
OPERATING MANUAL

240 VOLT ELECTRONIC LOAD MODULE Agilent Model 60503B

FOR MODULES WITH SERIAL NUMBERS: 3119A-00101 AND ABOVE

Agilent Part No. 60503-90007 Microfiche No. 60503-90008 Printed in U.S.A. June, 1991

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Agilent Technologies

Manufacturer's Address: New Jersey Division

140 Green Pond Road Rockaway, NJ 07866 U.S.A.

declares that the product

Product Name: Load mainframe and modules

Model Number(s): Agilent 6050A, 6051A mainframes with modules

Agilent 60501A/B, 60502A/B, 60503A/B, 60504A/B, 60507A/B

conform(s) to the following Product Specifications:

Safety: IEC 348:1978 / HD401 S1:1981¹

EMC: CISPR 11:1990 / EN 55011:1991 - Group 1, Class B

IEC 801-2:1991 / EN 50082-1:1992 - 4kV CD, 8 kV AD

IEC 801-3:1984 / EN 50082-1:1992 - 3 V/m

IEC 801-4:1988 / EN 50082-1:1992 - 0.5 kV Sig. Lines, 1 kV

Bure Jung

Power Lines

Supplementary Information:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carries the CE-marking accordingly.

Note 1: The product family was introduced prior to 12/93

New Jersey January 1997
Location Date

Date Bruce Krueger / Quality Manager

European Contact: Your local Agilent Technologies Sales and Service Office or Agilent Technologies GmbH, Department TRE, Herrenberger Strasse 130, D-71034 Boeblingen (FAX:+49-7031-14-3143)

240-Volt Module

About This Manual

This manual provides information for the Agilent 60503B 250-Watt Electronic Load Module. It is designed as a supplement to the Agilent 6050A/6051A Multiple Input Mainframe Electronic Load Operating Manual (part number 06050-90001). Four tables provide the following module-specific information:

Table 60503-1 lists both the specifications and supplemental characteristics of the module. Specifications indicate warranted performance in the 25 °C \pm 5 °C region of the total temperature range (0 to 55 °C). Supplemental characteristics indicate non-warranted, typical performance and are intended to provide additional information by describing performance that has been determined by design or type testing.

Table 60503-2 lists the ranges that can be programmed in constant current, constant resistance, and constant voltage modes. It shows the maximum and minimum programming values for each range. Refer to this table when programming the module locally as described in Chapter 4, or remotely as described in Chapter 5 of the operating manual.

Table 60503-3 gives the factory default values of the module. Unless you have saved your own wake-up settings, the module will be set to the factory default values whenever power is applied. See Chapter 4 in the operating manual.

Table 60503-4 provides calibration information for the module. This information is needed to perform the annual calibration procedure described in Chapter 6 of the operating manual.

Module Installation and Operation

Except for the module-specific information in this manual, all installation, operation, and calibration instructions are given in the Mainframe Operating Manual. The Agilent Electronic Load Family Programming Reference Manual (part number 06060-90005) contains complete programming details that apply to all Electronic Load models.

Note:

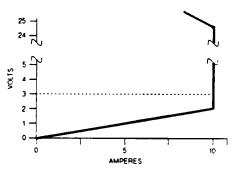
The following information in Chapter 2 of the Mainframe Operating Manual does not apply to electronic load modules with the serial numbers listed on the title page of this manual: The section titled "Extended Power Operation", and the section titled "Extended Power Limit". Also for these modules, change the 3-second delay referred to under "Nominal Power Limit" to 50 milliseconds.

Items Supplied

In addition to this manual, a 10-pin connector plug is also shipped with your Electronic Load module. Refer to Chapter 3 in the operating manual for more information.

Table 60503-1. Specification and Supplemental Characteristics

SPECIFICATIONS


DC Input Rating:

Current: 0 to 10 A

Voltage: 3 V to 240 V (minimum dc operation from 0 to 2 V for 0 to 10 A)

Power: 250 W at 40 °C (derated to 187 W at 55 °C)

A. OPERATING CHARACTERISTICS

B. DERATED CURRENT DETAIL

Constant Current Mode:

Ranges: 0 to 1 A; and 0 to 10 A

Accuracy: (after 30 second wait): $\pm 0.15\% \pm 10$ mA (both ranges)

Resolution: 0.26 mA (1 A range); 2.6 mA (10 A range)

Regulation: 8 mA (both ranges)

Temperature Coefficient: $150 \text{ ppm/}^{\circ}\text{C} \pm 1 \text{ mA/}^{\circ}\text{C} \text{ (both ranges)}$

Constant Resistance Mode:

Ranges: 0.20 to 24 Ω ; 24 Ω to 10 k Ω ; and 240 Ω to 50 k Ω **Accuracy:** \pm 0.8% \pm 200 m Ω with \geq 1 A at input (24 Ω range);

 $\pm 0.3\% \pm 0.3$ mS with ≥ 24 V at input (10 k and 50 k Ω ranges)

Resolution: $6 \text{ m}\Omega$ (24 Ω range); 0.011 mS (10 k Ω range); 0.001 mS (50 k Ω range)Regulation:10 mV with remote sensing (24 Ω range); 8 mA (10 k and 50 k Ω ranges)

Temperature Coefficient: 800 ppm/ $^{\circ}$ C ± 10 m Ω / $^{\circ}$ C (24 Ω range);

300ppm/°C ± 0.03 mS/°C (10 k and 50 k Ω ranges)

Constant Voltage Mode:

Range: 0 to 240 V

Accuracy: $\pm 0.12\% \pm 120 \text{ mV}$

Resolution: 64 mV

Regulation: 10 mV (remote sense); 40 mV (local sense)

Temperature Coefficient: $120 \text{ ppm/}^{\circ}\text{C} \pm 10 \text{ mV/}^{\circ}\text{C}$

Transient Operation:

Continuous Mode

Frequency Range: 0.25 Hz to 10 kHz

Frequency Resolution: 4% Frequency Accuracy: 3%

Duty Cycle Range: 3% to 97% (0.25 Hz to 1 kHz); 6% to 94% (1 kHz to 10 kHz)

Duty Cycle Resolution: 4%

Duty Cycle Accuracy: 6% of setting $\pm 2\%$

Pulsed Mode

Pulse Width: 50 μ s \pm 3% minimum; 4 s \pm 3% maximum

Transient Current Level (0 to 1 A and 0 to 10 A ranges):

Resolution: 4 mA (1 A range); 43 mA (10 A range)

Accuracy: $\pm 0.18\% \pm 13 \text{ mA } (1 \text{ A range}); \pm 0.18\% \pm 50 \text{ mA } (10 \text{ A range})$

Temperature Coefficient: $180 \text{ ppm/}^{\circ}\text{C} \pm 1.2 \text{ mA/}^{\circ}\text{C}$

Transient Resistance Level (0.20 to 24 Ω , 24 Ω to 10 k Ω , and 240 Ω to 50 k Ω ranges):

Resolution: $100 \text{ m}\Omega (24 \Omega \text{ range}); 0.18 \text{ mS} (10 \text{ k}\Omega \text{ range}); 0.018 \text{ mS} (50 \text{ k}\Omega \text{ range})$

Accuracy: $\pm 0.8\% + 200 \text{ m}\Omega \text{ with } \ge 1 \text{ A at input } (24 \Omega \text{ range})$ $\pm 0.3\% + 0.5 \text{ mS with } \ge 24 \text{ V at input } (10 \text{ k}\Omega \text{ range})$

 $\pm 0.3\% + 0.5$ ms with ≥ 24 V at input (10 kg2 range) $\pm 0.3\% + 0.4$ mS with ≥ 24 V at input (50 k Ω range)

Transient Voltage Level (0 to 240 V):

Resolution: 1.0 V

Accuracy: $\pm 0.15\% \pm 1.1 \text{ V}$

Temperature Coefficient: $120 \text{ ppm/}^{\circ}\text{C} \pm 10 \text{ mV/}^{\circ}\text{C}$

Current Readback:

Resolution: 2.7 mA (via GPIB); 10 mA (front panel) **Accuracy:** (after 30 minute wait): \pm 0.12% \pm 10 mA

Temperature Coefficient: $100 \text{ ppm/ }^{\circ}\text{C} \pm 1 \text{ mA/ }^{\circ}\text{C}$

Voltage Readback:

Resolution: 67 mV (via GPIB); 100 mV (front panel)

Accuracy: $\pm 0.1\% \pm 150 \text{ mV}$ Temperature Coefficient: $100 \text{ ppm/°C} \pm 8 \text{ mV/°C}$

Maximum Readback Capability: 260 V (typical)

Power Readback:

Accuracy: $\pm 0.2\% \pm 3 \text{ W}$

External Analog Programming 0 to 10 V (dc or ac):

Bandwidth: 10 kHz (3 db frequency)

Accuracy: $\pm 3\% \pm 10 \text{ mA } (0 \text{ to } 1 \text{ A range})$

 $\pm 3\% \pm 20 \text{ mA } (0 \text{ to } 10 \text{ A range})$

 $\pm 0.5\% \pm 150 \text{ mV } (0 \text{ to } 240 \text{ V range})$

Temperature Coefficient: $150 \text{ ppm/}^{\circ}\text{C} \pm 1 \text{ mA/}^{\circ}\text{C} \text{ (current ranges)}$

 $120 \text{ ppm/}^{\circ}\text{C} \pm 10 \text{ mV/}^{\circ}\text{C} \text{ (voltage range)}$

External Current Monitor (0 to 10 V):

Accuracy: $\pm 3\% \pm 10 \text{ mA}$ (referenced to analog common)

Temperature Coefficient: $100 \text{ ppm/}^{\circ}\text{C} \pm 1 \text{ mA/}^{\circ}\text{C}$

External Voltage Monitor (0 to 10 V):

Accuracy: $\pm 0.4\% \pm 240 \text{ mV}$ (referenced to analog common)

Temperature Coefficient: 70 ppm/ $^{\circ}$ C ± 1.2 mV/ $^{\circ}$ C

Remote Sensing: 5 Vdc maximum between sense and input binding posts

Maximum Input Levels:

Current: 10.2 A (programmable to lower limits)

Voltage: 250 V

Minimum Operating Voltage: 2 V (derated to 0 V at 0 A)

PARD (20 Hz to 10 MHz noise):

Current: 1 mA rms/10 mA p-p

Voltage: 6 mV rms

DC Isolation Voltage: ± 240 Vdc between + or - input binding post and chassis ground

Digital Inputs:

VIo: 0.9 V maximum at I Io = -1 mA

Vhi 3.15 V minimum (pull-up resistor on input)

Digital Outputs:

VIo: 0.72 V maximum at IIo = 1 mA Vhi: 4.4 V minimum at IIo - 20 μ A

SUPPLEMENTAL CHARACTERISTICS

Programmable Slew Rate (For any given input transition, the time required will be either the total slew time or a minimum transition time, whichever is longer. The minimum transition time increases when operating with input currents under 0.2 A and decreases with input currents over 2 A. The following are typical values; $\pm 25\%$ tolerance):

Current Slew Rate:*

Rate #	10 A Range Step	1 A Range Step	Transition Time
1	0.17 A/ms	17 A/s	8.0 ms
2	0.42 A/ms	42 A/s	3.2 ms
3	0.83 A/ms	83 A/s	1.6 ms
4	1.7 A/ms	0.17 A/ms	800 μs
5	4.2 A/ms	0.42 A/ms	320 μs
6	8.3 A/ms	0.83 A/ms	160 μs
7	17 A/ms	1.7 A/ms	80 μs
8	42 A/ms	4.2 A/ms	32 µs
9	83 A/ms	8.3 A/ms	20 μs
10	$0.17 \text{ A/}\mu\text{s}$	17 A/ms	20 μs
11	$0.42 \text{ A/}\mu\text{s}$	42 A/ms	16 μs
12	0.83 A/µs	83 A/ms	16 μs

^{*}AC performance specified from 3 to 240 V.

Voltage Slew Rate:

Rate #	Voltage Range Step	Transition Time*
1	4 V/ms	8.0 ms
2	10 V/ms	3.2 ms
3	20 V/ms	1.6 ms
4	40 V/ms	800 μs
5	100 V/ms	320 μs
6	200 V/ms	160 µs
7	0.4 V/µs	100 μs
8	1 V/μs	100 μS
9	$2 \text{ V/}\mu\text{s}$	100 μS

^{*}Transition time based on low capacitance current source.

Resistance Slew Rate (24 Ω range): Uses the value programmed for voltage slew rate.

Resistance Slew Rate (10 k and 50 k Ω ranges): Uses the value programmed for current slew rate.

Transient Current Overshoot (When programmed from 0A):

Range	Transient Current Level	Current Slew Rate	Overshoot*
10 A	2-10 A	All slew rates	0
	0.5 A	$0.17 \text{ A/}\mu\text{s}$ to $0.83 \text{ A/}\mu\text{s}$	5%
	0.5 A	0.17 A/ms to 42 A/ms	0
	1 A	0.83 A/μs	1%
	1 A	$0.17~A/ms$ to $0.17~A/\mu s$	0
1 A	0.5 A	8.3 A/ms	4%
	0.5 A	0.17 A/s and 0.17 A/ms	0
	1 A	All slew rates	0

^{*}All overshoot values assume a total inductance of lµH, or less, in the load leads connected to the D.U.T.

Source Turn-On Current Overshoot: Less than 5% of final value (in CC and CR modes when connected to power supplies with voltage rise times of greater than 500µs).

Programmable Short Circuit: $0.20~\Omega~(0.10~\Omega~typical)$

Programmable Open Circuit: $80 \text{ k}\Omega \text{ (typical)}$

Drift Stability (over an 8 hour interval):

 Current:
 $\pm 0.03\% \pm 1.5 \text{ mA}$

 Voltage:
 $\pm 0.01\% \pm 20 \text{ mV}$

Reverse Current Capacity: 20 A when unit is on; 10 A when unit is off

Weight: 3.2 kg (7 lbs.)

Table 60503-2. Programming Ranges

Function	Front Panel	Front Panel	HPSL Command	Range of Values
	Key	Display	(Short Form)	
Constant Current				
Set Range	Range	C:RNG value	"CURR:RANG value"	
Low Range				≥ 0 and ≤ 1 A
High Range				$> 1 A \text{ and } \leq 10 A$
Set Main Level	CURR	CURR value	"CURR value"	
Low Range				0 to 1 A
High Range				0 to 10 A
Set Slew Rate	(shift) Slew	C:SLW value	"CURR:SLEW value"	
Low Range				0.000007 to .083 (A/µs)
High Range				$0.00017 \text{ to } 0.83 \text{ (A/}\mu\text{s)}$
Set Transient Level	Tran Level	C:TLV value	"CURR:TLEV value"	same as main level
*Set Triggered Level			"CURR:TRIG value"	same as main level
Constant Resistance				
Set Range	Range	R:RNG value	"RES:RANG value"	
Low Range				≥ 0 and $\leq 24 \Omega$
Middle Range				$> 24 \Omega$ and $\le 24 k\Omega$
High Range				$>24 \text{ k}\Omega \text{ and } \leq 24 \text{ k}\Omega$
Set Main Level	RES	RES value	"RES value"	
Low Range				0 to $24~\Omega$
Middle Range				$24~\Omega$ to $24~k\Omega$
High Range				$240~\Omega$ to $240~\mathrm{k}\Omega$
Set Slew Rate	(shift) Slew			
Low Range		V:SLW value	"VOLT:SLEW value"	same as voltage slew
Middle/High Range		C:SLW value	"CURR:SLEW value"	same as current slew
Set Transient Level	Tran Level	R:TLV value	"RES:TLEV value"	same as main level
*Set Triggered Level			"RES:TRIG value"	same as main level
Constant Voltage				
Set Main Level	VOLT	VOLT value	"VOLT value"	0 to 240 V
Set Slew Rate	(shift) Slew	V:SLW value	"VOLT:SLEW value"	$0.004 \text{ to } 2 \text{ (V/}\mu\text{s)}$
Set Transient Level	Tran Level	V:TLV value	"VOLT:TLEV value"	same as main level
*Set Triggered Level			"VOLT:TRIG value"	same as main level

Table 60503-2. Programming Ranges (continued)

Function	Front Panel	Front Panel	HPSL Command	Range of Values	
	Key	Display	(Short Form)		
Transient Operation					
Set Frequency	FREQ	FREQ value	"TRAN:FREQ value"	0.25 Hz to 10 kHz	
Set Duty Cycle	(shift) Dcycle	DCYCLE value	"TRAN:DCYC value"	3-97% (0.25 Hz-1 kHz)	
				6-94% (1 kHz-10 kHz)	
*Set Pulse Width			"TRAN:TWID value"	0.00005 to 4 s	
Trigger Operation					
*Set Trigger Period			"TRIG:TIM value"	0.000008 to 4 s	
Current Protection					
*Set Current Level			"CURR:PROT value"	0 to 10.2 A	
*Set Delay Time			"CURR:PROT:DEL value"	0 to 60 s	
*Can only be programmed remotely via the GPIB.					

Table 60503-3. Factory Default Settings

Function	Settings	Function	Setting
CURR level	0 A	Mode (CC, CR, CV)	CC
CURR transient level	0 A	Input (on/off)	on
*CURR slew rate	0.17 A/μs	Short (on/off)	off
CURR range	10 A		
_		Transient operation (on/off)	off
*CURR protection (on/off)	off	***TRAN mode	continuous
**CURR protection level	10.2 A	(continuous, pulse, toggle)	
**CURR protection delay	15 s	TRAN frequency	1 kHz
		TRAN duty cycle	50%
RES level	$50~\mathrm{k}\Omega$	**TRAN pulse width	0.5 ms
RES transient level	$50~\mathrm{k}\Omega$		
RES range	$50~\mathrm{k}\Omega$	**TRIG source	hold
		(bus, external, hold, timer, line)	
VOLT level	240 V	**TRIG period	0.001 s
VOLT transient level	240 V	**PORT0 output (on/off)	off (logic 0)
VOLT slew rate	2 V/μs	**CAL mode (on/off)	off

The *RST command resets the CURR slew rate to 0.83 A/ μ , not to the factory default.

^{**}Can only be programmed remotely via the GPIB.

^{***}Continuous transient mode is the only mode available at the front panel. Pulsed, toggled, and continuous modes can all be programmed remotely via the GPIB.

Table 60503-4. Calibration Information

Ranges and Calibration Points	Variables	Variables Value	Power Supply Settings	Current Shunt
High Current Range	Hi_curr_rng	10	25 V/10.5 A	15 A
High Current Offset	Hi_curr_offset	0.0048		
Low Current Range	Lo_curr_rng	1	25 V/2 A	15 A
Low Current Offset	Lo_curr_offset	0.0032		
Voltage Range	N/A	N/A	246 V/0.6 A	N/A
Voltage Hi point	Volt_hipt	240		
Voltage Lo point	Volt_lopt	2		
Low Resistance Range	Lo_res_rng	24	60 V/1.82 A	15 A
Low Resistance Hi point	Lo_res_hipt	23.9		
Low Resistance Lo point	Lo_res_lopt	0.88		
Middle Resistance Range	Mid_res_rng	240	43.6 V/4 A	15 A
Middle Resistance Hi point	Mid_res_hipt	500		
Middle Resistance Lo point	Mid_res_lopt	24		
High Resistance Range	Hi_res_rng	24020	240 V/2 A	15 A
High Resistance Hi point	Hi_res_hipt	2000		
High Resistance Lo point	Hi_res_lopt	240		

Agilent Sales and Support Office

For more information about Agilent Technologies test and measurement products, applications, services, and for a current sales office listing, visit our web site: http://www.agilent.com/find/tmdir

You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:

Agilent Technologies Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 (tel) 1 800 452 4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (tel) 1 877 894 4414

Europe:

Agilent Technologies
Test & Measurement European Marketing Organisation
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(tel) (31 20) 547 9999

Japan:

Agilent Technologies Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan (tel) (81) 426 56 7832 (fax) (81) 426 56 7840 Technical data is subject to change.

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. (tel) (305) 267 4245 (fax) (305) 267 4286

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd 347 Burwood Highway
Forest Hill, Victoria 3131
(tel) 1-800 629 485 (Australia)
(fax) (61 3) 9272 0749
(tel) 0 800 738 378 (New Zealand)
(fax) (64 4) 802 6881

Asia Pacific:

Agilent Technologies 24/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong tel: (852)-3197-7777 fax: (852)-2506-9284