1 M Ω (-3 dB)	400 MHz (typical)	500 MHz (typical)	500 MHz (typical)		
Rise Time (10–90%, 50 Ω)	875 ps (typical)	580 ps (typical)	375 ps (typical)		
Rise Time (20–80%, 50 Ω)	650 ps (typical)	435 ps (typical)	280 ps (typical)		
Input Channels	4				
Bandwidth Limiters	20 MHz, 200 MHz	20 MHz, 200 MHz	20 MHz, 200 MHz		
Input Impedance	50 Ω ±2% or 1 MΩ 17pF, 10 MΩ 9.5	pF with supplied Probe			
Input Coupling	1 M $\mathbf{\Omega}$: AC, DC, GND; 50 $\mathbf{\Omega}$: DC, GND				
Maximum Input Voltage	50 Ω: 5 V _{rms} ±10 V peak 1 MΩ: 400 V max. (DC + peak AC < 10 kH	łz)			
Channel-Channel Isolation	> 100:1 up to rated BW				
Vertical Resolution	8-bits; up to 11-bits with enhanced reso	blution (ERES)			
Sensitivity	50 Ω : 1 mV/div–1 V/div, fully variable 1 M Ω : 1 mV/div–10 V/div, fully variable	50 Ω : 1 mV/div–1 V/div, fully variable 1 M Ω : 1 mV/div–10 V/div, fully variable			
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±1% F.S. (typical), offset at 0 V				
Offset Range	50 Ω: ±1.6 V @ 1 mV- 4.95 mV/div ±4 V @ 5 mV-9.9 mV/div ±8 V @ 10 mV-19.8 mV/div ±10 V @ 20 mV-1 V/div 1 MΩ: ±1.6 V @ 1 mV-4.95 mV/div ±4 V @ 5 mV-9.9 mV/div ±8 V @ 10 mV-19.8 mV/div ±16 V @ 20 mV-140 mV/div ±80 V @ 142 mV-1.4 V/div ±160 V @ 1.42 V-10 V/div				
DC Vertical Offset Accuracy	±(1.5% of offset setting +1% of full scal (test limit)	e + 1 mV)			
Horizontal System					
Timebases	Internal timebase common to 4 input c	hannels; an external clock may be ap	plied at the External input		
Time/Division Range	20 ps/div - 1.6 ks/div with standard me (up to 3.2 ks/div with -S memory, 6.4 ks RIS available at ≤ 10 ns/div; Boll Mode available at ≥ 100 ms/div an	s/div with -M memory)			

Clock Accuracy	≤ 1.5 ppm +(aging of 0.5 ppm/yr from	≤ 1.5 ppm +(aging of 0.5 ppm/yr from last calibration)				
Trigger and Interpolator Jitter	≤ 4.5 ps _{rms} (typical) < 0.1 ps _{rms} (typical, software assisted)	≤ 4 ps _{rms} (typical) < 0.1 ps _{rms} (typical, software assisted)	≤ 3.5 ps _{rms} (typical) < 0.1 ps _{rms} (typical, software assisted)			
Channel-Channel Deskew Range	±9 x time/div. setting, 100 ms max., ea	ach channel				
External Timebase Reference (Input)	10 MHz ±25 ppm via optional LBUS BI	NC adapter				
External Timebase Reference (Output)	10 MHz 3.5 dBm ±1 dBm, synchronize via optional LBUS BNC adaptor	ed to reference being used by user (inte	rnal or external reference)			
External Clock	DC to 100 MHz; (50 Ω /1 M Ω), Ext. BN Minimum rise time and amplitude requ					

	WaveRunner 620Zi	WaveRunner 620MZi	WaveRunner 625Zi	WaveRunner 640Zi
Vertical System				
Analog Bandwidth @ 50 Ω (-3 dB)	2 GHz (≥ 5 mV/div)		2.5 GHz (≥ 5 mV/div)	4 GHz (≥ 5 mV/div)
Analog Bandwidth @ 1 M Ω (-3 dB)		MHz ical)	500 MHz (typical)	500 MHz (typical)
Rise Time (10–90%, 50 Ω)		175 ps (typical)		100 ps (typical)
Rise Time (20–80%, 50 Ω)) ps ical)	120 ps (typical)	75 ps (typical)
Input Channels	4			
Bandwidth Limiters		ИНz, z, 1 GHz	20 MHz, 200 MHz, 1 GHz	20 MHz, 200 MHz, 1 GHz
Input Impedance) M Ω 9.5 pF with supplied P	robe	
Input Coupling	1 MΩ: AC, DC, GND; 50 Ω: D	C, GND		
Maximum Input Voltage	50 Ω: 5 V _{rms} ±10 V peak 1 MΩ: 400 V max. (DC + peak	AC < 10 kHz)		
Channel-Channel Isolation		> 100:1 up to rated BW		> 100:1 up to 2.5 GHz > 30:1 from 2.5 GHz to rated BW
Vertical Resolution	8-bits; up to 11-bits with enh	anced resolution (ERES)		
Sensitivity	50 Ω : 1 mV/div−1 V/div, full 1 M Ω : 1 mV/div−10 V/div, fu			
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±1% F.S. (typical), offset at 0	V		
Offset Range	±1.6 V @ 1 mV-4.95 mV/div BWL ≤ 1 ±4 V @ 5 mV-9.9 mV/div ±1.6 V @ 1 mV- ±8 V @ 10 mV-19.8 mV/div ±4 V @ 5 mV- ±10 V @ 20 mV-1 V/div ±8 V @ 10 mV- ±10 V @ 20 mV-1 V/div ±8 V @ 10 mV- ±1.6 V @ 1 mV-4.95 mV/div ±10 V @ 20 m ±1.6 V @ 1 mV-4.95 mV/div ±10 V @ 20 m ±1.6 V @ 1 mV-4.95 mV/div ±1.4 V @ 5 mV- ±4 V @ 5 mV-9.9 mV/div ±1.4 V @ 5 mV- ±8 V @ 10 mV-19.8 mV/div ±10 V @ 124 r ±16 V @ 20 mV-140 mV/div ±10 V @ 124 r ±16 V @ 142 mV-1.4 V/div ±1.6 V @ 1 mV- ±160 V @ 1.42 V-10 V/div ±4 V @ 5 mV- ±16 V @ 20 mV ±4 V @ 5 mV-		NU-9.9 mV/div NU-19.8 mV/div D mV-1 V/div > 1 GHz nV-122 mV/div 24 mV-1 V/div MQ: nV-4.95 mV/div NU-9.9 mV/div NU-19.8 mV/div nV-140 mV/div 2 mV-1.4 V/div	

Horizontal System

nonzontai oystem					
Timebases	Internal timebase common t	o 4 input channels; an exterr	hal clock may be applied at th	e External input	
Time/Division Range	20 ps/div - 1.6 ks/div with standard memory (up to 3.2 ks/div with -S memory, 6.4 ks/div with -M memory)20 ps/div - 6.4 ks/div with standard memory RIS available at ≤ 10 ns/div; Roll Mode available at ≥ 100 ms/div and ≤ 5 MS/s20 ps/div - 1.6 ks/div with stan (up to 3.2 ks/div with -S n 6.4 ks/div with -S n BOIL Mode available at ≥ 100 ms/div and ≤ 5 MS/s20 ps/div - 1.6 ks/div with stan (up to 3.2 ks/div with -S n 6.4 ks/div with -S n BOIL Mode available at ≥ 100 ms/div and ≤ 5 MS/s20 ps/div - 1.6 ks/div with stan (up to 3.2 ks/div with -S n 6.4 ks/div with -S n BOIL Mode available at ≥ 100 ms/div and ≤ 5 MS/s		with -S memory, h -M memory) at ≤ 10 ns/div;		
Clock Accuracy	≤ 1.5 ppm +(aging of 0.5 ppr	≤ 1.5 ppm +(aging of 0.5 ppm/yr from last calibration)			
Trigger and Interpolator Jitter	(typ < 0.1	≤ 3 ps _{ms} (typical) < 0.1 ps _{ms} (typical, software assisted)		≤ 2 ps _{rms} (typical) < 0.1 ps _{rms} (typical, software assisted)	
Channel-Channel Deskew Range	±9 x time/div. setting, 100 ms max., each channel				
External Timebase Reference (Input)	10 MHz ±25 ppm via optional LBUS BNC adapter				
External Timebase Reference (Output)		10 MHz 3.5 dBm ±1 dBm, synchronized to reference being used by user (internal or external reference) via optional LBUS BNC adaptor			
External Clock	DC to 100 MHz; (50 $\Omega/1$ M Ω Minimum rise time and amp	e), Ext. BNC input, litude requirements apply at	low frequencies		

	WaveRunner 604Zi	WaveRunner 606Zi	WaveRunner 610Zi
Acquisition System			
Single-Shot Sample Rate/Ch	10 GS/s on 4 Ch 20 GS/s on 2 Ch		
Random Interleaved Sampling (RIS)	200 GS/s for repetitive signals (20 ps/div to 10 ns/div)		
Maximum Trigger Rate	1,000,000 waveforms/second (in Sequence Mod up to 4 channels)	e,	
Intersegment Time	1 µs		
Standard Memory (4 Ch / 2 Ch / 1 Ch) (Number of Segments)	16M / 32M / 32M (5,000)		
Memory Options (4 Ch / 2 Ch / 1 Ch) (Number of Segments)	S-32 Option: 32M / 64M / 64M (15,000) M-64 Option: 64M / 128M / 128M (15,000)		

Acquisition Processing

Averaging	Summed averaging to 1 million sweeps; continuous averaging to 1 million sweeps
Enhanced Resolution (ERES)	From 8.5- to 11-bits vertical resolution
Envelope (Extrema)	Envelope, floor, or roof for up to 1 million sweeps
Interpolation	Linear or Sin x/x

Triggering System

Modes	Normal, Auto, Single, and Stop					
Sources	Any input channel, Ext, Ext/10, or line;	slope and level unique to each source ((except line trigger)			
Coupling Mode	DC, AC, HFRej, LFRej					
Pre-trigger Delay	0 - 100% of memory size (adjustable i	0 - 100% of memory size (adjustable in 1% increments or 100 ns)				
Post-trigger Delay	0 - 10,000 divisions in real time mode, limited at slower time/div settings or in roll mode					
Hold-off by Time or Events	From 2 ns up to 20 s or from 1 to 99,9	From 2 ns up to 20 s or from 1 to 99,999,999 events				
Internal Trigger Range	±4.1 div from center (typical)					
Trigger Sensitivity with Edge Trigger (Ch 1–4)	2 div @ < 400 MHz 1.5 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)	2 div @ < 600 MHz 1.5 div @ < 300 MHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)	2 div @ < 1 GHz 1.5 div @ < 500 MHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)			
External Trigger Sensitivity, (Edge Trigger)	2 div @ 1 GHz 1.5 div @ < 500 MHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)					
Max. Trigger Frequency, SMART Trigger	400 MHz @ ≥ 10 mV/div 1.9 ns (minimum triggerable width 1.9 ns)	600 MHz @ ≥ 10 mV/div 1.2 ns (minimum triggerable width 1.2 ns)	1.0 GHz @ ≥ 10 mV/div (minimum triggerable width 750 ps)			
External Trigger Input Range	Ext (±0.4 V); Ext/10 (±4 V)					

Basic Triggers

Edge	Triggers when signal meets slope (positive, negative, or either) and level condition
Window	Triggers when signal exits a window defined by adjustable thresholds
TV-Composite Video	Triggers NTSC or PAL with selectable line and field; HDTV (720p, 1080i, 1080p) with selectable frame rate (50 or 60 Hz) and Line; or CUSTOM with selectable Fields (1–8), Lines (up to 2000), Frame Rates (25, 30, 50, or 60 Hz), Interlacing (1:1, 2:1, 4:1, 8:1), or Synch Pulse Slope (Positive or Negative)

	WaveRunner 620Zi	WaveRunner 620MZi	WaveRunner 625Zi	WaveRunner 640Zi
Acquisition System				
Single-Shot Sample Rate/Ch	10 GS/s on 4 Ch 20 GS/s on 2 Ch		20 GS/s on 4 Ch 40 GS/s on 2 Ch	
Random Interleaved Sampling (RIS)	200 GS/s for repetitive signa	als (20 ps/div to 10 ns/div)		
Maximum Trigger Rate	1,000,000 waveforms/seco	nd (in Sequence Mode, up to 4	1 channels)	
Intersegment Time	1 µs			
Standard Memory (4 Ch / 2 Ch / 1 Ch) (Number of Segments)		64M / 128M / 128M (15,000)	16M / 32 (5,0	2M / 32M 000)
Memory Options (4 Ch / 2 Ch / 1 Ch) (Number of Segments)	S-32 Option: 32M / 64M / 64M (15,000) M-64 Option: 64M / 128M / 128M (15,000)	S-32 Option: 32M / 64M / 64M (15,000) M-64 Option: 64M / 128M / 128M (15,000)		4M / 64M 000) Option:
Acquisition Processing				
Averaging	Summed averaging to 1 mill	ion sweeps; continuous avera	aging to 1 million sweeps	
Enhanced Resolution (ERES)	From 8.5- to 11-bits vertical		<u> </u>	
Envelope (Extrema)	Envelope, floor, or roof for up	to 1 million sweeps		
Interpolation	Linear or Sin x/x or cubic (us	· · · · · · · · · · · · · · · · · · ·		
Triggering System Modes	Normal, Auto, Single, and Sto			
Sources	Any input channel, Ext, Ext/1	0, or line; slope and level unic	ue to each source (except lir	ne trigger)
Coupling Mode	DC, AC, HFRej, LFRej			
Pre-trigger Delay	0 - 100% of memory size (ac	ljustable in 1% increments or	100 ns)	
Post-trigger Delay	0 - 10,000 divisions in real ti	me mode, limited at slower tir	me/div settings or in roll mod	de
Hold-off by Time or Events	From 2 ns up to 20 s or from	1 to 99,999,999 events		
Internal Trigger Range	±4.1 div from center (typical)		
Trigger Sensitivity with Edge Trigger (Ch 1–4) ProBus Inputs	2 div @ < 2 GHz		2 div @ < 2.5 GHz 1.5 div @ < 1.25 GHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)	2 div @ < 4 GHz 1.5 div @ < 2 GHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling)
External Trigger Sensitivity, (Edge Trigger)	2 div @ 1 GHz 1.5 div @ < 500 MHz 1 div @ < 200 MHz 0.9 div @ < 10 MHz (DC, AC, and LFRej coupling))		
Max. Trigger Frequency, SMART Trigger	10 m (minimum)	Hz @ ≥ IV/div triggerable 400 ps)	2.0 GHz @ ≥ 10 mV/div (minimum triggerable width 300 ps)	2.0 GHz @ ≥ 10 mV/div (minimum triggerable width 200 ps)
External Trigger Input Range	Ext (±0.4 V); Ext/10 (±4 V)			
Basic Triggers				
Edge	Triggers when signal meets	slope (positive, negative, or ei	ither) and level condition	
Window		window defined by adjustable		
TV-Composite Video	Triggers NTSC or PAL with s			
		sissions into and noid,		

VVIIIUOVV	riggers when signal exits a window defined by adjustable thesholds
TV-Composite Video	Triggers NTSC or PAL with selectable line and field;
	HDTV (720p, 1080i, 1080p) with selectable frame rate (50 or 60 Hz) and Line; or
	CUSTOM with selectable Fields (1–8), Lines (up to 2000), Frame Rates (25, 30, 50, or 60 Hz),
	Interlacing (1:1, 2:1, 4:1, 8:1), or Synch Pulse Slope (Positive or Negative)

OMADITI	WaveRunner 604Zi 606Zi	WaveRunner 610Zi 620Zi 620 MZi	WaveRunner 625Zi 640Zi
SMART Triggers			
State or Edge Qualified	Triggers on any input source only if a defined state or edge occurred on another input source. Delay between sources is selectable by time or events		
Qualified First	In Sequence acquisition mode, triggers repeatably on event B only if a defined pattern, state, or edge (event A) is satisfied in the first segment of the acquisition. Holdoff between sources is selectable by time or events		
Dropout	Triggers if signal drops out for longer than selected time between 1 ns and 20 s		
Pattern	Logic combination (AND, NAND, OR, NOR) of 5 inputs (4 channels and external trigger input. Each source can be high, low, or don't care. The High and Low level can be selected independently. Triggers at start or end of the pattern		

SMART Triggers with Exclusion Technology

Glitch	Triggers on positive or negative glitches with widths selectable as low as 200 ps (depending on oscilloscope band- width) to 20 s, or on intermittent faults
Width (Signal or Pattern)	Triggers on positive or negative glitches with widths selectable as low as 200 ps (depending on oscilloscope band- width) to 20 s, or on intermittent faults
Interval (Signal or Pattern)	Triggers on intervals selectable between 1 ns and 20 s
Timeout (State/Edge Qualified)	Triggers on any source if a given state (or transition edge) has occurred on another source.
	Delay between sources is 1 ns to 20 s, or 1 to 99,999,999 events
Runt	Trigger on positive or negative runts defined by two voltage limits and two time limits. Select between 1 ns and 20 ns
Slew Rate	Trigger on edge rates. Select limits for dV, dt, and slope. Select edge limits between 1 ns and 20 ns
Exclusion Triggering	Trigger on intermittent faults by specifying the expected behavior and triggering when that condition is not met

Measurement Trigger

Trigger on measurement values, Edge, Serial Pattern, Bus Pattern, Non-monotonic

Cascade (Sequence) Triggering

Capability	Arm on "A" event, then Trigger on "B" event. Or Arm on "A" event, then Qualify on "B" event, and Trigger on "C" event. Or Arm on "A" event, then Qualify on "B" then "C" event, and Trigger on "D" event
Types	Cascade A then B: Edge, Window, Pattern (Logic) Width, Glitch, Interval, Dropout, or Measurement. Measurement can be on Stage B only.
	Cascade A then B then C (Measurement): Edge, Window, Pattern (Logic), Width, Glitch, Interval, Dropout, or Measurement. Measurement can be on Stage C only.
	Cascade A then B then C: Edge, Window, Pattern (Logic).
	Cascade A then B then C then D: Edge, Window, Pattern (Logic), or Measurement. Measurement can be on Stage D only
Holdoff	Holdoff between A and B, B and C, C and D is selectable by time (1ns to 20s) or number of events.
	Measurement trigger selection as the last stage in a Cascade precludes a holdoff setting between the prior stage and the last stage.

Optional High-speed Serial Protocol Triggering (WR6Zi-80B-8B10B TD)

Data Rates	150 Mb/s-3 Gb/s
Pattern Length	80-bits, NRZ or 8b/10b
Clock Recovery Jitter	1 ps _{rms} + 0.3% Unit Interval RMS for PRBS data patterns with 50% transition density
Hardware Clock Recovery Loop BW	PLL Loop BW = Fbaud/5500, 100 Mb/s to 2.488 Gb/s (typical)

Color Waveform Display

Туре	Color 12.1" widescreen flat panel TFT-Active Matrix with high resolution touch screen
Resolution	WXGA; 1280 x 800 pixels
Number of Traces	Display a maximum of 16 traces. Simultaneously display channel, zoom, memory and math traces
Grid Styles	Auto, Single, Dual, Quad, Octal, X-Y, Single+X-Y, Dual+X-Y
Waveform Representation	Sample dots joined, or sample dots only

WaveRunner 604Zi 606Zi WaveRunner 610Zi 620Zi 620 MZi WaveRunner 625Zi 640Zi

Processor/CPU

F10CE3501/CF0	
Туре	Intel® E5300 Pentium Dual Core 2.6 GHz or greater
Processor Memory	2 GB standard, up to 4 GB optional
Operating System	Microsoft Windows® 7 For Embedded Systems 64-Bit
Real Time Clock	Date and time displayed with waveform in hardcopy files. SNTP support to synchronize to precision internal clocks

Interface

Remote Control	Via Windows Automation, or via Teledyne LeCroy Remote Command Set
Network Communication Standard	VXI-11 or VICP, LXI Class C (v1.2) Compliant
GPIB Port (Optional)	Supports IEEE—488.2 (External)
Ethernet Port	Supports 10/100/1000Base-T Ethernet interface (RJ45 port)
USB	Minimum 4 total (Including 2 front panel) USB 2.0 ports support Windows compatible devices
USB Device Port	1 USBTMC Port
External Monitor Port	15-pin D-Type SVGA compatible DB-15 to support customer-supplied external monitor. Includes support for extended desktop operation with WXGA resolution on second monitor
Peripheral Bus	Teledyne LeCroy LBUS standard

Power Requirements

Voltage	100–240 VAC ±10% at 45–66 Hz; 100–120 VAC ±10% at 380–420 Hz;
	Automatic AC Voltage Selection; Installation Category: 300 V CAT II
Power Consumption (Nominal)	400 W / 400 VA
Max Power Consumption	500 W / 500 VA (with all PC peripherals, active probes connected to 4 channels, and MSO active)

Environmental

Linnonnentai	
Temperature (Operating)	+5 °C to +40 °C
Temperature (Non-Operating)	-20 °C to +60 °C
Humidity (Operating)	5% to 80% relative humidity (non-condensing) up to +31 °C
	Upper limit derates to 50% relative humidity (Non-condensing) at +40 °C
Humidity (Non-Operating)	5% to 95% relative humidity (non-condensing) as tested per MIL-PRF-28800F
Altitude (Operating)	Up to 10,000 ft. (3,048 m) at or below +25 °C
Random Vibration (Operating)	0.31 g _{rms} 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes
Random Vibration (Non-Operating)	2.4 g _{rms} 5 Hz to 500 Hz, 15 minutes in each of three orthogonal axes
Functional Shock	30 g _{peak} , half sine, 11 ms pulse, 3 shocks (positive and negative) in each of three orthogonal axes, 18 shocks total
Physical Dimensions	
Dimensions (HWD)	11.6929" H x 16.4567" W x 8.937" D (297 x 418 x 227 mm)
Weight	25.4 lbs. (11.52 kg)
Shipping Weight	39 lbs. (17.69 kg)
Certifications	
	CE Compliant, UL and cUL listed; Conforms to EN 61326-1, EN 61010-1, UL 61010-1 2nd edition, and
	CSA C22.2 No. 61010-1-04
Warranty and Service	
	3-year warranty; calibration recommended annually. Optional service programs include extended warranty,
	upgrades, and calibration services

Standard

Math Tools

Display up to 8 math function traces (F1-F8). The easy-to-use graphical interface simplifies setup of up to two operations on each function trace, and function traces can be chained together to perform math-on-math.

absolute value	exp (base 10)	product (x)
average (summed)	fft (power spectrum,	reciprocal
average (continuous)	power average,	rescale (with units)
correlation	magnitude, phase, up to 128 Mpts)	roof
(two waveforms)	floor	(sinx)/x
derivative	integral	sparse
deskew (resample)	interpolate (cubic,	square
difference (-)	quadratic, sinx/x)	square root
enhanced resolution	invert (negate)	sum (+)
(to 11 bits vertical)	log (base e)	zoom (identity)
envelope	log (base 10)	
exp (base e)	109 (5000 10)	

Measure Tools

Display any 8 parameters together with statistics, including their average, high, low, and standard deviations. Histicons provide a fast, dynamic view of parameters and wave shape characteristics. Parameter Math allows addition, subtraction, multiplication, or division of two different parameters.

amplitude	level @ x	rms
area	maximum	std. deviation
base	mean	top
bit rate	median	width
cycles	minimum	phase
delay	narrow band phase	time @ minimum (min.)
∆ delay	narrow band power	time @ maximum (max.)
duty cycle	number of points	Δ time @ level
duration	+ overshoot	Δ time @ level from
falltime (90–10%,	– overshoot	trigger
80–20%, @ level)	peak-to-peak	x @ max.
frequency	period	x @ min.
first	risetime (10–90%,	
last	20-80%, @ level)	

Pass/Fail Testing

Simultaneously test multiple parameters against selectable parameter limits or pre-defined masks. Pass or fail conditions can initiate actions including document to local or networked files, e-mail the image of the failure, save waveforms, send a pulse out at the front panel auxiliary BNC output, or (with the GPIB option) send a GPIB SRQ.

Standard (cont'd)

Basic Jitter and Timing Analysis

This package provides jitter timing and analysis using time, frequency, and statistical views for common timing parameters, and also includes other useful tools. Includes:

- Period @ level

- "Track" graphs of all parameters, no limitation of number
- Cycle-Cycle Jitter - N-Cycle

start selection

- N-Cycle with Width @ level
 - Time Interval

- Half Period

- Frequency @ level Error @ level
- Edge @ lv parameter (counts edges)
- · Histograms expanded with 19 histogram parameters and up to 2 billion events
- Trend (datalog) of up to 1 million events
- Track graphs of all parameters
- Persistence histogram, persistence trace (mean, range, sigma)

Advanced Customization

Provides capability to create a math function or measurement parameter in MATLAB, Excel, C++, JavaScript, or Visual Basic Script (VBS) format and insert it into the oscilloscope's processing stream. All results are processed and displayed on the oscilloscope grid, and are available for further processing. Also permits the creation of customized plug-ins that can be inserted into the scope user interface, control of the scope via Visual Basic scripts embedded in customized functions, and use of Teledyne LeCroy's Custom DSO capabilities.

Software Options

SDA II Serial Data Analysis Option (WR6Zi-SDAII)

Total Jitter

A complete toolset is provided to measure total jitter. Eye Diagrams with millions of UI are guickly calculated from up to 128 Mpts records, and advanced tools may be used on the Eye Diagram to aid analysis. Complete TIE and Total Jitter (Tj) parameters and analysis functions are provided.

- Time Interval Error (TIE) Measurement Parameter, Histogram, Spectrum and Jitter Track
- Total Jitter (Tj) Measurement Parameter, Histogram, Spectrum

Eve Width

- Extinction Ratio

Mask hits

– Mask out

Bit Error Rate

Slice Width

(setting)

- Eye Diagram Display (sliced)
- Eye Diagram IsoBER (lines of constant Bit Error Rate)
- Eye Diagram Mask Violation Locator
- Eye Diagram Measurement Parameters
- Eve Height
- One Level
 - Eye Crossing
 - Avg. Power
- Eye Amplitude
- · Q-Fit Tail Representation
- Bathtub Curve

- Zero Level

- Cumulative Density Function (CDF)
- PLL Track

18 www.valuetronics.com - Duty Cycle @ level - Duty Cycle Error

– Setup

– Hold

- Skew

Software Options (cont'd)

SDA II Serial Data Analysis Option (WR6Zi-SDAII) - continued

Jitter Decomposition Models

Two jitter decomposition methods are provided and simultaneously calculated to provide maximum measurement confidence. Q-Scale, CDF, Bathtub Curve, and all jitter decomposition measurement parameters can be displayed using either method.

- Spectral Method
- NQ-Scale Method

Random Jitter (Rj) and Non-Data Dependent Jitter (Rj+BUj)

- Random Jitter (Rj) Measurement Parameter
- Rj+BUj Histogram
- Rj+BUj Spectrum
- Rj+BUj Track

Deterministic Jitter (Dj)

• Deterministic Jitter (Dj) Measurement Parameter

Data Dependent Jitter (DDj)

- · Data Dependent Jitter (DDj) Measurement Parameter
- DDj Histogram
- DDj Plot (by Pattern or N-bit Sequence)

Eye Doctor II Advanced Signal Integrity Tools (WM8Zi-EYEDRII)

Complete set of channel emulation, de-embedding and receiver equalization simulation tools. Provides capability to emulate a serial data link, de-embed or embed a fixture, cable or serial data channel, add or remove emphasis, and perform CTLE, FFE, or DFE equalization. If purchased with SDAIII, then capabilities are accessed from within the SDAIII-Complete-LinQ user interface framework.

Power Analyzer Option (WR6Zi-PWR)

Power switching device measurements, control loop modulation analysis, and line power harmonic testing are all simplified with a dedicated user interface and automatic measurements.

Device Analysis

- Losses Automatic measurement of turn-on, turn-off, and conduction loses as well as off-state power, total losses and switching frequency
- Safe Operating Area
- B-H-Hysteresis Curve
- Dynamic On-Resistance

Dv/dt and di/vt

- Control Loop Analysis
- Closed loop time-domain Duty cycle, width, period or frequency
- Line Power Analysis
- Power Vrms, Irms, real-power, apparent power, power factor, crest factor
- Harmonics EN61000-3-2 pre-compliance, Total Harmonic Distortion
- Measurement Setup
- Controls for Deskew, DC fine adjust, probe integration, device zone identification

Cable De-embedding Option (WR6Zi-CBL-DE-EMBED)

Removes cable effects from your measurements. Simply enter the S-parameters or attenuation data of the cable(s) then all of the functionality of the WR6Zi can be utilized with cable effects de-embedded.

8b/10b Decode and 80-bit High Speed Serial Trigger Option (WR6Zi-80B-8B10B TD)

Intuitive, color-coded serial trigger decode with powerful search capability enables captured waveforms to be searched for user-defined sequences of symbols. Multi-lane analysis decodes up to four simultaneously captured lanes. Includes 150 Mb/s to 3.125 Gb/s High-speed 80-bit Serial Pattern Trigger Option

www.valuetronics.com

Software Options (cont'd)

Serial Data Mask Option (WR6Zi-SDM)

Create eye diagrams using a comprehensive list of standard eye pattern masks, or create a user-defined mask. Mask violations are clearly marked on the display for easy analysis.

Electrical Telecom Pulse Mask Test Option (WR6Zi-ET-PMT)

Performs automated compliance mask tests on a wide range of electrical telecom standards.

Spectrum Analyzer Option (WR6Zi-SPECTRUM)

Spectrum analyzer style user interface and advanced FFT capabilities.

- Automatic oscilloscope setup when selecting start/stop frequency or center frequency and span
- · Resolution bandwidth automatically or manually controlled
- FFT Reference and vertical scale in dBm, dBV, dBmV, dBuV, Vrms or Arms
- Spectrogram provides 2D or 3D spectral history display
- Up to 100 automatic peak markers
- Up to 20 markers, either manually controlled or automatic which mark fundamental frequency and harmonics
- · Math waveform analysis, additional output types:
- Power density
- Real
- Imaginary
- Magnitude squared

Disk Drive Measurements Option (WR6Zi-DDM2)

This package provides disk drive parameter measurements and related mathematical functions for performing disk drive WaveShape Analysis. • Disk Drive Parameters are as follows:

at minimum

at maximum

peak-trough

over threshold

trough-peak

under threshold

- narrow band phase

- narrow band power

local time

local time

local time

local time

local time

local time

- amplitude
 - asymetry
- local base
 local baseline
- separation
- local maximum
- local minimum
- local number
- local peak-peak
- local time
- between events
- local time between peaks
- local time between troughs

- overwrite
 - pulse width 50
 - pulse width 50 –
 - pulse width 50 +
 - resolution
 - track average amplitude
 - track average amplitude –
 - track average amplitude +
 - auto-correlation s/n
 - non-linear transition shift

Product Description	Product Code
WaveRunner 6 Zi Series Oscilloscopes	
400 MHz, 10 GS/s, 4 Ch, 16 Mpts/Ch	WaveRunner 604Zi
DSO with 12.1" WXGA Color Display. 50	
Ω and 1 M Ω Input 20 GS/s and	
32 Mpts/Ch in Interleaved Mode	
600 MHz, 10 GS/s, 4 Ch, 16 Mpts/Ch	WaveRunner 606Zi
DSO with 12.1" WXGA Color Display. 50	
Ω and 1 M Ω Input 20 GS/s and 32 Mpts/Ch in Interleaved Mode	
1 GHz, 10 GS/s, 4 Ch, 16 Mpts/Ch DSO	WaveRunner 6107i
with 12.1" WXGA Color Display. 50 Ω	
and 1 M Ω Input 20 GS/s and	
32 Mpts/Ch in Interleaved Mode	
2 GHz, 10 GS/s, 4 Ch, 16 Mpts/Ch DS0	WaveRunner 620Zi
with 12.1" WXGA Color Display. 50 Ω	
and 1 M Ω Input 20 GS/s and	
32 Mpts/Ch in Interleaved Mode	
2 GHz, 20 GS/s, 4 Ch, 64 Mpts/Ch DSO	WaveRunner 620MZi
with 12.1" WXGA Color Display. 50 Ω	
and 1 M ${f \Omega}$ Input 20 GS/s and	
128 Mpts/Ch in Interleaved Mode	
2.5 GHz, 20 GS/s, 4 Ch, 16 Mpts/Ch	WaveRunner 625Zi
DSO with 12.1" WXGA Color Display. 50	
Ω and 1 M Ω Input 40 GS/s and	
32 Mpts/Ch in Interleaved Mode	
4 GHz, 20 GS/s, 4 Ch, 16 Mpts/Ch DSO	WaveRunner 640Zi
with 12.1" WXGA Color Display. 50 Ω	
and 1 M Ω Input 40 GS/s and	
32 Mpts/Ch in Interleaved Mode	
Included with Standard Configuration	
÷10, 500 MHz Passive Probe (Qty. 4)	
Optical 3-button Wheel Mouse, USB 2.0	
Printed Quick Reference Guide	
Printed Getting Started Manual	
Product Manual in PDF Format on Oscillosco	ppe Desktop
Anti-virus Software (Trial Version)	
Microsoft Windows® 7 For Embedded Syste	
Commercial NIST Traceable Calibration with	Certificate
Power Cable for the Destination Country	
3-year Warranty	
Oscilloscope Synchronization	
8 Channel Simultaneous Acquisition-	WR6ZI-8CH-SYNCH
Capture and Transfer Waveforms	
Deturner Ture M/D CZ: Opeilleseenes	

Product Description	Product Code	
Memory Options		
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR604Zi-S-32	
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB	WR606Zi-S-32	
of RAM 32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB	WR610Zi-S-32	
of RAM 32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR620Zi-S-32	
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR625Zi-S-32	
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR640Zi-S-32	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR604Zi-M-64	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR606Zi-M-64	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR610Zi-M-64	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR620Zi-M-64	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR625Zi-M-64	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM	WR640Zi-M-64	
Memory and Sample Rate Options		
20 GS/s (40 GS/s Interleaved) Sampling Rate Option	WR610Zi-STD-4x20GS	
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM. 20 GS/s (40 GS/s Interleaved)	WR610Zi-S-32-4x20GS	
Sampling Rate Option 64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM. 20 GS/s (40 GS/s Interleaved) Sampling Pate Option	WR610Zi-M-64-4x20GS	
Sampling Rate Option 20 GS/s (40 GS/s Interleaved) Sampling Rate Option	WR620Zi-STD-4x20GS	
32 Mpts/Ch (64 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM. 20 GS/s (40 GS/s Interleaved) Sampling Rate Option	WR620Zi-S-32-4x20GS	
64 Mpts/Ch (128 Mpts/Ch Interleaved) Standard Memory. Includes 4 GB of RAM. 20 GS/s (40 GS/s Interleaved) Sampling Rate Option	WR620Zi-M-64-4x20GS	

Between Two WR 6Zi Oscilloscopes

Product Description	Product Code
Computer Upgrade	
Upgrade From 2 GB RAM to 4 GB RAM	WR6Zi-UPG-4GBRAM
Removable Hard Drive Option	WR6Zi-500GB-RHD
Additional 500 GB Hard Drive	WR6Zi-500GB-RHD-02
for Use With RHD Option. Includes Win-	
dows 7 Pro for Embedded	
Systems OS, Teledyne LeCroy	
Oscilloscope Software and Critical	
Scope Operational File Duplicates	
Serial Trigger and Decode	
MIL-STD-1553 Trigger and	WR6Zi-1553 TD
Decode Option	
MIL-STD-1553 Trigger, Decode, Measure/	WR6ZI-1553 TDME
Graph, and Eye Diagram Option	
8b/10b Trigger and Decode Option	WR6Zi-80B-8B10B TD
	C429BUS DME SYMBOLIC
Decode, Measure/Graph,	
and Eye Diagram Option	
	Zi-ARINCbus DSYMBOLIC
Decode Option	
Audiobus Trigger and Decode for	WR6Zi-Audiobus TD
I2S, Option LJ, RJ, and TDM	
Audiobus Trigger, Decode, and Graph	WR6Zi-Audiobus TDG
Option for I ₂ S, LJ, RJ, and TDM	
CANbus FD Trigger and	WR6Zi-CAN FDbus TD
Decode Option	
	WR6ZI-CAN FDBUS TDME
Graph, and Eye Diagram Option	
	FDBUS TDME SYMBOLIC
Decode, and Measure/Graph,	
and Eye Diagram Option	
CANbus TD Trigger and	WR6Zi-CANbus TD
Decode Option CAN Trigger, Decode, Measure/Graph,	WR6ZI-CANBUS TDME
and Eye Diagram Option	WROZI-CANBUS I DIVIE
	ANBUS TDME SYMBOLIC
and Measure/Graph, and Eye	ANDOS TOME STMDUEIC
Diagram Option	
DigRF 3G Decode Option	WR6Zi-DigRF3Gbus D
DigRF v4 Decode Option	WR6Zi-DigRFv4bus D
MIPI D-PHY Decode Option	WR6Zi-DPHYbus D
MIPI D-PHY Decode and Physical Layer	WR6Zi-DPHYbus DP
Test Option	WHOZI DI ITI BUS DI
I ² C, SPI, UART-RS232 Trigger and Decode Bur	ndle WR6ZI-EMB TD
I ² C, SPI, UART-RS232 Trigger, Decode,	WR6ZI-EMB TDME
Measure/Graph, and Eye Diagram	
Bundle	
ENET Decode Option	WR6ZI-ENETbus D
Fibre Channel Decode	WR6Zi-FCbus D
Annotation Option	

Product Description

Product Code

Serial Trigger and Decode (cont'd)	
FlexRay Trigger and Decode Option	WR6Zi-FlexRaybus TD
FlexRay Trigger, Decode, Measure/	WR6ZI-FLEXRAYBUS TDMP
Graph and Physical Layer Option	
I ² C Bus Trigger and Decode Option†	WR6Zi-I2Cbus TD
I ² C Trigger, Decode, Measure/Graph, and	
Diagram Option	
LIN Trigger and Decode Option	WR6Zi-LINbus TD
LIN Trigger, Decode, Measure/Graph,	WR6ZI-LINBUS TDME
and Eye Diagram Option	
Manchester Decode Option	WR6ZI-Manchesterbus D
MDIO Decode Option	WR6Zi-MDIObus D
MIPI M-PHY Decode Option	WR6Zi-MPHYbus D
MIPI M-PHY Decode and Physical Layer	
Test Option	
MS-500-36 with I2C, SPI, UART and	WR67I-MSO-EMB TD
RS-232 Trigger and Decodes Bundle	
MS-500-36 with I2C, SPI, UART-RS-232	WR67I-MSO-EMB TDME
Trig, Decode, Measure/Graph and	
Eye Bundle	
NRZ Decode Option	WR6ZI-NRZbus D
PCI Express Gen1 Decode Option	WR6Zi-PClebus D
PROTObus MAG Serial Debug Toolkit	WR6Zi-PROTObus MAG
Decode Annotation and Protocol	WR6Zi-ProtoSync
Analyzer Synchronization	
Software Option	
Decode Annotation and Protocol	WR6Zi-PROTOSYNC-BT
Analyzer+Bit Tracer SW Synchroniza-	
tion Option	
SAS Decode Annotation Option	WR6Zi-SASbus D
SATA Trigger Decode Annotation	WR6Zi-SATAbus TD
Option Supports SATA Gen1 and 2	
SENT Bus Decode Option	WR6Zi-SENTbus D
SpaceWire Decode Option	WR6Zi-SpaceWirebus D
SPI Bus Trigger and Decode Option†	WR6Zi-SPIbus TD
SPI Trigger, Decode, Measure/Graph,	WR6ZI-SPIBUS TDME
and Eye Diagram Option	
SPMI Decode Option	WR6Zi-SPMIbus D
UART and RS-232 Trigger and	WR6Zi-UART-RS232bus TD
Decode Option†	
UART-RS232 Trigger, Decode,	WR6ZI-UART-RS232BUS TDME
Measure/Graph, and Eye Diagram	
Option	
MIPI UniPro Protocol Decoder	WR6ZI-UNIPRObus D
USB2-HSIC Decode Option	WR6Zi-USB2-HSICbus D
USB 1.x/2.0 Trigger/Decode Option	WR6Zi-USB2bus TD
USB 2.0 Trigger, Decode, Measure/	WR67I-USB2BUS TDME
Graph, and Eye Diagram Option	

† Included with WaveRunner 620MZi

Product Description	Product Code
Serial Data Compliance	
QualiPHY Enabled BroadR-Reach Software Option	QPHY-BroadR-Reach
QualiPHY Enabled MOST50 ePHY Compliance Software Option. Requires options DFP2 and SDM or SDA2	QPHY-MOST50
QualiPHY MOST150 oPHY and cPHY Compliance Software Option. Requires options DFP2 and SDM or SDA2	QPHY-MOST150
QualiPHY Enabled Ethernet 10/100/1000BT Software Option	QPHY-ENET*
QualiPHY Enabled DDR2 Software Option	QPHY-DDR2
QualiPHY Enabled DDR3 Software Option	QPHY-DDR3
QualiPHY Enabled LPDDR2 Software Option	QPHY-LPDDR2
QualiPHY Enabled MIPI D-PHY Software Option	QPHY-MIPI-DPHY
QualiPHY Enabled MOST150 Software Option	QPHY-MOST150
QualiPHY Enabled MOST50 Software Option	QPHY-MOST50
QualiPHY Enabled USB 2.0 Software Option	QPHY-USB‡
10/100/1000Base-T Ethernet Test Fixture	TF-ENET-B**
USB 2.0 Compliance Test Fixture * TF-ENET-B required. # Health ENET-2004 COMPLETE 2014 ENERGY	TF-USB-B

** Includes ENET-2CAB-SMA018 and ENET-2ADA-BNCSMA.

Serial Data Analysis

Cable De-Embedding Option	WR6Zi-CBL-DE-EMBED
Eye Doctor (Virtual Probe and	WR6Zi-EYEDRII
Equalizer Emulation Bundle),	
Serial Data Analyzers, and Disk	
Drive Analyzers	
Serial Data Mask Software Option	WR6Zi-SDM
SDA II Serial Data Analysis Option	WR6ZI-SDAII

DDR Debug Tookits

DDR2 and LPDDR2 Debug Toolkit	WR6ZI-DDR2-TOOLKIT
DDR3, DDR3L, LPDDR3, DDR2, and	WR6Zi-DDR3-TOOLKIT
LPDDR2 Debug Toolkit	
DDR3, DDR3L, LPDDR3, DDR2, and LPDDR2 Debug Toolkit Upgrade	WR6Zi-UPG-DDR3-TOOLKIT
DDR3, DDR3L, LPDDR3, DDR2, and	WR6Zi-UPG-DDR3-TOOLKIT

Product Description	Product Code
Mixed Signal Solutions	
18 channel QuickLink leadset for HDA125	HDA-DLS-18QL
9 channel QuickLink leadset for HDA125	HDA-DLS-09QL
250 MHz, 1 GS/s, 18 Ch, 10 Mpts/Ch Mixed Signal Oscilloscope Option	MS-250
500 MHz, 2 GS/s, 18 Ch, 50 Mpts/Ch Mixed Signal Oscilloscope Option	MS-500
250 MHz, 1 GS/s, 36 Ch, 25 Mpts/Ch (500 MHz, 18 Ch, 2 GS/s, 50 Mpts/Ch Interleaved) Mixed Signal Oscilloscope Option	MS-500-36
Data Storage Software	
Advanced Optical Recording Measurement Option	WR6Zi-AORM
Disk Drive Measurements Software Option	WR6Zi-DDM2
Disk Drive Analyzer Software Option	WR6Zi-DDA
Power Analysis Software	
Power Analyzer Software Option	WR6Zi-PWR
Jitter Analysis Software	
Clock Jitter Analysis with Four Views Software Option	WR6Zi-JITKIT
Spectrum Analysis Software	
Spectrum Analyzer Option (Included with WaveRunner 620MZi)	WR6Zi-SPECTRUM
Other Software Options	
VectorLinQ Vector Signal Analysis	WR6Zi-VECTORLINQ
Advanced Customization Option (Included with WaveRunner 620MZi)	WR6Zi-XDEV
EMC Pulse Parameter Software Option	WR6Zi-EMC
Electrical Telecom Mask Test Software Option	WR6Zi-ET-PMT
Digital Filtering Software Digital Filter Software Option (Included with WaveRunner 620MZi)	WR6Zi-DFP2

Remote Control/Network Options

External USB2 to GPIB Adaptor

USB2-GPIB

Product Description	Product Code
General Accessories	
Oscilloscope Cart with Additional Shelf and Drawer	0C1024-A
Oscilloscope Cart	OC1021-A
Accessory Pouch	WR6Zi-POUCH
Rackmount, 8U Adaptor Kit	WR6ZI-RACK
Keyboard, USB	KYBD-1
MIL Calibration Certification	WR6Zi-CCMIL
Soft Carrying Case	WR6Zi-SOFTCASE
Protective Hard Cover	WR6Zi-COVER
Hard Case	WR6Zi-HARDCASE
	R6Zi-ExtRef-IN/OUT
Out (To be applied at the Lbus	
Connector)	
Probes	
Power/Voltage Rail Probe	RP4030
4 GHz, 1.2x, ±30V offset, ±800mV dynamic range	
High Voltage Fiber Optic Probe, 60 MHz Bandwidth	
÷10, 500 MHz 10 MΩ Passive Probe	PP009
÷10, 500 MHz 10 MΩ Passive Probe	PP008
÷10, 500 MHz Passive Probe, 2.5mm, 10 MΩ	PP022
\div 10, 500 MHz Passive Probe, 5mm, 10 M Ω	PP024
1 GHz, 0.9 pF, 1 MΩ	ZS1000
High Impedance Active Probe	
Set of 4 ZS1000, 1 GHz, 0.9 pF,	ZS1000-QUADPAK
1 MΩ High Impedance Active Probe	
1.5 GHz, 0.9 pF, 1 MΩ	ZS1500
High Impedance Active Probe	ZS1500-QUADPAK
Set of 4 ZS1500, 1.5 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZST500-QUADPAK
$2.5 \text{ GHz}, 0.9 \text{ pF}, 1 \text{ M}\Omega$	ZS2500
High Impedance Active Probe	202000
Set of 4 ZS2500, 2.5 GHz, 0.9 pF,	ZS2500-QUADPAK
1 M Ω High Impedance Active Probe	202000 00/00/01/00
4 GHz, 0.6 pF, 1 MΩ	ZS4000
High Impedance Active Probe	
200 MHz, 3.5 pF, 1 MΩ Active	ZD200
Differential Probe	
500 MHz, 1.0 pF, 1 MΩ Active Differential Probe	ZD500
1 GHz, 1.0 pF, 1 MΩ Active Differential Probe	ZD1000
1.5 GHz, 1.0 pF, 1 M Ω Active Differential Probe	ZD1500
WaveLink 4 GHz, 2.5 Vp-p Differential Probe System	D410-A-PS
WaveLink 4 GHz, 5 Vp-p Differential Probe System	D420-A-PS
WaveLink 6 GHz, 2.5 Vp-p Differential Probe System	D610-A-PS
WaveLink 6 GHz, 5 Vp-p Differential Probe System	D620-A-PS
WaveLink 4 GHz Differential Amplifier	D400A-AT*
Module with Adjustable Tip	
WaveLink 6 GHz Differential Amplifier	D600A-AT*
Module with Adjustable Tip WaveLink ProBus Platform/Cable	WL-PBus-CASE
Assembly (4 GHz)	WL-FBUS-CASE

* For a complete probe, order a WL-PBUS-CASE Platform/Cable Assembly with the Adjustable Tip Module

Product Description

Product Code

Probes (cont'd)

ribbes (conta)	
25 MHz High Voltage Differential Probe	HVD3102
1kV, 25 MHz High Voltage Differential	HVD3102-NOACC
Probe without tip Accessories	
120 MHz High Voltage Differential Probe	HVD3106
1kV, 120 MHz High Voltage Differential Probe	HVD3106-NOACC
without tip Accessories	
2kV, 120 MHz High Voltage Differential Probe	HVD3206
2kV, 80 MHz High Voltage Differential Probe with	HVD3206-6M
6m cable	
6kV, 100 MHz High Voltage Differential Probe	HVD3605
1 Ch, 100 MHz Differential Amplifier	DA1855A
with Precision Voltage Source	DATOSSA
DA1855A with Rackmount	DA1855A-RM
2 Ch, 100 MHz Differential Amplifier	DA1855A-PR2
	DATOJJA-PINZ
with Precision Voltage Source DA1855A with Rackmount	
	DA1855A-PR2-RM
(must be ordered at time of	
purchase, no retrofit)	00000
30 A; 50 MHz Current Probe –	CP030
AC/DC; 30 Arms; 50 Apeak Pulse	
30A, 50 MHz High Sensitivity Current	CP030A
Probe - AC/DC, 30 A rms, 50 A Peak	
Pulse, 1.5 meter cable	
30 A; 100 MHz Current Probe –	CP031
AC/DC; 30 Arms; 50 Apeak Pulse	
30A, 100 MHz High Sensitivity Current	CP031A
Probe - AC/DC, 30 A rms, 50 A Peak	
Pulse, 1.5 meter cable	
150 A; 10 MHz Current Probe –	CP150
AC/DC; 150 Arms; 500 Apeak Pulse	
500 A; 2 MHz Current Probe –	CP500
AC/DC; 500 Arms; 700 Apeak Pulse	
Programmable Current Sensor to Pro-	CA10
Bus Adapter for use with third party	
current sensors	
Set of 4 CA10 Programmable Current	CA10-QUADPAK
Sensor to ProBus Adapters for	
third-party current sensors	
TekProbe to ProBus Probe Adapter	TPA10
Set of 4 TPA10 TekProbe to ProBus	TPA10-QUADPAK
Probe Adapters. Includes soft carrying	
case.	
700 V, 15 MHz High-Voltage	AP031
Differential Probe (÷10, ÷100)	
100:1 400 MHz 50 MΩ 1 kV High-	HVP120
voltage Probe	
100:1 400 MHz 50 MΩ 4 kV	PPE4KV
High-Voltage Probe	
1000:1 400 MHz 50 MΩ 5 kV	PPE5KV
High-Voltage Probe	
1000:1 400 MHz 5 MΩ / 50 MΩ 6 kV	PPE6KV
High-Voltage Probe	
Optical-to-Electrical Converter,	0E425
500-870 nm ProBus BNC Connector	02.20
Optical-to-Electrical Converter,	0E455
950-1630 nm ProBus BNC Connector	02100

www.valuetronics.com

1-800-5-LeCroy teledynelecroy.com Local sales offices are located throughout the world. Visit our website to find the most convenient location.

© 2017 by Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders. PCI Express® is a registered trademark and/or service mark of PCI-SIG.

MATLAB® is a registered trademark of The MathWorks, Inc. All other product or brand names are trademarks or requested trademarks of their respective holders.

waverunner6zi-ds-23feb17