Keysight 11590B Bias Network Operating and Service Manual NOTICE: This document contains references to Agilent Technologies. Agilent's former Test and Measurement business has become Keysight Technologies. For more information, go to **www.keysight.com.** ## **Notices** © Keysight Technologies 1995 - 2015 No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies as governed by United States and international copyright laws. #### **Manual Part Number** 11590-90020 #### **Edition** #### January 2015 Supersedes: January 1995, April 2014 Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403 ## Warranty The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Keysight disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warran-ties of merchantability and fitness for a particular purpose. Keysight shall not be liable for errors or for inciden-tal or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Keysight and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control. ## **Technology Licenses** The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license. ## **Restricted Rights Legend** If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data. #### **Safety Notices** ## **CAUTION** A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met. #### WARNING A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. ## 11590B Bias Network ## **General Information** This Operating and Service Manual contains information required to install, operate and test the 11590B and 11590B Option 001 bias networks. The 11590B is equipped with Type-N female connectors and operates to 12.4 GHz. The 11590B Option 001 is equipped with precision 7 mm connectors and operates to 18.0 GHz. ## **Specifications** Instrument specifications are listed in Table 1. These specifications are the performance standards or limits against which the instrument is tested. **Table 1 Specifications** | Electrical | | | | | |--|-----------------|--|--|--| | Frequency Range | | | | | | Standard | 0.1 to 12.4 GHz | | | | | Option 001 | 0.1 to 18.0 GHz | | | | | Impedance | 50 ohms nominal | | | | | Port Match (both ports); Minimum Return Loss | | | | | | Standard | | | | | | 0.1 to 1.0 GHz | 16 dB | | | | | 1.0 to 12.4 GHz | 19 dB | | | | | Option 001 | | | | | | 0.1 to 1.0 GHz | 16 dB | | | | | 1.0 to 12.4 GHz | 19 dB | | | | | 12.4 to 18.0 GHz | 14 dB | | | | | Insertion Loss; Maximum | | | | | | Standard | | | | | | 0.1 to 1.0 GHz | 1.0 dB | | | | | 1.0 to 12.4 GHz | 0.8 dB | | | | | Option 001 | | | | | | 0.1 to 1.0 GHz | 1.0 dB | | | | | 1.0 to 12.4 GHz | 0.8 dB | | | | | 12.4 to 18.0 GHz | 1.2 dB | | | | **Table 1 Specifications** | Maximum Bias Voltage | 100 Vdc | | | | |--|-------------------|--|--|--| | Maximum Bias Current
(each bias port) | 500 mA | | | | | DC Resistance from Bias
Port to Output Port at 23 °C
(typical) | 3.0 ohms | | | | | General | | | | | | Operating Temperature | 0 to 55°C | | | | | RF Connectors (non-hermetic) | | | | | | Standard | Type-N female | | | | | Option 001 | Precision 7 mm | | | | | Bias Connector
(non-hermetic) | BNC female | | | | | Net Weight | 0.30 kg (0.7 lbs) | | | | | Dimensions | | | | | | In millimeters | 54 x 51 x 28 | | | | | In inches | 2.2 x 2 x 2.1 | | | | ## **Description** The 11590B bias network provides a means of supplying dc bias to the center conductor of a coaxial line and thus to a biasable component or device (such as a transistor), while blocking the dc bias from the input RF circuit. A schematic diagram of the 11590B is shown is Figure 1. The capacitor in the RF input arm acts as a dc block/high pass filter. The vertical arms are identical and act as bias/bias sense arms. Because the BIAS/BIAS SENSING port draws no current (it is connected to a high impedance voltmeter), the voltage measured is identical to the voltage at the RF and Bias Output. To double the maximum current handling capability, both BIAS/BIAS SENSING ports may be used for bias input. A vertical arm is comprised of a series inductance and shunt capacitance which act together as a low pass filter. The ferrite beads and R-C filter decouple the power supply from the RF section and help to reduce the possibility of inductance related oscillation. Figure 1 Schematic Diagram 11590_020_001 ## Installation #### **Initial Inspection** Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given under "PERFORMANCE TESTS". If the contents are incomplete, if there is mechanical damage or defect, or if the 11509B bias network does not pass the Performance Tests, notify Keysight Technologies — see "Contacting Keysight" on page 8. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as Keysight. Keep the shipping materials for the carrier's inspection. The Keysight office will arrange for repair or replacement at Keysight's option without waiting for claim settlement. #### **Preparation For Use** **Interconnections** The 11590B bias network is connected in line with the device to be biased. The bias is applied through either BIAS/BIAS SENSING port, and is sensed through the other BIAS/BIAS SENSING port. **Mating Connectors** The mating connectors for Type-N connectors are the opposite gender Type-N connectors. Precision 7 mm connectors (Option 001) are genderless. #### **Operating Environment** The instrument may be operated in environments within the following limits: Temperature 0° to +55°C Humidity Up to 95% Altitude Up to 7625 meters (25,000 feet) The instrument should be protected from temperature and humidity conditions which cause condensation within the instrument. ## **Storage and Shipment** The instrument may be stored in environments within the following limits: Temperature -40°C to +75°C Humidity Up to 95% Altitude Up to 7625 meters (25,000 feet) The instrument should be protected from temperature and humidity conditions which cause condensation within the instrument. #### **Packaging** **Tagging for Service** If the instrument is being returned to Keysight for service, attach a tag indicating the type of service required, return address, and model number. See "Contacting Keysight" on page 8. **Original Packaging** Containers and materials identical to those used in factory packaging are available through Keysight offices. Mark the container FRAGILE to ensure careful handling. **Other Packaging** The following general instructions should be used for re-packing with commercially available materials: - 1. Wrap the instrument in heavy paper or plastic (If shipping to a Keysight office or service center, attach a tag as explained previously). - 2. Use a strong shipping container. - 3. Use a thick layer of shock absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to provide firm cushioning and prevent movement inside the container. - 4. Seal the shipping container securely. - 5. Mark the shipping container FRAGILE to ensure careful handling. - 6. In any correspondence, refer to the instrument by model number and full serial number. ## **Operation** #### **Operating Instructions** Figure 2 shows the Keysight 11590B bias network connected in a typical measurement setup. Many other applications are possible but not shown because the general method of setup and operation is the same. The 11590B contains an in-line filter which will help prevent inductance related oscillations. However, to eliminate the possibility of oscillation with bipolar transistors, it is recommended that the 11635A bias decoupling network be used with the 11590B. Figure 2 Typical Measurement Setup 11590_020_002 #### **Performance Tests** The procedures in this section tests the electrical performance of the 11590B using the specifications of Table 1 as performance standards. #### **Test Record** Results of the performance tests may be tabulated on the Test Record at the end of the procedures. Performance may be verified using either a vector or scalar network analyzer setup. Errors due to directivity, source match, and return loss of the "opposite port" termination (and detector match in a scalar system) will add uncertainties to your measurement. The most accurate method uses an error corrected instrument. However, a scalar system will give acceptable results depending on the quality of the components. The following general instructions apply to both vector and scalar network analyzers. #### Return Loss Of Input and Output Ports (Port Match) - 1. Connect the equipment for a standard reflection measurement. - 2. Calibrate the system with the appropriate standards. - 3. Connect the appropriate instrument port of the 11590B to the test port. Terminate the opposite port of the 11590B with a 50 ohm load. ## **NOTE** The Return Loss of the load should be at least 20 dB better than the desired measurement value. 4. Measure the port match. The specifications are as follows: ## Port Match (both ports) - Minimum Return Loss | Standard | | |------------------|-------| | 0.1 to 1.0 GHz | 16 dB | | 1.0 to 12.4 GHz | 19 dB | | Option 001 | | | 0.1 to 1.0 GHz | 16 dB | | 1.0 to 12.4 GHz | 19 dB | | 12.4 to 18.0 GHz | 14 dB | #### **Insertion Loss** - 1. Connect the equipment for a standard insertion loss measurement. - 2. Calibrate the system with a through line. - 3. Replace the through line with the 11590B. - 4. Measure the insertion loss. The specifications are as follows: #### Insertion Loss - Maximum | Standard | | |------------------|--------| | 0.1 to 1.0 GHz | 1.0 dB | | 1.0 to 12.4 GHz | 0.8 dB | | Option 001 | | | 0.1 to 1.0 GHz | 1.0 dB | | 1.0 to 12.4 GHz | 0.8 dB | | 12.4 to 18.0 GHz | 1.2 dB | ## **Adjustments** There are no mechanical or electrical adjustments on the 11590B bias network. ## **Replacement Parts** #### **Inner Conductor Contact; Option 001** The center conductor collet (Figure 3) in the precision 7 mm connector, Keysight part number 1250-0907, may be replaced using a special extractor tool, Keysight part number 5060-0370. Examine the collet with a magnifying glass to determine if it is damaged. The collet must be free of burrs and the prongs must be equally spaced. If the collet needs to be replaced, perform the following procedure: - 1. Place the instrument so that the connector faces down. - 2. Tap the connector lightly on the outside ring and the center conductor collet should protrude slightly. - 3. Compress the handle of the collet extractor tool, causing the jaws to expand, and insert the tool into the precision 7 mm connector. - 4. Release the compression on the extractor tool, allowing the jaws of the tool to close on the center conductor collet. Pull the tool straight out from the connector without twisting. The collet will come out of the connector with the tool. Do not reuse the extracted collet. - 5. To install a new center conductor collet, push the collet into the center conductor until it snaps into place. No special tool is required for this operation. Figure 3 Precision 7 mm Connector 11590 020 003 #### Service There are no serviceable parts in the 11590B bias network. ## **Test Record** | Specifications Tested | Step | Test Cond. (GHz) | Limit (dB) | Result (dB) | | | |--------------------------|------|------------------|------------|-------------|--|--| | Port Match (Return Loss) | | | | | | | | Standard | 39 | 0.1 to 1.0 | ≥ 16 | | | | | | | 1.0 to 12.4 | ≥ 19 | | | | | Option 001 | 39 | 0.1 to 1.0 | ≥ 16 | | | | | | | 1.0 to 12.4 | ≥ 19 | | | | | | | 12.4 to 18.0 | ≥ 14 | | | | | Insertion Loss | | | | | | | | Standard | 40 | 0.1 to 1.0 | ≤ 1.0 | | | | | | | 1.0 to 12.4 | ≤ 0.8 | | | | | Option 001 | 40 | 0.1 to 1.0 | ≤ 1.0 | | | | | | | 1.0 to 12.4 | ≤ 0.8 | | | | | | | 12.4 to 18.0 | ≤1.2 | | | | ## **Contacting Keysight** Assistance with test and measurement needs and information on finding a local Keysight office are available on the Web at: www.keysight.com/find/assist ## **NOTE** In any correspondence or telephone conversation, refer to the Keysight product by its model number and full serial number. With this information, the Keysight representative can determine whether your product is still within its warranty period. This information is subject to change without notice. © Keysight Technologies 1995 - 2015 January 2015