Programming Reference

HP 1650A/51A
Logic Analyzers

Eﬁﬁ HEWLETT

PACKARD

© Copyright Hewlett-Packard Company 1988

Manual Part Number (11650-90910 Printed in U.S.A. November 1988

www.valuetronics.com



https://www.valuetronics.com/

Product This Hewlett-Packard product has a warranty against defects in material
Warrant and workmanship for a period of three years from date of shipment,
arranty During warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products instalied by Hewlett-Packard and certain other products
designated by Hewleti-Packard will be performed at the Buyer’s facility at
no charge within the Hewlett-Packard service travel area. Outside
Hewlett-Packard service travel areas, warranty service wilt be performed
at the Buyer’s facifity only upon Hewlett-Packard’s prior agreement and
the Buver shall pay Hewlett-Packard’s round trip travel expenses.

For products returned 1o Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges 10 Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buver. However,
the Buyer shall pay all shipping charges, duties, and taxes for products
returned to Hewleti-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute ifs programming
ins{ructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free.

Limitation of Warranty  The {oregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of the
environmental specifications for the product, or improper site preparation
or maintenance,

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPQOSE,

www.valuetronics.com



Exciusive Remedies THE REMEDIES PROVIDED HEREIN ARE THE BUYER’S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

Asgistance Product maintenance agreements and other cusiomer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office,

Certification Hewleti-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are iraceable to the
United States National Bureau of Standards, to the extent aowed by the
Bureaw’s calibration facility, and to the calibration facilities of other
International Standards Organization members,

Satety This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be
heeded.

www.valuetronics.com




Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version
ievel of the software product at the time of the manual or update was
issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 November 1988 01650-90910

iii

www.valuetronics.com



List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition will have the date the changes were made
printed on the bottom of the page. If an update is incorporated when a
new edition of the manual is printed, the change dates are removed from - e
the bottom of the pages and the new edition date is listed in Printing
History and on the title page.

- Pagpes Effective Date

All November 1988

www.valuetronics.com



Table of Contents

Chapter 1: Introduction to Programming an Instrument
11 Introduction
1-2 Programming Syntax

i-2 Talking to the Instrument

13 Addressing the Instrument for RS-232C
1-4 Program Message Syntax

1-4 Separator

1.4 Command Syntax

1-6 Query Command

1.7 Program Header Options

1-8 Program Data

1-8 Program Message Terminator

1-9 Selecting Multiple Subsystems

1-9 Summary

1-10  Programming an Instrument

1-10 Initiakization

1-11 Example Program

1-i1 Program Overview

1-11 Receiving Information from the Instrument
1-12 Response Header Options

1-13 Response Data Formats

1-14 Numeric Base

1-14 String Variables

1-15 Numeric Variables

1-15 Definite-Length Block Response Data
1-16 Multiple Queries

1-17 Instrument Status

Contents - 1

www.valuetronics.com




Chapter 2:
2-1
2-1
22
2-2
2-3
2-4
2-5
2-5
2-5
2-6
2-7

2-8

Pregramming Over RS-232C
Introduction
Interface Operation
Cables
Minimum Three-Wire Interface with Software Protocol
Extended Interface with Hardware Handshake
Cable Example
Configuring the Interface
Interface Capabilities
Protocol
Data Bits ‘
Communicating Over the RS-232C Bus (P 9000 Series 200/300
Controller)
Lockout Command

Chapter 3:
3.1
31
32
32
3-4
3-4
3.5

3-6
36
3.7
3.7
3-8
3-8
3-8
39
310

Contents - 2

www.valuetronics.com

Programming and Documentation Conventions
Introduction
Truncation Rule
The Command Tree
Command Types
Tree Traversal Rules
Examples
Infinity Representation
Sequential and Overlapped Commands
Response Generation
Notation Conventions and Definitions
Syntax Diagrams
Command Structure
Common Commands
System Commands
Subsystern Commands
Program Exampies
Command Set Organization




Chapter 4:
4.1
4-3
4-4
4-6
4-8
4-9
4-10
411
4-13
415

Commen Commands
Introduction
*CLS

*ESE

*ESR

*IDN

*QPC

*RST

*SRE

*STB

*WAI

Chapter 5.
5-1
5.4

5-5

5-8

5-8

512
5-15
5-18
5-19
520
521
5-23
5-24
5-25
5.26
5-27
5-29
3-31
5-32

www.valuetronics.com

System Commands

Introduction

ARMBnc

DATA
Definition of Block Data
Data Command Configuration
Data Preamble Description
Trata Body Description
Timing Ghich Data

DSp

ERRor

HEADer

KEY

LER

LOCKout

LONGform

MENLU)

MESE

MESR

PRINt

RMODe

Confents - 3




533 SETup
5-33 Definition of Block Data
535 STARt
536 STOP
L T
Chapter 6. MMEMory Subsystem

6-1 Introduction
6-4 AUToload
6-5 CATalog
6-6 COPY

&7 DOWNIload
6-8 INITialize

6-9 LOAD

6-10  LOAD

611 PACK

6-12  PURGe

6-13  REName

6-14 STORe

6-15  UPLoad
b ]
Chapter 7: MACHine Subsystem

7-1 Introduction
73 MACHine

T4 ARM

75 ASSign

7-6 AUToscale
77 NAME

7-8 TYPE

Contents - 4

www.valuetronics.com




Chapter 8: DLISt Subsystem
8-1 Introduction
82 DLISt
8-3 COLumn
&-5 LINE
L ]
Chapter 9: WLISt Subsystem
8.1 Introduction
92 WLISt
G-3 OSTate
6.4 XSTate
G-5 OTIMe
9-6 XTiMe
|
Chapter 10: SFORmat Subsystem
10-1  Introduction
10-3  SFORmat
T 104 CLOCk
10-5  CPERiod
10-6  L.ABel
10-8  MASTer
10-¢  REMove
10-10 SLAVe
10-11 THReshold

www.valuetronics.com

Contents - 5




Chapter 11: STRace Subsystem
i1-1  Introduction
11-4  S§TRace
11-5 BRANch
11-8 FIND
11-10 PREStore
11-12 RANGe

11-14 RESTart
11-16 SEQuence
11-17 STORe
11-19 TAG
11-21 TERM

Chapter 12: SLISt Subsystem
12-1  Introduction
12-5 SLISt
12-6  COLuomn
12-8 DATA
12-9 LINE
12-16 MMODe

12-11 OPATiern
12-13 OSEarch
12-14 0OSTate
12-15 OTAG
12-16 RUNTIl
12-18 TAVerage
12-19 TMAXimum
12-20  TMINimum
12-21 VRUNs
12.22 XOTag
12-23 XPATiern
12-25 XSEarch
12-26 XSTate
12-27 XTAG

Contents - 6

www.valuetronics.com




Chapter 13: TFORmat Subsystem
13-1  Introduction
13.2  TFORmat
13-3  LABel
13-5 REMove
13-6  THReshold

A

Chapter 14: TTRace Subsysiem
14-1  Introduction
14-3  TTRace
14-4  AMODe
14-5  DURation
14-6  EDGE
14-8  GLITch
14-10 PATTern

[T ——

Chapter 15: TWAVeform Subsystem
15-1  Introduction
15-5 TWAVeform
15-6  ACCumulate
15-7 DElLay
15-8  INSert
159  MMODe
15-10 OCONdition
15-11 OPATtern
15-13 (SEarch
15-14 OTIMe
15-15 RANGe
15-16 REMove
15-17 RUNTil
15-19 SPERiod

www.valuetronics.com

Contents - 7




15-20
1521
15.22
15-23
15-24
15-25
15-26
15-28
15-29

TAVerage
TMAXimum
TMINimum
VRUNs

X CONdition
XOTime
XPATtern
XSEarch
XTiMe

Chapter 16:

16-1
16-3
16-4
16-5
16-6
16-7
16-§

SYMBol Subsystem
Introduction
SYMBol

BASE

PATTern

RANGe

REMove

WIDTh

Appendix A:
A-l
A2
A2
A3
A-3
A-4
A-5
A5
A-8
A-21
A-27

Contents - 8

www.valuetronics.com

Message Communication and System Functions
Introduction
Protocols
Functional Elements
Protocol Overview
Protocol Operation
Protocol Exceptions
Syntax Diagrams
Syntax Overview
Dewvice Listening Syntax
Device Talking Syntax
Common Commands




Appendix B: Status Reporting
B-1  Introduction
B-3 Event Status Register
B-3 Service Request Enable Register
B-3 Bit Definitions
B-4 Key Features
R
Appendix C: Error Messages
C-1 Device Dependent Errors
C-2 Command Errors
C-3 Execution Errors
C-4 Internal Errors
C-5 Query Errors
T
Index

Contents -9

www.valuetronics.com




introduction to Programming 1
an Instrument

introduction This chapter introduces you to the basic concepts of bus communication
and provides information and examples to get you started programming.
The exact mnemonics for the commands are listed in chapters 5 throngh
16 of this manual. There are three basic operations that can be done with
a controller and this instrument via the bus, You can:

1. Set up the instroment and start measurements
2, Retrieve setup information and measurement results
3. Send measurement data to the instrument

Other more complicated tasks are accomplished with a combination of
these basic functions.

Chapter 1 deals mainly with how to set up the instrument, how {o retrieve
setup information and measurement results, and how to pass data to the
controller. This chapter is divided into two sections, The first section
(pages 1-9) concentrates on program syntax, and the second section
(pages 10-17) discusses programming an insirument.

Note

The programming exampies in this manual are written in
HP Basic 4.0 using an HP 9000 Series 200/300 Controller.

Introduction to Programming an Instrument
1-1

www.valuetronics.com




Programming
Syntax

Talking to the  In general, computers acting as controllers communicate with the

instrument  instrument by passing messages over a remote interface using the I/O
statements provided in the instruction set of the controller’s host
language. Hence, the HPDIAL messages for programming the HP
1650A/51A, described in this manual, will normally appear as ASCIT
character strings imbedded inside the /O statements of your controller’s
program. For example, the HP 9000 Series 200/300 BASIC and PASCAL
language systems use the OUTPUT statement for sending program
messages io the HP 1650A/51A, and the ENTER statement for receiving
response messages from the HP 1650A/51A.

Messages are placed on the bus using an output command and passing the
device address, program message, and terminator. Passing the device
address ensures that the program message is sent to the correct interface
and instrument.

The following command turns the command headers on:

OUTPUT « device address > ;":SYSTEM:HEADER ON' <terminator >

< device address > represents the address of the device being
programmed,

Introduction to Programming an Instrument
12

www.valuetronics.com




Note

The actual OUTPUT command you use when programming is
dependent on the controller you are using and the programming
language you are using.

Angular brackets "< >," in this manual, enclose words or
characters that symbolize a program code parameter or a bus
command.

Information that is dispiaved in quotes represents the actual
message that is sent across the bus. The message terminator
(NL} is the only additional information that is also sent across
the bus.

For HP 9000 Series 200/300 controllers, it is not necessary to type
in the actual <terminator> af the end of the program message.
These controllers automatically terminate the program message
intemally when the retum key is pressed.

Addressing the  Since RS-232C can only be connected between two devices through the
instrument for  same interface card, only the correct interface code is required for the
RS-232C  device address. The following applies to HP 9000 Series 200/300

controllers.

Interface Select Code (Selects Interface). Each interface card has its own
interface select code. This address is used by the controller to direct
commands and communications to the proper interface. Generally, the
interface seiect code can be any decimal value between 0 and 31. This
value can be seiected through switches on the RS-232C interface card in
the controller.

For exampie, if the interface select code is 20, the device address required
to communicate over the bus is 20

Introduction to Programming an Instrument
' 1-3

www.valuetronics.com




Program Message To program the instrument over the bus, you must have an understanding

Syntax of the command format and structure expected by the instrument. The
instrument is remotely programmed with program messages. These are
composed of sequences of program message units, with each unit
representing a program command or query. A program command or
query is composed of a sequence of functional elements that include
separators, headers, program data, and terminators. These are sent to the
instrument over the system interface as a sequence of ASCI data
messages. For exampie:

Sunmm miaemon UNTT

OUT{PU? XXX " SYSTEM:HEADER ON"

! |
| | |
i
CUTPUT COMMAND / ’ i
?
J

DEVICE ADDRESS
{OPTIONAL FOR HP 1858A/514)
PROGRAM MNIMONICS

SEPARATOR
DATA

1BS00/BLEY

Figure 1-1. Program Message Syntax

Separaior The < separator > shown in the program message refers to a blank space
which is required to separate the program mnemonic from the program
data,

Command Syntax A command is composed of a header, any associated data, and a
terminator. The header is the mnemonic or mnemonics that represent the
operation to be performed by the instrument. The different types of
headers are discussed in the following paragraphs,

Simple Command Header. Simple command headers contain a single
mnemonic. START and STOP are examples of simple command headers
typically used in this instrument. The syntax is:

< Program mnemonic > < terminator >

Introduction to Programming an Instroment
1-4

www.valuetronics.com



When program data must be included with the ssmple command header
(for example, :MACHINE 1) the syntax is:

< program mnemonic > <separator > < program data > <terminator >

Compound Command Header. Compound command headers are a
combination of two or more program mnemonics. The first mnemonic
selects the subsystem, and the last mnemonic selects the function within
that subsystem. Additional mnemonics appear between the subsystem

L mnemonic and the function mnemonic when there are additional levels
within the subsystem that must be transversed. The mnemonics within the
compound message are separated by colons. For example:

To execute a single function within a snbsystem, use the following:
s < subsystem > < function > <separator > <prograrm data > <terminator >
{For example :SYSTEM:LONGFORM ON)

To transverse down a level of a subsystem to execute a subsystem within
that subsystem:

s < subsystern > <subsystem > ; < function > <separator > < program
data > <terminator>

(For example :MMEMORY:LOAD:CONFIG "FILE__")

To execute more than one function within the same subsystem a
semi-colon is used to separate the functions:

s < subsystem > : < funetion > < separator > < data > ; <function > <separator > <data>
<terminator>

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Introduction to Programming an Instrument
1-5

www.valuetronics.com




Identical function mnemonics can be vsed for more than one subsystem.
For example, the function mnemonic MMODE may be used to specify the
marker mode in the state listing or the timing waveforms:

:SLIST:MMODE PATTERN

- sets the marker mode to pattern in the state fisting.

SLIST and TWAVEFORM are subsystem selectors and determine which . e
marker mode is being modified. e :

TWAVEFORM:MMODE TIME

- sets the marker mode to time in the timing waveforms.

Cominon Command Header. Common command headers control IEEE
488.2 functions within the instrument (such as clear status, etc.). Their
syntax is:

*<eommand header > < terminator >

No space or separator is allowed between the asterisk and the command
header, *CLS is an example of a common command header.

Query Command Command headers immediately followed by a question mark (?) are
queries. After receiving a query, the instrument interrogates the
requested function and places the answer in its output quene. The output
message remains in the queue until it is read or another command is
issued. When read, the message is transmitted across the bus to the
designated listener (typically a controller). The logic analyzer query
‘MACHINELTWAVEFORM:RANGE? places the current seconds per
division full scale range for machine 1 in the output gquepe. The controller
input statement:

ENTER < device address > ;Range

passes the value across the bus to the controller and places it in the
variable Range.

Introduction to Programming an Instrument
1-6

www.valuetronics.com



Program Header
Options

Query commands are used to find out how the instrument is currently
configured. They are also used to get results of measurements made by
the instrument, For example, the command
MACHINELTWAVEFORM:XOTIME? instructs the instrument {0
place the X to O time in the output queue.

Note

The outpur queue must be read before the next program message
is sent. For example, when you send the query
TWAVEFORMXOTIME? you must follow that guery with the
program statement ENTER Value_xotime to read the result of
the query and place the result in a variable (Value_xotime).

Sending another command before reading the result of the query
will cause the output buffer to be cleared and the current
response to be lost. This will also generate a “query
UNTERMINATED" errorin the error queue.

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Instrument responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either
longform (complete spelling), shortform (abbreviated spelling}, or any
combination of longform and shortform. Either of the following examples
turns the headers and longform on.

:SYSTEM:HEADER ON;LONGFORM ON - longferm
:SYST:HEAD ON;LONG ON - shorttorm

Programs written in longform are easily read and are almost
self-documenting. The shortform syntax conserves the amount of
controller memory needed for program storage and reduces the amount
of I/O activity.

Note

The rules for shortform syniax are shown in Chapter 3
"Programming and Documentation Conventions.”

introduction to Programining an Instrument
1.7

www.valuetronics.com




Program Data

Program Message
Terminator

Program data is used to convey a variety of types of parameter
information related to the command header. At least one space must
separate the command header or query header from the program data,

< program mnemaonic > < separator > < data > <ierminator >

When a program mnemonic or query has multiple data parameters a
comma separates sequential program data.

< prograrn mnemonic > < separator > < data > | <data > <terminator >

For example, :SYSTEM:MENU TRACE, 1 has rwo data parameters:
TRACE and 1.

Character Program Data. Character program data is used to convey
parameter information as short alpha or alphanumeric strings. For
example, the run mode command RMODE can be set to single or
repetitive. The character program data in this case may be SINGLE or
REPETITIVE. :RMODE SINGLE sets the run mode to singie,

Numeric Program Data. Some command headers require program data
to be a number. For example, :MACHINE requires the desired analyzer
selection to be expressed numerically. The instrument recognizes
integers, real numbers, and scientific notation. With the proper prefix, the
wastrument will also recognize binary, octal, and hexadecimal base
numbers. If no prefix is added, the default is decimal. For gxample:

#B10101010 - Binary Basc
#Q1234567 - Octal Base
#H2468ABC - Hexadecimal Base
1234567 - Decimal Base

The program codes within a data message are executed after the program
message terminator is received. The terminator is the NL (New Line)
character. The NL character is an ASCII linefeed (decimal 10).

Note

The NL (New Line) terminator has the same function as an
EOS (End Of String) and EOT (End Of Text) terminator.

Intreduction to Programming an Instrument

1-8

www.valuetronics.com




Selecting Multiple  You can send multiple program commands and program queries for
Subsystems  different subsystems on the same line by separating each command with a
semicolon. The colon foliowing the semicolon enables you fo enter a new
subsystem. For example:

< program mnemonic > <data > ;! < program mnemonic > < data > <terminator >

IMACHINE 1:ASSIGN2;: SYSTEM:HEADERS ON

Note

Multiple commands may be any combination of compound and
simple commands.

Summary The following illustration summarizes the syntax for programming over
the bus, '

PROGRAW MESSAGE UNIT
1

T
|
OQUTPUT DOMMAND i

DEVICE ADDRESS |

CUTPUT XV‘\X; T SYSTEM HEADER ON
|
:
|

| |
|

!
BCBLES

}
(OPTIONAL FOR HP 1B850A/51A) ;
PROGRAM MNEMONICS

SEPARATOR

DATA

Figure 1-2. Syntax for Programming Over the Bus.

Introduction te Programming an Instrument
i-9

www.valuetronics.com



Programming
an Instrument

initialization  To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. For example:

CLEAR XXX initializes the interface of the instrument.

Then load a predefined configuration fiie from the disc to preset the
instrument to 2 known state. For example:

OUTPUT XXX;"MMEMORY:LOAD:CONFIG 'DEFAULT__ "

would load the configuration file "DEFAULT _ " into the HP 1650A/51A.
Refer to the chapter "Mmemory Subsystem™ for more information on the
LOAD command,

Note

The three Xs (XXX} gfter the "CLEAR" and "OUTPUT"
statements in the previous examples represent the device address
required by your controller. The commands and syntax for
initializing the instrument are discussed in the chapter "Common
Commands."

Refer to your controller manual and programming language
reference manual for information on initializing the interface.

Introduction to Programming ab Instrument
1-16

www.valuetronics.com



Example Program

Program Overview

Receiving information
from the Instrument

This program demonstrates the basic command structure used to program
the HF 1650A/51A.

10 CLEAR XX initialize instrument interface

20 OUTPUT X0 SYSTEM:HEADER ON* ITurn headers on

30 OUTPUT X0 SYSTEM: LONGFORM CON'  1Turn iongform on

40 QUTPUT SO0 MMEM:LOAD:CONFIG TEST_E™  !Load configuration file

50 OUTPUT X040 MENU FORMAT, 1 iSeiect Format menu for machine 1
60 QUTPUT X0¢": RMODE SINGLE" tSelect run mode
70 QUTPUT XOOLSTARTY Run the measurement

Note

The three Xs (XXX) after the "OUTPUT", "CLEAR" and
"ENTER" statements in the previous examples represent the
device address required by your conirolier.

Line 10 initializes the instrament interface to a known state,

Lines 20 and 30 turn the headers and longform on.

Line 40 loads the configuration file "TEST_E" from the disc drive.

Line 50 displays the Format menu for machine 1.

Lines 60 and 70 tell the analyzer to run the measurement configured by
the file "TEST_E" one time.

After receiving a query {command header followed by a question mark},
the instrument interrogates the requested function and places the answer
in its output queune. The answer remains in the output quene until it is
read or another command s issued. When read, the message is
transmitted across the bus to the designated listener (typically a
controller). The input statement for recetving a response message from
an mstrument’s output queue typically has rwo parameters;the device
address and a format specification for handling the response message.
For example, 10 read the result of the query command
:SYSTEM:LONGFORM? you would execute the statement:

ENTER <device address > :Setting

where < device address > represents the address of your device. This
wouid enter the current setting for the longform command in the numeric
variable Setting.

Introduction to Programming an Instrument
1-11

www.valuetronics.com




Note

Al resulis for queries sent in @ program message mus! be read
before another program message is sent. For example, when you
send the query :MACHINELASSIGN?, vou must follow that
queery with the program statement ENTER Assignment to read
the result of the query and place the result in a variable
(Assignment).

S Sending another command before reading the result of the query
will cause the output buffer (o be cleared and the current
response to be lost. This will also cause an error 1o be placed in
the error queue.

The actual ENTER program staterment you use when
programming is dependent on the prograrmming language you are
using.

The format specification for handling the response messages is dependent
on both the controtler and the programming language.

Response Header The format of the returned ASCII string depends on the current settings
Options  of the SYSTEM HEADER and LONGFORM commands, The general
format is:

< header > < separaior > < data > <terminator>

The header ideatifies the data that follows and is controlied by issuing a
:SYSTEM:HEADER ON/OFF command. If the state of the header
command is OFF, only the data is refurned by the query. The format of
the header is controfled by the :SYSTEM:LONGFORM ON/QFF
command. If longform is OFF , the header will be in its shortform and the
header will vary in length depending on the particular query. The
following would be returned from a

‘MACHINELSFORMAT. THRESHOLD2? command query:

< data> <terminator > (with HEADER OFF )

Intreduction to Programming an Instrument
1-12

www.valuetronics.com




MACH1:SFORTHR2 < separator> < data> <terminator > (with HEADER
ON/LONGFORM DFF ) '

MACHINE 1:SFORMAT. THRESHOL D2 < separator > < data > <terminator > {with
HEADER ON/LONGFORM ON )

Note

— : A command or query may be sent in either longform or

shortform, or in any combination of longform and shortform, 5
The HEADER and LONGFORM commands only control the
Sformat of the returned data and have no effect on the way
commands are sent.

Refer to the chapter "System Subsystem” for information on
turning the HEADER and LONGFORM commands on and off.

Response Data Most data will be returned as exponential or integer numbers. However,
Formats query data of instrument setups may be returned as character data,

Interrogating the run mode :RMODE? will return one of the following:
RMODE REPETITIVE < terminator > {with HEADI;R ON/LONGFORM ON)
RMOD REP < terminator > {with HEADER ON/LONGFORM OFF)
REPETITIVE <terminator > (with MEADER OFF/LONGFORM ON)
REP <terminator > (with HEADER OFF/LONGFORM OFF)
Note
Refer to the individual commands in this manual for

information on the format (alpha or numeric} of the data
retumned from each query.

Intreduction to Programming an Instrument
1-13

www.valuetronics.com



Numeric Base

String Variables

Most numeric data will be returned in the same base as shown on screen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H 1s the hexadecimal base. If
no prefix precedes the returned numeric data, then the value is in the
decimal base.

If you want to observe the headers for gueries, you must bring the
returned data into a siring variable. Reading gueries into string variables
is simple and straightforward, requiring little attention to formatting. For
gxample:

ENTER =< device address > ;Result$

places the output of the query in the string variable Result$,

Note

String variables are case sensitive and must be expressed exactly
the same each time they are used.

The output of the instrument may be numeric or character data
depending on what is queried. Refer to the specific commands for the
formats and types of data returned from queries.

Note

For the example programs, the device being programmed is at
device address XXX. The actual address will vary according to
your controller,

The following example shows logic analyzer data being returned to a
string variable with headers off:

10 QUTPUT XX SYSTEMIHEADER OFF

20 DIM Rang${30]

30 QUTPUT X004 MACHINE 1 TWAVEFORM: RANGE?"
40 ENTER X0 Rang$

50 PRINT Rang$

60 END

introduction to Pregramming an Instrument

1-14

www.valuetronics.com




After rupning this program, the controller displays:

+ LOGOOOE-03

Numeric Variabies 1f you do not need to see the headers when a numeric value is returned
{rom the instrument, then you can use a rumeric variable, When you are
receiving numeric data into 2 numeric variable, turn the headers off.
Otherwise the headers may cause misinterpretation of returned data.

The following example shows logic analyzer data being returned to 2
numeric variable.

10 QUTPUT X" SYSTEM:HEADER OFF"
20 OUTPUT XXX ":MACHINE1: TWAVEFORM: RANGE?”
30 ENTER X004 Rang

40 PRINT Rang

50 END

After running this program, the controlier displays:
1.E-5

Definite-Length Block . Defimite-length block response data aliows any type of device-dependent
Response Data  data to be transmitted over the system interface as a series of 8-bit binary
data bytes. This is particularly useful for sending large guantities of data
or 8-bit extended ASCII codes. The syntax is a pound sign { # ) foliowed
by 2 non-zero digit representing the number of digits in the decimal
integer. After the non-zero digit is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed by the actual data.

introduction to Programming an Instrument
1-18

www.valuetronics.com



For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

ACTUAL DATA
T AN J—

~ -~
#5208008080<eighty bytes of data>{terminator>
i i
NUMBER OF BYTES
TO BL TRANSMITTED 165008122

Figure 1-3. Definite-length Block Response Data

The "8" states the number of digits that foliow, and "00000080" states the
number of byies to be transmitred.

Note

Indefinite-length block data is not supported on the
HPI6304(51A.

Multiple Queries  You can send muitiple queries to the Instrument within a single program
message, but you must also read them back within 2 single program
message. This can be accompiished by either reading them back into a
string variable or into multiple numeric vartabies. For example, you could
read the result of the query SYSTEM:HEADER?;LONGFORM? into
the string variable Resultsd with the command:

ENTER XXX:Resuits$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon. For example, the response of the
query :SYSTEM:HEADER:LONGFORM? with HEADER and
LONGFORM on would be:

SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

Intreduction te Programming an Instrument
1-i6

www.valuetronics.com




instrument Status

If you do not need to see the headers when the numeric values are
returned, then you could use following program message to read the query
SYSTEM:HEADERS?:LONGFORM? into multiple numeric variables;

ENTER XXX Result1,Resuit2

Kote

When you are receiving numeric daia into numeric vanables, the
headers should be tummed off. Otherwise the headers may cause
misinterpretation of returned data.

Status registers track the current status of the instrument. By checking the
instrument status, you can find out whether an operation has been
completed, whether the instrument is receiving triggers, and more. The
appendix "Status Reporting” explains how to check the status of the
instrument.

Intreduction to Programming an Instrument
1-17

www.valuetronics.com




Programming Over RS-232C 2

Introduction This section describes the interface functions and some general concepts
of the R§-232C. The RS§-232C interface on this instrument is
Hewlett-Packard’s implementation of ELA Recommended Standard
RS-232C, "Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data Interchange.”
With this interface, data is sent one bit at a time and characters are not
synchronized with preceding or subsequent data characters. Each
character 1s sent as a complete entity without relationship to other events.

L y
Interface The HP 1650A/51A can be programmed with a controller over R$-232C
Ope ration using either a minimuom three-wire or extended hardwire interface. The

operation and exact connections for these interfaces are described in
more detail in the following sections. When you are programming an HP
1650A/51A over RS-232C with a controlier, you are normally operating
directly between two DTE (Data Terminal Equipment) devices as
compared to operating between a DTE device and a DCE (Data
Communications Equipment) device. When operating directiy between
two DTE devices, certain considerations must be taken into account. For
three-wire operation, XON/XOFF must be used to handle protocol
between the devices. For extended hardwire operation, protocol may be
handled either with XON/XOFF or by manipulating the CTS and RTS
lines of the HP 1650A/51A. For both three-wire and extended hardwire
operation, the DCD and DSR inputs to the HP 1650A/51A must remain
high for proper operation. With extended hardwire operation, a high on
the CTS input allows the HP 1650A/51A 10 send data and a low on this
line disables the HP 1630A/51A data transmission. Likewise, a high on
the RTS hne allows the controlier to send data and a low on this line
signals a request for the controller to disable data transmission. Since
three-wire operation has no controf over the CTS input, internal pull-up
resistors in the HP 1650A/51A assure that this line remains high for
proper three-wire operation.

Programming Over RS-232C
2.1

www.valuetronics.com




Cables

Minimum
Three-Wire
interface with
Software
Protocol

Selecting a cable for the RS-232C interface is dependent on your specific
apphcation. The following paragraphs describe which lines of the HP
1650A/31A are used to control the operation of the R$-232C bus relative
io the HP 1650A/51A. To locate the proper cable for vour application,
refer lo the reference mamual for your controller, This manual should
address the exact method your controller uses to operate over the
RS-232C bus.

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the HP 1650A/51A and the
controller, This provides a much simpler connection between devices
since you can ignore hardware handshake requirements. The HP
1650A/51A uses the following connections on its RS-232C interface for
three-wire communication;

¢ Pin7 SGND (Signal Ground)
¢ Pin2 TD (Transmit Data from HP 1650A/51A)
¢+ Pmn3 RD (Receive Data into HP 1650A/51A)

The TD {Transmit Data) line from the HP 1650A/51A must connect to
the RD {Receive Data) line on the controller, Likewise, the RD line from
the HP 1650A/51A must connect to the TD line or the controller.
Internal pull-up resistors in the HP 1650A/51A assure the DCD, DSR,
and CTS iines remain high when you are using a three-wire interface.

Note

The three-wire interface provides no hardware means to control
data flow between the controller and the HP 16504/514.
XON/OFF protocol is the only means to control this data fiow.

Programming Over RS-232C

2-2

www.valuetronics.com




Extended With the extended interface , both the software and the hardware can
interface with control the data flow between the HP 1650A/51A and the controller. This
allows you to have more control of data flow between devices. The HP
Hardware 1650A/51A uses the following connections on its R$-232C interface for
Handshake extended interface communication: '

s Pin 7 SGND {Signal Ground)
¢ Pin2 TD (Transmit Data from HP 1650A/51A)
e Pin3 RD (Receive Data into HP 1650A/51A)

The additional lines you use depends on your controller’s implementation
of the extended hardwire interface.

¢ Pind4 RTS (Request To Send) is an ontput from the
HP 1650A/51A which can be used to control incoming data flow.

e PinS5 CTS (Clear To Send) is an input to the HP 1650A/51A which
controls data flow from the HP 1650A/51A.

e Pin6 DSR (Data Set Ready) is an input to the HP 1650A/51A
which controls data flow from the HP 1650A/51A within two bytes.

« Pin& DCD (Data Carrier Detect) is an input to the
HP 1650A/51A which controls data flow from the HF 1650A/51A
within two bytes. )

e Pin20 DTR (Data Terminal Ready) is an output from the
HP 1650A/51A which is enabled as long as the HP 1650A/51A is
turned on.

The TD (Transmit Data} ine from the HP 1650A/51A must connect to
the RD (Receive Data) line on the controller. Likewise, the RD line from
the HP 1650A/51A must connect to the TD line on the controlier,

Programming Over RS8-232C
2-3

www.valuetronics.com




The RTS (Request To Send), is an output from the HP 1650A/51A which
can be used to control incoming data flow. A high on the RTS line allows
the controlier to send data and a low on this line signals a request for the
controiler to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data
Carrier Detect) lines are inputs to the HP 1650A/51A which control data
flow from the HP 1650A/51A (Pin 2). Internal pull-up resistors inthe HP
1650A/51A assure the DCD and DSR lines remain high when they are not
connected. If DCD or DSR are connected to the controller,the ¢ ) .
controller must keep these lines and the CTS line high to enable the HP

1650A/51A to send data to the controller. A low on any one of these lines
will disable the HP 1650A/51A data transmission. Dropping the CTS hine
low during data transmission will stop HP 1650A/51A data transmission
immediately. Dropping either the DSR or DCD lne low during data
transmission will stop HP 1650A/51A data transmission, but as many as
two additional bytes may be transmitted from the HP 1650A/51A.

L

Cable Exa mpie Figure 2-1is an example of how to connect the FIP 1650A/51A to the
HP 986284 Interface card of an HP 9000 series 200/300 controller. For
more information on cabling, refer to the reference manual for your
specific controller,

Note

Since this example does not have the correct connections Jor
hardware handshake, XON/XOFF protocol must be used when
connecting the HP 16504/514 as shown in figure 2-1

HO 16508514
REAR FAME |
; oo
i i | e geEssa
" INTERFACE CARD
= &=
| T |
152 421 506 1ws2 16
ORALESFObinL £ 3

SCE OFT . gap
(FEMALE=TO~FEMALE Y

Figure 2-1. Cable Example

Programming Over RS-232C
2-4

www.valuetronics.com



Configuring the The front-panel I/O menu key allows you access to the RS-232C
interface Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to configure the RS-232C interface, refer
to the HP 16504/514 Front-panel Reference Manual,

R
interface The baud rate, stop bits, parity, protocol, and data bits must be configured
C apa bilities exactly the same for both the controller and the HP 1650A/51A to

properly communicate over the RS-232C bus, The HP 1650A/51A
RS-232C interface capabilities are listed below:

Baund Rate: 110, 300,600, 1200, 2400, 4800, 5600, or 19.2 k
Stop Bits: 1, 1.5, 0r 2

Parity: None, Odd, or Even

Protocol: None or XON/XOFF

Data Bits: 7or §

e & & & @

Protocol NONE. With a three-wire interface, selecting NONE for the protocol
. does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incompiete data.

With an extended hardwire interiace, selecting NONE allows a hardware
handshake to occur. With hardware handshake, hardware signals control
data flow.

Programming Over R§-232C
2-5

www.valuetronics.com




XON/XOFF, XON/XOFF stands for Transmit On/Transmit Off. With
this mode the receiver (controiler or HP 1650A/51A) controls data flow
and can request that the sender (HP 1650A/51A or controlier) stop data
flow. By sending XOFF {ASCII 17) over its transmit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCIY 19) allows the sending device to resume data
transmission.

Data Bits  Data bits are the aumber of bits sent and received per character that
represent the binary code of that character. They consist of either 7 or 8
bits, depending on the application,

8 Bit Mode. Information is usually stored in bytes (8 bits at a time}. With
8-bit mode, you can send and recetve data just as it is siored, without the
need to convert the data,

7 Bit Mode. In 7-bit mode, each bvte of data is converted into two
separate 7-bit units. The first unit represents the ASCH equivalent of the
four most significant bits of the byte and the second unit represents the
ASCH equivaient of the four least significant bits of the byte. For
example, to send the data

FE, AG, B1

over the bus in 7-bif mode, the instrument would send the ASCII
equivalent of:

’P‘?”Eﬂ”A",GB;B?”l’

or
46,45,41,30,42,31 (hexadecimal}.

Then the receiver would need to convert this 7-bit data back into its &-bit
equivalent.

Programming Over RS-232C
2-8

www.valuetronics.com



Note

The controller and the HP 16504/514 mutst be in the same bit
mode fo properly communicate over the R$-232C. This means
that both the controller and the HP 16504/514 must have the
capability to send and receive 7 bit data, including the ability to
convert and reassemble 7 bit data.
For more information on the RS-232C interface, refer to the HP
1650A/51A Reference Manual. For information on RS-232C voltage
levels and connector pinouts, refer to the HP 1650A/51A Service Manual.

Communicating  Each RS-232C interface card has its own interface select code. This code

Over the is used by the controller to direct commands and communications to the
proper interface by specifying the correct interface code for the device

RS‘232C BUS address_ &

(HP 9000

Series 200/300

Controlier)

Generally, the interface select code can be any decimal vaiue between 0
and 31, except for those interface codes which are reserved by the
controlier for internal peripherals and other internal interfaces. This
value can be selected through switches on the interface card. For more
information, refer to the reference manual for your interface card or
controller.

For example, if your R$-232C interface select code is 20, the device
address required to communicate over the RS-232C bus is 20.

Programming Over RS-232C
2.7

www.valuetronics.com




Lockout To lockout the front panel controls use the system command LOCKOUT.

Command When this function is on, all controls (except the power switch) are
entirely locked out. Local control car only be restored by sending the
command :LOCKOUT OFF. For more information on this command see
the chapter "System Commands” in this manual.

Note B — SO

Cycling the power will also restore local control, but this will also
resel certain RS5-232C states.

Programming Over RS-232C

Z-8

www.valuetronics.com



Programming and Documentation 3
Conventions

introduction This section covers the programming conventions used 1n programming
the instrument, as well as the documentations conventions used in this
manual. This chapter also contains a detailed description of the
command tree and command tree traversal.

Truncation Rule  The truncation rule for the mnemonics used in headers and alpha
arguments is:

¢ The mnemonic is the first four characters of the keyword unless the
fourth character is a vowel, then the mnemonic s the first three
characters of the keyword.

This rule will not be used if the length of the keyword is exactly four
characters. When the keyword only contains four characters, there is no
shortform of the command.

Some examples of how the truncation rule is applied to various commands
are shown in tabie 3-1.

Programming and Documentation Conventions
3.1

www.valuetronics.com




Tabie 3-1. Mnemonic Truncation

Longform Shortform
START ' STAR
MASTER - MAST
EDGE EDGE [ .
DELAY DEL
................ PATTERN PATT

The Command The command tree (figure 3-1) shows all commands in the HP 1650A/51A

Tree logic analyzers and the relationship of the commands to each other, You
shouid notice that the common commands are not actually included with
the command tree. After a <«NL> (linefeed - ASCIF decimal 10) has
been sent to the instrument, the parser will be set to the "root” of the
command tree,

Command Types The commands for this instrument can be placed into three types. The
three types are:

Common Cemmands. Common commands are independent of the tree,
and do not affect the position of the parser within the tree.

Example: "*CLS"

System Commands. The system commands reside at the root of the
command tree. These commands are always parsable if they occur at the
beginning of a program message, or are preceded by a colon.

Example: "SYSTEM:HEADER ON"
Subsystem Commands. Subsystem commands are grouped together

under a common node of the tree, such as the MMEMORY commands.

Programming and Documentation Conventions
3-2

www.valuetronics.com



i P

7 T
STOF

MIAE M

WLIGL:

H

DLIBL:

RMODe  START SYSTem: MACH I ne:
ARMEre ! ; | E?gjﬁm geii:"
Comman DATA E LOAD: STORe : - I;\"ISer'L
Commands g;:m CONFig coNFig LINE
AOLS HE ADer ! IASSembier — g%i;te
+[SC ! 1 €
o K LTetoe ARV RANGE
- Choul ATaiog ASSign REMove
»1om LONGform  COPY AUToscate -
oige ME N DOWN : cad NAME rSTote
- R XTIMe
+RET ME SE INITialize TYoE
*SRE ME SR PACK
578 PRINL PURGe
» 15T SETup RENeme
WAL UPLood
: 7 T T i
TFORmo TTRace: TWaVeform: SFORmat STRoce SLISt: SYMBQ !
LABe aOD e ACCumulate CLOCK<N> BRANCH COLumn BASE
REMove DURction  DELoy LABe | FING DATA PATTern
TrHResne L gah> EOGE INSert MASTer PREStore LINE RANGe
GLlich WO e REMove RANGe MMOD e REMove
PaTYern OCONgitlien SLAVe RESTort OFETLern WILTH
OFATLern THResho  g<N>  SECQuence OSCorch
OSEcrch STORe OSTate
0T IMe TAG OTAG
RANGe TERM OTIMe
REMove RUNT I ¢
RUNT TAVerage
SPERI od THMAX [rmum
Taveroge TMINimum
THMAY VRUNS
THIN Emym XCTog
VRUNg XPATLern
XCONGiI L ion X8Eorch
XOT ime XSTate
XPATtern XTAG
X8Lorch XTIMe
XTIMe

Figure 3-1. The HP 16504/514 System Command Tree

www.valuetronics.com

Programming and Decumentation Conventions

3.3




Tree Traversai Rules  Command headers are created by traversing down the command tree, A
legal command header from the command tree in figure 3-1 would be
"MMEMINITIALIZE." This is referred to as a compound header. A
compound header is a header made of two or more mnemonics separated
by colons. The maemonic created contains no spaces. The following

. rules apply 1o traversing the tree:

¢ A leading colon or a < program message terminator > (< NL> true
on the last byte) places the parser at the root of the command tree. A
leading colon is a colon that is the first character of 2 program header,

* Executing a subsystem command places you in that subsystem (until a
leading colon or 2 < program message terminator > is found). In the
Command Tree, figure 3-1, use the last mnemonic in the compound
header as a reference point (for example INITEALIZE), Then find
the last coion above that mnemonic (MMEM:}, and that is where the
parser will be. Any command below that point can be sent within the
current program message without sending the mnemonic(s) which
appear above them {STORE, etc.).

Examples  The following examples are written using HP BASIC 4.6 on a HP 9000
Series 200/300 Controller. The quoted string is placed on the bus,
foliowed by a carriage return and linefeed (CRLF).

The three Xs (XX X) shown in this manual after an ENTER or OUTPUT
statement represents the device address required by your controller.

Example 1 outpur XXX SYSTEMHEADER ON;LONGFORM ON-

In example 1, the colon between SYSTEM and HEADER is necessary
since SYSTEM:HEADER is a compound command., The semicolon
between the HEADER command and the LONGFORM command is the
required < program message unit separator >. The LONGFORM
command does not need SYSTEM preceding it, since the
SYSTEM:HEADER command sets the parser to the SYSTEM node in
the tree,

Programming and Documentation Conventions
2.4

www.valuetronics.com



Example 2  CUTPUT XXOGMMEMORY:INITIALIZE:STORE 'FILE_ " 'FILE DESCRIPTION™

or

CUTPUT XX MMEMORY INITIALIZE"
OUTPUT XXX MMEMORY:STORE 'FILE__ " FILE DESCRIPTION™

In: the first line of example 2, the "subsystem selector” is implied for the
STORE command in the compound command. The STORE command
must be in the same program message as the INITIALIZE command,
since the < program message terminator > will place the parser back at
the root of the command tree.

A second way to send these commands is by placing "MMEMORY?"
before the STORE command as shown in the fourth line of example 2.

Example 3 OUTPUT XXX MMEM:CATALOG?::SYSTEM:PRINT ALL"

In example 3, the leading colon before SYSTEM tells the parser to go
back to the root of the command tree. The parser can then see the
SYSTEM:PRINT command.

infin ity The representation of infinity is 9.9E + 37 for real numbers and 32767 for
=] epres entation integers. This 1s also the value returned when a measurement cannot be
made.

Seq uential and TEEE 488.2 makes the distinction between sequential and overlapped

Overlap p ed commands. Sequential commands finish their task before the execution of
the next command starts, Overlapped commands run concurrently, and
Commands therefore the command following an overlapped command may be started

before the overiapped command is completed. The overlapped
commands for the HP 1650A/51A are STARL, STOP, and AUToscale.

Programming and Documentation Conventions
3.5

www.valuetronics.com




Hes ponse IEEE 488.2 defines two times at which query responses may be buffered.

Generation The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read
the response. The HP 1650A/51A will buffer responses to a query when it
is parsed.

Notaﬁbﬁ The following conventions are used in this manual in descriptions of
g P
Co nventi oOns remote opcralion:

and Definitions

< > Angular brackets enclose words or characters that are used to
symbolize a program code parameter or a bus cornmand,

u= "is defined as." For exampie, A = B indicatesthat A can
be replaced by B in any statement containing A .

| "or": Indicates a choice of one element from a list. For exampie,
A | B indicates A or B, but not both,

... An eliipsis (trailing dots) is used to indicate that the preceding
element may be repeated one or more times,

[ ] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces, one, and only one of
these elements must be selected.

XXX Three Xs after an ENTER or QUTPUT statement represent
the device address required by vour controller,

Programming and Documentation Conventions

3-6

www.valuetronics.com




The following definitions are used:

d = A single ASCII numeric character, 0-9,

n == A single ASCII non-zero, numeric character, 1-9.

<NL> == Linefeed (ASCII decimatl 10).

<sp> == < white space >

space == white space

L
Syntax At the beginning of each of the following chapters are syntax diagrams
Diagrams showing the proper syntax for each command. All characters contained in

a circle or oblong are literals, and must be entered exactly as shown.
Words and phrases contained in rectangles are names of items used with
the command and are described in the accompanying text of each
command. Each line can only be entered from one direction as indicated
by the arrow on the entry line. Any combination of commands and
arguments that can be generated by following the lines in the proper
direction is syntactically correct. An argument is optional if there is a
path around it. When there is a rectangle which contains the word
"space,” a white space character must be entered. White space is optional
in many other places.

Command The HP 1650A/51A programming commands are divided into three types:

Structure common commands, system commands, and subsystem commands., A
programming command tree is shown in figure 3-1 and a programming
command cross-reference is shown in table 3-2.

Programming and Documentation Conventions
3.1

www.valuetronics.com




Common
Commands

Systemn
Commands

Subsystem
................................ Commands

The common commands are the commands defined by IEEE 488.2.

These commands control some functions that are common to all IEEE

488.2 mstruments. Sending the common commands do not take the
instrument out of a selected subsystem.

The system commands control many of the basic functions of the
instrument.

There are several subsystems in this instrument. Only one subsystem may
be selected at any given time. At power on, the command parser is set to

the root of the command tree, and therefore, no subsystem is selected.

Note

When a <program message terminaior > or a leading colon (:)
is sent in a program message, the command parser is returned to
the root of the command tree.

The 12 subsystems in the HP 1650A/51A are:

¢ SYSTem - controls some basic functions of the instrument.
s MMEMory - provides access to the internal disc drive,

s MACHine - controls the machine level function and allows access 1o

the instrument configuration subsystems.
» DLISt- allows access to the dual listing function of two state
analyzers.
WLISt - allows access to the mixed (timing/staie) functions.
TFORmat - allows access to the timing format functions.
TTRace - allows access to the timing trace functions.
TWAVeform - allows access to the timing waveforms functions.
SFORmat - allow access to the state format functions.
STRace - allows access to the state trace functions.
SLISt - allows access to the state listing functions.
SYMBols - allows access to the symbol specification functions.

® & & B & @ 3 @

Programming and Documentation Conventions

3-8

www.valuetronics.com




Program
Examples

The program examples given for each command in the following chapters
and appendices were written on an HP 9000 Series 200/300 controller
using HP BASIC 4.0 language. The programs always assume a generic
address of XXX.

In these examples, special attention should be paid to the ways in which
the command/guery can be sent. The way the instrument is set up to
respond to a command/query has no bearing on how you send the
command/query. That is, the command/query can be sent using the
longform or shortform if one exists for that command. You can send the
command/query using upper case (capital) letters or lower case {smail)
letters; both work the same. Also, the data can be sent using almost any
form you wish. If you were sending a timing waveform delay value to the
logic analyzer of 100 ms, that value could be sent using a decimal (.1}, or
an exponential {1e-1 or 1.0E-1), or a suffix (100ms or 100MS).

Note

The contents of a string are case sensitive and must be expressed
exactly the same each time it is used.

As an example, set Timing Waveform Delay to 100 ms by sending one of
the following:

® commands in longform and using the decimal format.

OUTPUT XXX MACHINE1: TWAVEFORM: DELAY 1"

¢ commands in shortform and using an exponential format.

QUTPUT XXX MACH1: TWAV: DEL 1E-.1"

* commands using lower case letters, shortforms, and a suffix.

QUTPUT XX " mach 1:twav:de! 100ms"

Programming and Documentation Conventions
3.9

www.valuetronics.com




Note

In these examples, the colon shown as the first character of the
command is optional on the HP 16504/51A4." The space between
DELAY and the argument is required.

To observe the headers for queries, you must bring the returned data into
a string variable. Generally, you should also dimension all string variables
before reading the data,

If you do not need to see the headers and a numeric value is returned
from the HP 1650A/51A, then you should use a numeric variable. In this
case the headers should be turned off.

Note

oW

The contents of sirings " " are case sensitive (label names, etc. ).

Command Set The command set for the HP 1650A/51A logic analyzer is divided into 13
i H separaie groups: common commands, system commands and 11 sets of

Orgamzat:on subsystem commands. Each of the 13 groups of commands is described in
the following chapters. Each of the chapters contain a brief description of
the subsystem, a set of syntax diagrams {or those commands, and finally,
the commands for that subsystem in alphabetical order. The commands
are shown in the longform and shortform using upper and lowercase
letters. As an example AUToload indicates that the longform of the
command is AUTOLOAD and the shortform of the command is AUT,
Each of the commands contain a description of the command and its
arguments, the command syntax, and a programming example.

Programming and Documentation Conventions
3-10

www.valuetronics.com



Table 3-2. Alphabetic Command Cross-Reference

Command Where used Command Where used
ACCumulate TWAVeform OTIMe WLIS:
AMODe ce PACK MMEMory
ARM MACH:ne PATTemn SYMBol
ARMBnc SYSTem PATTermn TTRace
ASSign MACHine PREStore STRace
AlUToload MMEMory RANGe STRace
AUToscale MACHine PRINt SYSTem
BASE SYMBol PURGe MMEMory
BRANchH STRace RANGe SYMBo!
CATalog MMEMory RANGe TWAVeform
CLOCk SPORmas REMove SFORmat
COLumn DLISt REMove SYMBol
COLumn SLISt REMove TFORmat
COLumn WLISt REMove TWAVeform
Cary MMEMory REName MMEMory
CPERI0d SFORmat RMODe SYSTem
DATA SLISt RUNTI SLISt

DATA SYSTem RUNTI TWAVeiform
BOWNload MMEMory SEQuence ce

DSP SYSTem SETu SYSTem
DELay TWAVeform SLAVe SFORmat
DURation TTRace SPERIiod TWAVeform
EDGE I'TRace STAR: SYSTem
ERRor SYSTem STO?P SYSTem
FIND STRace STORe ce
GLITch TTRace STORe:CONfig MMEMory
HEADer -SYSTem TAG STRace
INTTialize MMEMory TAVerage SLISt

INSert TWAVeform TAVerage TWAVeform
KEY SYSTem TERM ce
LADel SFORmat THReshold SFQORmat
LARBel TFORmat THReshold TFORmat
LINE DSt TMAXimum SEISt

LINE SL1St TMAXimum TWAVeform
LINE WILISt TMINimum SLIS:
LOAD:IASSembier MMEMory TMINimum TWAVeform
LOAD:CONFig MMEMory PE MACHine
LOCKout 5YSTem UPLoad MMEMory
LONGform $YSTem VRUNs SLISt
MASTer SFORmat VRIUNs TWAVeform
MENU SYSTem WIDTn SYMBo!
MMODe SLISt XCONdition TWAVeform
MMODe TWAVeform XOTag SLISt
NAME MACHine XOTime TWAVeform
QCONdition TWAVeform XPATiem SLIS:
OPATem LISt XPATtern TWAVeform
OPATem TWAVeform XSEarch SLISt
OSHEarch SLISt XSEarch TWAVeform
OSEarch TWAVeform XSFate WLISt
OSTate WLISt XSTawe SLISt
OSTate SLISt XTAG SLIS:
QTAG SLISt XFIMe TWAVeform
OTIMe TWAVeform XTIMe WLISt

Programming and Docamentation Conventions

3-11

www.valuetronics.com




Common Commands 4

Introduction

The common commands are defined by the IEEE 488.2 standard. These
commands will be common to all instruments that comply with this
standard.

The common commands control some of the basic instrument functions,
such as instrument identification and reset, how status is read and cleared,
and how commands and queries are received and processed by the
instrument,

Common commands can be received and processed by the HP 1650A/51A
whether they are sent over the bus as separate program messages or
within other program messages. If an instrument subsystem has been
sclected and a common command is received by the instrument, the
instrument will remain in the selected subsystem. For example, if the
program message

“MMEMORYINITIALIZE:*CLE; STORE 'FILE__"DESCRIPTION™

is received by the instrument, the instrument will initialize the disc and
store the file; and clear the status information. This would not be the case
if some other type of command were received within the program
message. For example, the program message

MMEMORYINITIALIZE: : SYSTEM: HEADERS ON:MMEMORY
[STOREFILE_ ''DESCRIPTION'™

would initialize the disc, turn headers on, then store the file. In this
example MMEMORY must be sent again in order to reenter the
mmemory subsystem and store the file.

Common Commands
4-1

www.valuetronics.com




Each status register has an associated status enable {(mask) register. By
setting the bits in the mask value you can select the status information you
wish to use. Any status bits that have not been masked {enabled in the
enable register) will not be used to report status summary information to
bits in other status registers.

Refer to appendix B for a complete discussion of how to read the status
registers and how to use the statvs information available from this
instrument,

Refer to figure 4-1 for the common commands syntax diagram.

¥ wCLS

-

¢

] spoce | ;mcsk ) i

(31 oo

iLr

=E5R7 o

A

2 IDN? -

0PL

i

«QPC?

Lol WRST )

o ) spoce j ! mosk | -

1

&
u
ey

T

=SRE?

s 5TE? o

) g

“WAT

Q1850501

mask = An integer, 0 through 255, This number is the sum of all the bits in
the mask corresponding to conditions that are enabled. Refer to the *ESE
and *SRE commands for bit definitions in the enable regisiers.

Figure 4 1. Common Commands Syntax Diagram

Common Commands
4.2

www.valuetronics.com



*CLS

*CLS (Clear Status) command

The *CLS common command clears the status data structures, including
the device defined error quene. If the *CLS command immediately
follows a < program message terminator >, the output queue and the
MAYV (Message Available) bit will be cleared.

Command Syntax: *CLS
Example:  QUTPUT XXX ™CLS" <NL>

Noie

Refer to Appendix B for a complete discussion of status.

Common Commands
4.3

www.valuetronics.com




*ESE
A

*ESE {Event Status Enabie) command/query

The *ESE command sets the Standard Evenf Status Enable Register bits.
The Standard Event Status Enable Register contaings a mask value for the
bits to be enabled in the Standard Event Status Register, A oneinthe
Standard Event Status Enable Register will enable the corresponding bit
in the Standard Event Status Register. A zero will disable the bit, Refer

- to table 4-1 for information about the Standard Event Status Enable
Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register,
. Note
Refer to Appendix B for a complete discussion of status.
Command $yntax: *ESE <mask>
where:
<mask> = 010 285 (integer)

Example:  OUTPUT X00(™ESE 32

In this example, the *ESE 32 command will enable CME (Command
Error}, bit 5 of the Standard Event Status Enable Register. Therefore,
when a command error occurs, the event summary bit (ESB) in the Status
Byte Register will also be set.

Common Commands
4-4

www.valuetronics.com




*ESE

Query Syntax: *ESE?

Returned Format:  <mask> <NL>

Example: 10 DIM Event$[180]

20 QUTPUT XX +ESE?"

30 ENTER XXX, Event$
40 PRINT Event$

50 END

Table 4-1. Standard Event Status Enable Register

Bit Weight Enables
7 128 PON - Power On
6 64 URQ - User Request
5 32 CME - Command Error
4 16 EXE - Execution Error
3 8 DDE - Device Dependent Error
2 4 QYE - Query Error
1 2 RQC - Request Control
0 1 QPC - Operation Complete

High - enables the ESR bit

www.valuetronics.com

Common Commands
4-5




*ESR

Query Syntax:
Returned Format:

where:

< status >

Exarnpie:

Common Commands

4-6

(Event Status Register) query

The *ESR query returns the contents of the Standard Event Status
Register. Reading the register clears the Standard Event Status Register.

*ESR?

<status > <NL>

= 0 to 255 (integer)

10 DiM Esr_event$[100]
20 QUTPUT X0 ESR?
30 ENTER X000 Esr_svents
40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable
"Esr_event" will have bit 5 (the CME bit} set.

Table 4-2 shows the Standard Event Status Register. The table shows
each bit in the Standard Event Status Register, and the bit weight. When
you read Standard Event Status Register, the vaiue returned is the total bit
weights of all bits that are high at the time you read the byte. '

www.valuetronics.com




*ESR

L :
Table 4-2. The Standard Event Status Register.

BIT BIT BIT CONDITION
WEIGHT NAME
7 128 PON 0 = Register read - not in power up mode

1 = Powerup

6 64 URQ 0 = user request - not used - always zero
5 32 CME 0 = no command errors

1 = a command error has been detected
4 16 EXE ¢ = no execution errors

_ 1 = an execution error has been detected

3 8 DDE 0 = no device dependent errors

1 = a device dependent error has been detected
2 4 QYE 0 = 1o query errors

1 = a query error has been detected
1 2 ROC 0 = request controf - NOT used - always 0
0 1 OPC 0 = operation is not complete

1 = operation is complete

0 = False = Low
1 = True = High

Common Commands
4.7

www.valuetronics.com




*IDN

*IDN

Query Syntax:
Returned Format:

where:

< fevision code >

Exampie:

Common Commands
4.8

{ldentification Number) guery

The *TDN? guery allows the instrument to identify itself. It returns the
string:

HEWLETT-PACKARD, 16504,0,REV <revision code >

An *IDNT query must be the last query in a2 message. Any queries after
the *IDN? in the program message will be ignored.

*IDN?

HEWLETT-PACKARD, 1650A,0,REV < revision code >

e four digit code representing ROM revision

16 DIM Id${100]

20 QUTPUT XXX **IDN?*
30 ENTER X0 1d$

40 PRINT Id$

50 END

www.valuetronics.com




*OPC

*OPC (Operation Compilete) command/query

The *OPC command will cause the mstrument to set the operation
complete bit in the Standard Event Status Register when all pending
device operations have finished. The commands which affect this bit are
the Overlapped Commands. An Overlapped Command s a command
that aliows execution of subsequent commands while the device
operations initiated by the Overlapped Command are still in progress.
The overiapped commands for the HP 1650A/51A are:

STAR

STOP
AlToscale

The *OPC query places an ASCII "1 in the output queue wher all
pending device operations have been completed.

Command Syntax: *0OPC
Exampie:  QUTPUT XXX"*OPC"
Query Syntax: =OPC?
Returned Format: 1 <NL>

Exampie: 10 DiM Status$][100]
20 QUTPUT X0 *0RC?"
30 ENTER XXX Status$
40 PRINT Status$
50 END

Common Commands
4.9

www.valuetronics.com




*RST

*RST (Reset) command

The *RST command (488.2) sets the HP 1650A/51A 1o the power-up
default settings as if no autoload file was present,

-ommand Syntax: *RST

Example:  OUTPUT X004 AST

‘Common Commands
4.10

www.valuetronics.com



*SRE

Command Syntax:

where:

<mask >

Exampie;

*SRE

(Service Request Enable) command/query

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 4-3 for the bits in the Service
Request Enabie Register and what they mask.

The *SRE query returns the current value.

Note

Refer to Appendix B for a complete discussion of status.

*SRE < mask >

= 0to 255 {integer)
CUTPUT XXX **SRE 16

This example forces the MSS bit high (see tabie 4-3).

Common Commands
4.11

www.valuetronics.com



*SRE

L]
Query Syntax:

Returned Format:

whare:

< mask >

Example:

*SHE?

<mask> <NL>

;1= sum of all bits that are set - 0 through 255

10 DiM Sre_value$[100]
20 DUTPUT XXX+ SRE?"
30 ENTER X0 5re_value$
40 PRINT 8re_values

50 END

Table 4-3. HF 16504/51A4 Service Request Enable Register

Bit Weight Enables
15-8 not used
7 i28 not used
6 64 MSS - Master Sommary Status
5 32 ESB - Event Status
4 16 MAY - Message Available
3 8 LCL - Local
2 4 not used
1 2 not used
H] 1 MSB - Module Summary

Common Commands
4-12

www.valuetronics.com




*STB

!
*STB (Status Byte) query

The *STB query returns the current vaue of the instrument’s status byte,
The MSS (Master Summary Status) bit and not RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has
at least one reason for requesting service. Refer to table 4-4 for the
meaning of the bits in the status byte.

Note

Refer to Appendix B for a complete discussion of status.

Query Syntax: =*37TB?
Returned Format: <value > <NL>

where:

<value> =0 through 255 (integer}

Example: 10 DIM Stb_value${100]
20 QUTPUT XXX:"*STR?"
30 ENTER XXX Stb_value$
40 PRINT Stb_value$
50 END

Common Commands
4-13

www.valuetronics.com




*STB

A
Table 4-4. The Status Byte Regisier
BIT BIT BIT CONDITION
WEIGHT NAME
................................ 7 128 o 0 = not used

6 64 MSS 0 = instrument has no reason for service
1 = instrument is requesting service

5 32 ESB 0 = no event status conditions have oceurred
1 = an enabled event status condition

has occurred

4 16 MAY 0 = no output messages are ready
1 = an output message is ready

3 8 1LCL 0 = aremote-to-local transition has not oceorred
1 = aremote-to-local transition has occurred

2 4 - not used

1 2 e not used

0 1 MSB 0 = HP 1650A/51A has activity to report
1 = no activity to report

= False = Low
i = True = High

Common Commands
4-14

www.valuetronics.com




*WAL

*WA (Wait) . command

The *WAI command causes the device to wait until the completion of all
overlapped commands before executing any further commands or queries,
An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for
the HP 1650A/51A are:

STAR
STOP
AlToscale

Command Syntax:  *wa

Example:  QUTPUT X0 WAl

Common Commands
4-15

www.valuetronics.com



System Commands 5

introduction System commands control the basic operation of the instrument including
formatting query responses and enabling reading and writing to the
advisory line of the instrument’s display. They can be called at anytime.
The HP 1650A/51A System commands are:

ARMBnc
DATA

DSP (display)
ERRor
HEADer
KEY

LER (Local Event Register)
LOCKout
LONGform
MENU
MESE

MESR

PRINt

SETup

® ® & % & & 5 5 2 8 & & 0

In addition to the system commands, there are three run control
commands, These commands are:

¢« RMODe
STARt
STOP

The ren control commands can be called at anytime and also control the
basic operation of the logic analyzer. These commands are at the same
level in the command tree as SYSTem; therefore they are not preceded by
the :SYSTem header.

System Commands
5.1

www.valuetronics.com



WWI\;SNYS'Eem @«J*ﬂARMBnc/-——-D-g space ;—--E—-t-‘l mach. num } T
LT

edimd  ARMB R C 7

—b-@——b; spoce ‘—-—’1 btock date in # formot I

o AT AT

1 !
—D@-—D—i spoce ;-—’-l message_siring

T

mﬂ'\EPROr K

-&{HEADMH spoace F—wgij
L\ ONpt

i HEADer ?

y ! ! |
KEY | SPOCE e key.code !

r—m KEY?

£ ERY
W\WER‘

2 -~ . i H
—— iOuKou‘)——bii spoce

P/O Figure 5-1. Systern Commands Syntax Diagram

System Commands
£.2

www.valuetronics.com

OE50508




¥ 1

—s{ LONG{orm }—& spoce |

{07 [0}

e ]

ot

s ~ b
et LON-\,form?J,

e’

! {
“M:mw space g——-ll menu.type l——’@ MO CH_NUM iy

ot RAE WLT

e 3L ST J—i space }-——4 enable_mask

G

P WESE 7 -

- MESR? e
(PRING bl space pmmtn{ SCReeN )

[l PRING — spoce » [ SCReen i -

- SETuD)-’-—? speee M biock dato in # format b

. Tup? } J
SETup
- 5 : i £ } |
e RMODe e space o, SINGle I -
l A
o Ty
\h-\F:tF’etwllve )-j
R ——_—
= (STARL ) .
N .
f”ww
Sl STOR G
Mtmre? 01650507

value = Integer, 1o 255.

1

menu = integer. Refer to the individual progranvming manuals for each module and the system for

specific menu number definitions.

enable_value = intgger, 0 1o 255,

index = integer, Oto 5

block_data = data in IEEL 488.2 # format.

string = string of up to 64 alphanumeric characters.,

Figure 5-1. System Commands Syntax Diagram

System Commands
5.3

www.valuetronics.com




ARMBne

ARMBnc

Command Syntax:

Exampie:
Query Syntax:
Returned Format:

Exampie:

System Cemmands
5-4

command/query

The ARMBnc command selects the source that will generate the arm out
signal that will appear on the rear panel BNC labelled External Trigger
Out.

The ARMBn¢ query returns the source curreatly selected.

:8YSTem:ARMBnc {MACHIne{1]2} |NONE}
OUTPUT X0 8YSTem:ARMBRe MACHIne 1"
:SYSTem ARMBRC?

[:SYSTern: ARMBRc]MACHIne {12 ]NONE} < NL>

10 DIM Mode$[100]
20 GUTPUT 300" ARMBNG?"
30 ENTER XXX:Mode$

40 PRINT Mode$

50 END

www.valuetronics.com




DATA

DATA command/query

The DATA command aliows you te send and receive acquired data to
and from a controller in block form. This is useful for saving block data
for:

#. Re-loading to the logic analyzer
® Processing data later
# Processing data in the controller.

The block data of the DATA command and query is broken down into
bytes, byte positions and descriptions. This 15 intended primarily for
processing of data in the controller.

Note

Do not change the block data in the controller if vou intend to
send the block data back into the logic analyzer for later
processing. Changes made to the block data in the controller
may cause unpredictable results in the logic analyer.

The DATA command transmits the acquisitior memory data from the
controller to the HP 1650A/51A logic analyzer,

Note

The data sent by the DATA command is dependent on the exact
logic analyzer configuration present when the data was sent lo
the controller in order to be valid. One way to ensure the exact
setup is to send in a configuration using the SETup command.

System Commands
5.5

www.valuetronics.com



DATA
|

Command Syntax:
Exarnple:

where:

< biock data in # format >

Query Syntax:

Returned Format:

System Commands
5.6

The block data consists of 14506 bytes containing information captured by
the acquisition chips. The information must be in one of four formats,
depending on the type of data captured. Since no parameter checking is
performed, out-of-range values could cause insirument lockup; therefore,
care should be taken when transferring the data string into the HP
1650A/51A.

The DATA query returns the block data. The block data will be in one of
four formats which are explained in the following pages.

:8YSTem:DATA <block data in # format >

OUTPUT XXX 8YSTern: DATA" < block dats in # format>

o= data intormation

;SYSTem:DATA?

[:8YSTem:DATA] <block data in # format> <NL>

www.valuetronics.com




DATA

I
Definition of Block  Block data in the # format is made up of a block length specifier and one
Data datasection.

<block iength specifier > < data_section >

The block length specifier is defined as follows:

#g <iength>

where:

<length> = the total iength in byte format (must be represented with 8 digits)

For example, if the total length of the block is 14522 bytes, the block
tength specifier would be "#800014522" since the length must be
represented with 8 digits,
Sections consist of a section header followed by the section data as follows:
< section header> < section data >

where:

<section header> 1= 10 bytes for the section name

1 byte reserved (always 0)
1 byte for the 1D code {31 for the HP 18504/51A logic anatyzers)
4 bytes for the length of the section data in bytes

The section data format varies for each section and may be any length,

Note

The total length of a section is 16 {for the section header) plus
the length of the section data. Thus, when calculaiing the length
of a block of configuration data, don’t forget to add the length of
the section headers.

System Commands
5.7

www.valuetronics.com



DATA

Exampie: 10 DIM Biock$[32000] 1 aliocate enough memory for biock data
20 DiM Specifier§[2]
30 QUTPUT XXX SYSTEM: HEAD QOFF"
40 QUTPUT X0 SYSTEM:DATA?" ! send data query
50 ENTER XXX USING "# 24" Specifier$ | read in #8
60 ENTER XXX USING "#,8D";Biockiength | read in biock length
70 ENTER XXX USING "-K~Block$ | read in data
80 END '

Data Command The DATA command for the HP 1650A/51A logic analyzer consists of 16
Configuration  bytes of section header and 14506 bytes of data, organized in one of four .
ways depending on the type of data. The four data types are :

State (no tagging)
State (with tagging)
Glitch timing
Transitional timing

& ® & @

Data Preambie  In general, the block data is set up as 160 bytes of preamble information,
Description  followed by 1024 lines of 14 bytes of information each, followed by ten
reserved bytes, The preamble gives information for each
analyzer describing the amount and type of data captured, where the trace
point occurred in the data, which pods are assigned to which analyzer, cic.

Each line consists of two bytes (16 bits) of status for Analyzer 1, two bytes
(16 bits) of status for Analyzer 2, then five sets of two bytes (16 bits) of
information (either data, count, or glitch) corresponding to the five 16 bit
pods of the HP 1650A. In the HP 1651A, the status and format for the
sets of bytes are the same, but the data is not valid on pods 3, 4, and 5.

System Commands
5-8

www.valuetronics.com



Byte
Position

11
12

13

17

18

21

DATA

Note

One analyzer’s information is independent of the other
analyzer's information. In other words, on each line, one
analyzer may contain data information for a timing machine,
while the other analyzer may contain count information for a
state machine with time tags enabled. The preamble for each
analyzer describes what the information for each line contains
for that analyzer. Therefore, when describing the different formats
that data may contain below, keep in mind that this format
pertains only to those pods that are assigned (o the analyzer of
the specified type. The other analyzer's data is TOTALLY
independent and conforms to its own format.

16 bytes - Section Header

10 bytes - section name, "DATA  "(six trailing spaces)
1 byte - reserved {always )

1 bytes - compatibility ID (31 for HP 1650A/51A)

4 bytes - length {always 14506 for HP 1650A/51A)

160 bytes - Preambie

2 bytes - Instrument ID (always 1650 for both the HP 1650A and HP
1651A)

2 bytes - Revision Code

78 bytes - Analyzer I Data Information

System Commands
5-9

www.valuetronics.com




DATA

21

22

where:

System Commands
5-10

23

24

25

35

36

Note

The values stored in the preamble represent the captured data
currently stored in this structure and not what the current
configuration of the analvzer is. For example, the mode of the
data may be STATE with 1agging, while the current setup of the
analyzer is TIMING,

1 byte - Machine data mode(0 = OFF, I = STATE data with tagging, 2
= STATE data no tagging, 3 = TIMING data Glitch Mode, 4 =
TIMING data Transitional Mode)

1 byte - List of pods in this analyzer .
uoused unused Podl Bod2 Pod 3 Pod 4 Pod S nnused

Bit7 Bué Bit5 Bitd Bitd B2 Bul bitg

a "1" in a given location means that this pod is assigned to this analyzer,

1 byte - Master chip in this analyzer - When several chips are grouped
together in a single analyzer, one chip is designated as a master chip. This
variable is used 1o hold this master value. A value of 4 represents POD 1,
3 for POD 2, 2 for POD 3, 1 for POD 4, and ¢ for POD S.

1 byte - Reserved

10 bytes - Number of rows of valid data for this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, etc.

1 byte - Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = 0)

1 byte - Reserved

www.valuetronics.com




DATA

37 10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was found for each of the five pods. Two
bytes are used to store the value in a manner similar to the number of
valid rows described above.

47 4 bytes - Time from arm to trace point for this analyzer - Time elapsed
from the arm of this machine to the trace point of this machine (in 40 ns
units), A value of -1 indicates counter overflow,

51 1 byte- Armer of this analyzer - Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other maching)

52 1 byte - Devices armed by this analyzer - Set of devices armed by this

machine
=unused - BNCOUT MACHINEB MACHINEA
Bits 7 through3 Bit2 Bit 1 Bit 0

A "I" in a given bit position implies that this analyzer arms that device,
while a "(" means the device is not armed by this analyzer.

53 4 bytes - Sampile period for this analyzer {timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds

per sample.

57 4 bytes - Delay for this anaiyzer (timing only) - Delay at which data was
acquired. Valoe represents the amount of delay in nanoseconds.

61 1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = ().

62 1 byte- Reserved

System Commands
5-11

www.valuetronics.com



DATA

S
63 S bytes - Demultiplexing (state only) - For each of the five pods (first byte
is POD 3§, fifth byte is POD 1} in a state machine, describes multiplexing
of each of the five pods. (¢ = NO DEMUX,1 = TRUEDEMUX,2 =
MIXED CLOCKS).

68 1 byte - Reserved

69 26 bytes - POD trace point adjustment - for each of five pods (first four
---------------------------- bytes are Pod 5, last four bytes are Pod 1) - the number of nanoseconds
that are to be subtracted from the trace point deseribed above to get the

actual trace point value.

89 10 bytes - Reserved

98- 176 78 bytes - Analyzer 2 Datz Information (same as analyzer 1 above)

Data Body The Data Body consists of 14336 bytes (14 bytes * 1024 rows). The daza
Description  contained in the data section will appear in one of four forms depending
or the mode in which it was acquired. The four modes are:

State Data without tags

State Data with either time or state tags
Tining Glitch Data

Transitional Timing Data

¢ & & 9

The following four sections describe the four data modes that may be
encountered.

State Data (notags) Status Bytes. In normal state mode, the status bytes provide no
information.

System Commands
5-12

www.valuetronics.com




Example:

State Data {with either
{ime or state tags)

where:

DATA

Information Bytes. In state acquisition with no tags, data is obtained from
the target system with each clock and checked with the sequencer, If the
state does not match the sequencer qualifer, 1t is checked against the
prestore qualifier. If it matches the prestore qualifier, then it is placed in
the prestore buffer. If the state does not match either the sequencer
gualifier or the prestore qualifier, it is discarded. If the state matches a
state that should be stored, it is placed into the memory.

Status Status Data Data Data Data Data
Status Status Data DPata Data Data Data
Status Status Data Data Data Data Data
Starus Status Data Data Data Data Data

* These labels are not part of the data. They only show how the data is
organized,

Status Bytes. In state tagging mode, the status bytes indicate whether a
giver tow of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs. Count bit, If Bit 2 is set, this row of information
contains tags. If Bit 2 is clear, this row of information contains actual
acquisition data as obtained from the target system. The counts are
relative counts from one state to the one previous and therefore, the count
for the first state in the data structure is invalid, and should be ignored.
The count is stored in floating point format with 11 bits of mantissa and:5
bits of exporent (EEEEEMMMMMMMMMMM). The actual value of
the count is given by the equation : ‘

Count = mantissa * {2 ** exponent)

mantissa = MMMMMMMMMMM
exponent = EEEEE

If time tagging is on, the count value represents the number of 40
nanosecond units that have elapsed between the two stored states.

System Commands
5.13

www.valuetronics.com




DATA

Example:

Systern Commands
5.14

In the case of state tagging, the count represents the number of qualified
states that were encountered between the stored states.

Bit 3 is the Prestore vs. Normal store bit. If Bit 3 is set, this data row and
its corresponding count row represent prestored information, The count,
therefore, should be ignored.

Information Bytes. In the State acquisition mode with tags, data is
obtained from the target system with cach clock and checked with the
sequencer. If the state does not match the sequencer qualifier, it is
checked against the prestore qualifier, If it matches the prestore qualifier,
then it is placed in the prestore buffer. If the state does not match either
the sequencer gualifier or the prestore quaiifier, it is discarded.

If a state matches the sequencer gualifiers, the prestore buffer 1s checked,
If there are any stales in the prestore buffer at this time, these prestore
states are first placed in memory, along with a dummy count row, After
this check, the gqualified state is placed in memory, followed by the count
row which specified how many states (or 40 ns units) have elapsed since
the last stored state. If this is the first stored state in memory, then the
count information that is stored should be discarded,

LIECII A MEQHB Egdi Egdg Radﬁ EQ@Z ECQ’] wux

Status Status  Data  Data Data Data Data
Status Status Count Count Count Count Count
Status  Status  Prestore Prestore Prastore Prestore Prestors
Status  Status * * ® * *
Status Status  Data Data Data Data Data
Status Status  Count Count Count Count Count

* = Invalid data
** These labels are not part of the data. They only show how the data is
organized,

The rows alternate between data and count, For example, a count in row
(n) provides the relative time between data in rows (n-1) and (n-3).

www.valuetronics.com




DATA

Timing Glitch Data  Status Byies. In glitch timing mode, the status bytes indicate whether a
given row in the data contains actual acquisition data information or glitch
information,

Bit 1 is the Data vs. Ghitch bit, If Bit 1 s set, this row of information
contains glitch information. If Bit 1 is clear, then this row contains actual
acquisition data as obtained from the target system.

Information Byies. In the Glitch timing mode, the target system is
sampled at every sample period. The data is then stored in memory and
the glitch detectors are checked. If a glitch has been detected between the
previous sampie and the current sample, the corresponding glitch bits are
set. The glitch information is then stored. If this is the first stored sample
in memory, then the glitch information stored should be discarded.

Example: MACHA MACHB PodS Pod4 Pod3 Pod2 Podl*

Status  Status Daia Data Data Data Data
Status  Status Glhitch  Glitech Ghteh Glitch  Glitch
Status  Status Data Data Data Data Data
Status  Status Gliteh  Gliteh Glitch Gliteh Glitch

* These labels are not part of the data. They only show how the data is
organized.

Transitional Timing Data  Status Bytes. In transitional timing mode, the status bytes indicate
whether a given row in the data contains acquisition information or
transition count information,

Bits 10 and 9 are the Data vs. Count bits for pod 3. Bits 10 and 9 of the
status for transitional timing provide enough information to determine
whether the mformation for pod 5 on a given row is acquisition data, the
start of a count block, or the middle of a count block. There are three
possible values these two bits may have:

00 - This row contains part of a count, but is not the first row of a count.

01 - This row contains the first word of a count.

System Commands
5-15

www.valuetronics.com




DATA
A

10 - This row contains actual acquisition data as obtained from the target
systerm,

Bits 8 and 7 - Data vs. Count Bits for pod 4 (see bits 10 and 9 above)
Bits 6 and 5 - Data vs. Count Bits for pod 3(sec bits 10 and 9 above)

Bits 4 and 3 - Data vs. Count Bits for pod 2(see bits 10 and 9 above)

Bits 2 and 1 - Data vs. Count Bits for pod 1(see bits 10 and 9 above)

information Bytes. In the Transitional timing mode the logic analyzer
performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals, The data is
stored and the value of the last sample is retained.

2. Four more sampies of data are taken. If any of these four samples
differ from the last sampie of the step 1, then these four samples are
stored and the last value is once again retained.

3. Ifall four samples of step 2 are the same as the last sample taken in
siep 1, then no data is stored. Insiead, a counter is incremented. This
process will continue until a2 group of four samples is found which differs
from the retained sample., At this time, the count will be stored in the
memory, the counters reset, the current data stored, and the last sample of
the four once again retained for comparison.

Note

The stored count indicates the number of 40 ns intervals that
have elapsed between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of
data foliowed by four more rows of data, or four rows of data foliowed by
four rows of count. Rows of count will always be followed by four rows of
data except for the last row, which may be either data or count.

System Commands
5-16

www.valuetronics.com



DATA

]
Noie
This process is performed on a pod by pod basis. The individual
status bits will indicate what each pod is doing.

Example: MACHAMACHB Pod3 Pod4 Pod3 Pod2 Podl *
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data
Status  Status Data Count Count Data Data
Status  Stafus Data Count Count Data Data
Status  Status Data Count Count Data Data
Status  Status Data Count Coun{ Data Data
Status  Status Count Data Data Count Data
Status  Status Count Data Data Count Data
Status  Status Count Data Data Count Data
Status  Status Count Data Data Count Data
Status  Status Pata Data Count Data Data
Status  Status Data Data Count Data Data
Status  Status Data Data QCount Data Data
Status  Status Data Data Count Data Data
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data
Status  Status Data Data Data Data Data

* These labels are not part of the data. They only show how the data is
organized.

System Commands
5.17

www.valuetronics.com




DSP

DSP (Display) command

The DSP command writes the specified quoted string to a device
dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP <string>

where;

<string > 1= string of up to 6D alphanumeric characters

Example:  OUTPUT X00(":SYSTEM:DSP 'The message goes here™

System Commands
5-18

www.valuetronics.com



ERRor

ERRor query

The ERRor query returns the oldest error number from the error queue. .
A complete list of error numbers for the HP 1650A/51A is shown in
appendix C. 1f no errors are present in the error quene, a zerois returned.

Query Syntax: :8YSTem:ERRor?

Returned Format:  [:8Y$Tem:ERRar] <error number> < NL>

Example: 10 QUTPUT XXX SYSTEM:ERROR?"
20 ENTER XXX;Error
30 PRINT Error
40 END

System Commands
5.19

www.valuetronics.com



HEADer
o S

HEADer

Command Syntax:
Exarmpie;

Query Commang:
Returned Format:

Example:

command/query

The HEADER command ells the instroment whether or not to output a
header for guery responses. When HEADer is set to ON, query
responses will include the command header,

The HEADer query returns the current state of the HEADer qommanci‘
:SY8Term:HEADer {{ON{1} | {OFF|0}}

OUTPUT X0 SYSTEM:HEADER ON"

:8YSTerm HEADer?

[:3YSTem:HEADer] {110} <NL>

10 DIM Mode$[100]

20 QUTPUT XXX " SYSTEM:HEADER?
30 ENTER XX0(Mode$

40 PRINT Mode$

. B0END

System Commands
5-20

Noie

Headers should be tumed off when returning values to numeric
variables.

www.valuetronics.com




KEY

Command Syntax:

where:

<key_cogde >

Example:

KEY -

command/query

The KEY command allows you to simulate pressing a specified
front-panei key. Key commands may be sent over the bus in any order
that is legal from the front panel. Be sure the instrument is in a destred
setup before executing the KEY command. Key codes range from 0 to 36
with 99 representing no key (returned at power-up). See Table 5-1 for key
codes.

Naote

The external KEY buffer is only two keys deep; therefore,
attempting to send KEY commands too rapidly will cause a KEY
buffer overflow error to be displaved on the HP 16504/514

screen.

The KEY query returns the key code for the last front- panel key pressed
or the last simulated key press over the bus.

:SYSTemiKEY <key_code>

= integer from 0 to 36

CUTPUT XXX SYSTEMIKEY 24”

System Commands
§.21

www.valuetronics.com




KEY

R
Query Syntax:

Returned Format:

:8YSTerm:KEY?

[8YSTem:KEY] <key code> < NL>

Exampie: 10 DIM Key$[100]

20 QUTPLT XXX 8YSTem:KEY?"

30 ENTER XXX KEYS

40 PRINT KEY$

50 END

Table 5-1. Key codes
Key Value HP 1650A/51A Key Value HP 16504/51A
Key Key

0 RUN 19 D
1 STOP 20 E
2 unused 21 F
3 SELECYT 22 unused
4 CHS 23 unused
5 Don’t Care 24 Knob left
6 G 25 Kaob right
7 1 26 L/R Roll
8 2 27 UM Roll
9 3 28 unused
10 4 29 unused
11 5 30 unused
12 6 31 "
13 7 32 Clear Entry
14 8 33 FORMAT
15 9 34 TRACE
16 A 35 DISPLAY
17 B 36 /0
18 C o9 Power Up

System Cominands

5-22

www.valuetronics.com




LER

LER (LCL Event Register) guery

The LER query allows the LCL (local) Event Register to be read. After
the LCL Event Register is read, it is cleared. A one indicates a
remote-to-local transition has taken place. A zero indicates a
remote-to-local transition has not taken place.

Query Syntax: :8YSTem:LER?
Returned Format:  [SYSTem:LER] {0}1} <NL>

Example: 10 DIM Event${100]
20 OUTPUT XXX SYSTem:LER?
30 ENTER X0 Events
40 PRINT Event$
50 END

System Commands
5-23

www.valuetronics.com



LOCKout

[
LOCKout

Cormmand Syntax:
Example:

Query Syntax:
Returned Formal:

Example:

System Commands
5.24

command/query

The LOCKout command locks out or restores front-pane! operation.
When this function is on, all controls (except the power switch) are
entirely locked out.

The LOCKout query returas the current status of the LOCKout
command.

:8YSTern:LOCKout {{ON| 1} |{OFF|0}}
OUTPUT X00%8YSTern: LOCKOUT ON'
:S\i'STem:LOCKout?
[:5YSTern:L.OCKout] {Of 1} <NL>

10 DIM Statis$[100]

20 QUTPUT 200¢":8Y8Term: LOCKOUT?
30 ENTER XXX; Status$

40 PRINT Status$

80 END

www.valuetronics.com



LONGform

Command Syntax:
Example:

Query Syntax:
Returned Format:

Example:

LONGform

command/qguery

The LONGform command sets the longform variable which tells the
instrument how to format query responses. If the LONGform command
is set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the LONGform command is set to
ON, the whole word will be output.

This command has no affect on the input data messages to the instrument.
Headers and arguments may be input in either the longform or shortform
regardiess of how the LONGform command is set.

The query returns the status of the LONGform command.
1SYSTem:LONGtorm {{ON]1}H{OFF|0}} |
CUTPUT X6 8YSTEMLONGFORM ON°

:8YSTem:LONGiorm?

[:8YSTerm:LONGiorm] {110} <NL>

10 DIM Mode$[10C]

20 QUTPUT XXX SYSTEMLONGFORM?"
30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

System Commands
5.25

www.valuetronics.com




MENU

MENU

Command Symtax:

where:

<menu_type >
<mach_num >
]
1
2

Exampie:
Query Syntax:
Returned Format:

Example:

System Commands
£-26

command/query

The MENU command puts 2 menu on the display. The MENU query
returns the current menu selection,

:SYSTern: MENU <menu_type >, <mach_num>

= {SCONfig | FORMat | TRACe | DISPiay}
u={0]112}

t= mixad mode

analyzer 1

analyzer 2

#

OUTPUT XXX "8YSTemn:MENL FORMat, 17

SYSTem:MENU?

[:5YSTerm:MENU] <menu type>, < mach_num >

10 DIM Response$[100]

20 OUTPUT X004 8Y S Term: MENL?"
30 ENTER X)XX:Response$

40 PRINT Response$

50 END

www.valuetronics.com




MESE

Command Syntax:

where:

< enabie mask >

Example:

MESE

command/query

The MESE commands sets the Module Event Status Enable Register bits.
The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding bit in
the MESR, a zero will disable the bit.

The MESE query returns the current setting,

Refer to table 5-2 for information about the Module Event Status Enabie
register bits, bit weights, and what each bit masks for the logic analyzer.

‘MESE <enable_mask >

« = integer trom 0 to 255

CUTPUT XXX "MESE 1

System Commands
5.27

www.valuetronics.com




MESE

Query Syntax:
Returned Format:

Example:

'MESE?

[[MESE]<enable_mask> <NL>»

10 QUTPUT X004 MESE?
20 ENTERXXX; Mes

30 PRINT Mes
40 END

Table 5-2. Module Event Status Enable Register

Module Event Status Enable Register
(A"1" enables the MESR bit)

Bit Weight Enables

7 128 Not used

6 64 Not vsed

5 32 Not used

4 16 Not used

3 g Not used

2 4 Not used

1 2 RNT-Run until satisified

0 1 MC-Measorement complete

System Commands
5-28

www.valuetronics.com



MESR

MESR query

The MESR query returns the contents of the Module Event Status
register.

Note
Reading the register clears the Module Event Status Register.
Table 5-3 shows each bit in Module Event Status Register and their bit
weights for the logic analyzer. When you read the MESR, the value

returned is the total bit weights of all bits that are set at the time the
register is read.

Query Syntax: MESR?
Returned Format:  [MESR]<status> <NL>

where;

< status > n= 010 255

Exarnple: 10 QUTPUT XXX MESR?
20 ENTER XXX Mer
30 PRINT Mer
40 END

System Commands
5-29

www.valuetronics.com



MESR

Ty
Table 5-3. Module Event Status Register
Module Event Status Register
Bit Weight Cendition

7 128 Not used

6 64 Not used

5 32 Not used

4 i6 Not used

3 8 Not used

2 4 Not used

1 2 1 = Raun until satisified

0 = Run until not satisified

0 1 1 = Measurement complete

System Commands
5-30

www.valuetronics.com



PRINt

PRINt command

The PRINt command iniftates a print of the screen or print alf over the
RS§-232C bus. The PRINt parameters SCReen or ALL specify how the
screen data is sent to the controller. PRINt SCReen transfers the data to
the controller in a printer specific graphics format. PRINt ALL transfers
the data in a raster format for the foliowing menus:

State and Timing Format menus
Disc menu

State and Timing Symbol menus
State Listing menu

State Trace

. * & » &

Command Syntax: :SYSTem:PRINt {SCReen|ALL}

Exampie: CuTPUT XXX:":SYSYEM:PRENT SCREEN"

System Commands
§.31

www.valuetronics.com



RMODe

EBEMODe ' ‘ command/query

The RMODe command is a run control command that specifies the run
mode for logic analyzer. 1t is at the same level in the command tree as
§YSTem; therefore, it is not preceded by :SYSTem.

The query returns the current setting.

Note
After specifying the run mode, use the STARt command to start

the acquisition.
Command Syntax:  :RMODe {SINGle | REPstifive}
Example:  QUTPUT X0¢RMODE SINGLE"
Guery Syntax:  :RMODe?
Returned Format:  [:RMQODe] {SINGle |REPetitive} < NL>

Exampie: 10 DiM Mode$[100}
20 QUTPUT X004 RMODE?"
30 ENTER XX Mode$
40 PRINT Mode$
50 END

System Commands
5.32

www.valuetronics.com




SETup

Command syntax:
Exampie:

- Query Syntax:
Returned Format:

Definition of Block
Data

where:

< length >

SETup

command/query

The SETup command allows you to send and receive instrument
configuration data o and from a controller in block form. The SETup
command configures the logic analyzer as defined by the block data sent
by the controller.

The SETup query returns a block of data that contains the current
configuration to the controller,

:SYStern:SETup <block data in # format >
QUTPUT XXX "SETup", < biock data in # format >
:SYStem: SETup?

[:8YStem; 8ETup] < block data in # format > <NL>

Block data in the # format is made up of a block length specifier and a
variable number of sections,

< block length specifier > < saction 1> <section n >

The block length specifier 1s defined as follows:

#8<length >
s |5 the total length of ali the sections in byte format (must be represented with 8

digits}

System Commands
5.33

www.valuetronics.com




SETup

For example, if the total length of the bilock (all sections) is 2720 bytes, the
block iength specifier would be "#800002720" since that length is
representad with 8 digits.

Sections consist of a section header followed by the section data as follows:

< section header > < section data >

where:

<section header> ;1= 10 byles for the section name
1 byte reserved {aiways 0}
1 byte for the module D code (31 for the logic analyzer)
4 bytes for the length of the section data in bytes

The section data format varies for each section and may be of any length.

Note

The total length of a section is 16 (for the section header) plus
the length of the section data. Thus, when calculating the length
of a block of configuration data, care should be taken not fo
forget (o add the length of the section headers.

Example: 10 DIM Block$[32000] ! allocate enough memory for block data
20 DIM Specifier$[2]
30 INTEGER Blockiength
40 QUTPUT X00C" SYSTEMMEAD OFF"
50 QUTPUT XOOLSYSTEMISETUP?! | send setup query
80 ENTER XXX UISING "#,2A"; Specifiers !read in #8
70 ENTER XXX USING “#,8D" Blocklength | read in block iength
80 Image_spec$ = "#,"&VALS (Blockiength) & A"
80 ENTER XXX UBING Image_spec$;Block$ !read in data
100 ENTER XO0( USING"#,8" Terminator  {enter <NL>
110 END

System Commands
5.34

www.valuetronics.com




STARt

STARt command

The STARt command is a run control command that starts the logic
analyzer running in the specified run mode (see RMODe). The STAR
command is on the same level in the command tree as SYSTem;
theregfore, it is not preceded by :SYSTem.

Note

The STARt command is an Overlapped Command. An
Overlapped Command is a command that allows execution of
subsequent commands while the device operations initiated by
the Overlapped Command are still in progress.

Command Syntax: STAR

Example:  OQUTPUT XXX;"START"

System Commands
5.38

www.valuetronics.com



STOP

STOP command

The STOP command is a run control command that stops the logic
analyzer. The STOP command is on the same level in the command tree
as SYSTem; therefore, it is not preceded by :SYSTem.

Note

The STOP command is an Overlapped Command. An
Overlapped Command is a command that allows execution of
subsequent commands while the device operations initiated by
the Overlapped Command are still in progress.

Command Syntax: 8TOP

Example:  OUTPUT XX¥-8TOP"

System Commands
5-36

www.valuetronics.com



MMEMory Subsystem 6

Introduction MMEMory subéystem commands provide access {0 the disc drive, The
MMEMory Subsystem commands are:

AUToload
CATalog
COPY
DOWNIload
INITialize
LOAD
PACK
PURGe
REName
STORe
UPLoad

* @& & & & & & 5 2 & »

Note

If you are not going to store information to the configuration
disc, orif the disc you are using contains information you need,
it Is advisable 1o write protect your disc. This will protect the
contents of the disc from accidental damage due to incorrect
commuands, etc.

MMEMory Subsystem
' 61

www.valuetronics.com



T e

T
e ————— I y y
LoIMMEMO L——pnoo-‘w--« AiTolood --—--i spc:cei E = OFF 16 i s
e .
H
[ .
\-s-v. outafile
T
e AUTe io6d?
—m=] CATolog? : .
[
—G—’CDOWN\ocd\w—b-g spoce E—-v{ name r-—>®~>§ description 1—-—»‘%
type { block.dota e
[t INITiGiize o
7T -l
o=, LOA_[_)J ‘ # SnOCe H name F—~>
- : [ CONF 1 g
%@—-.\IASSembier\r—*-{ space %—--b—g ;awname,-—p-@—p
T -
e
space !—-bﬁi f1GMme } an
- Y | i
STORe ] > Spoce t—b-i name ——.
Sl CONF i g (__mm...J
|
e i
WUM space —md nome |
\ J L sm \ | 01650502
P/O Figure 6-1. MMEMory Subsystem Commands Syntax Diagram
MMEMory Subsystem
6-2

www.valuetronics.com



auto_file = siring of up to 10 alphanumeric characters representing a valid file name.
name = gstring of up to 10 alphanumeric characters representing a valid file name.
description = string of up to 32 alphanumeric characters.

type = inieger, refer to table 6-1.

-block_data = data in IEEE 4882 # format,

ta_name = strinig of up to 10 alphanumeric characters representing a valid file name.
new_name = siring of up to 10 aiphanumeric characters representing a valid file name.

Note

Refer to "Disc Operations” in Chapter 3 of the HP 16504716514
Logic Analyzers Reference manual for a description of a valid
file name.

PiO Figure 6-1. MMEMory Subsystem Commands Synfax Diagram

MMEMory Subsystem
6-3

www.valuetronics.com




AUToload
[

AUToload

Command Syntax:

where:

=< autn file >

Exampies:

Query Command:
Returned Format:

Example:

MMEMory Subsystem
6-4

command/query

The AUToload command controls the autoload feature which designates
& configuration fiie 1o be loaded automatically the next time the
instrument is turned on. The OFF parameter (or O} disables the autoload
feature. When a string parameter is specified it represents the desired

autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returas a string parameter that

specifies the current autoload file.

‘MMEMory:AllTotoad {{OFF|0} | <auto_file>}

e string of up te 10 aiphanumetic characters

QUTPUT XX MMEMORY:AUTOLOAD OFF"
OUTPUT XXX MMEMORY: AUTOLOAD "FILET™
QUTPUT X" MMEMORY: AUTOLOAD "FILEZ2™

‘MMEMory: AlToload?
[:MMEMory:AUToload] {0] <aute_file>}<NL>

10 DiM Aute_status$[100]

20 QUTPUT XXM MMEMORY: AUTOLOAD?
30 ENTER X0CAute_status$

40 PRINT Auto_status$

S0 END

www.valuetronics.com




CATalog

Query Syntax:
Returned Format:

where:

< block data >
< block_data>

Exampis;

CATalog

query

The CATalog query returns the directory of the disc in block data format.
The directory consists of a 51 character string for each file on the disc.
Each file entry is formatted as follows:

“NNNNNNNNNN T CDOOODDDDODDEDDDONDDLDDLLLLDDLID

where N is the filename, T is the file type (a number), and D is the file
description.

MMEMory:CATalog?

[:MMEMory:CATalog] <block_size >,. < biock data >

i

<filename> <file type > «<file description> ...
#8nnnnnann (NN = # of bytes)

¥

10 DIM File$[51]

20 DM Specifier$[2]

30 QUTPUT X0 SYSTEMHEAD OFF

45 QUTPUT X0 MMEMORY:CATALOG?" Isend catalog query

50 ENTER XX USING "#,28% Specifier$ lread in #8

60 ENTER XXX USING “#.8D" Length tread in length .
70 FOR =1 TO Length STEP 51 iread and print each file in the directory
80  ENTER XX USING "# B1A"File$

90 PRINT Fite$

100 NEXT |

110 ENTER XXX USING "A";Specifier$ lread in final line teed

120 END

MMEMory Subsystem
6-5

www.valuetronics.com




COPY

COoPY command

The COPY command copies the contents of a file to a new file. The two
<name > parameters are the filenames. The first parameter specifies the
source file. The second specifies the destination file. An error is
generated if the source file doesn’t exist, if the destination file already
exists, or any other disc error is detected,

Command Symax: :MMEMory:COPY <name >, <name >

where:

<name> 1= string of up to 10 alphanumeric characters representing a valid file name

Examples:  To copy the contents of "FILE1" to "FILE2™

OUTPUT XX “MMEMORY:COPY "FILE1' FILE2"

MMEMeory Subsystem
6-6

www.valuetronics.com



DOWNIload

Command Syntax:

where:

< name>
< deseription >

<type>
<block_data>

DOWNIload

command

The DOWNIload command downloads a file to the disc. The <pame >
parameter specifies the filename, the < description > parameter specifies
the file description, and the <block_data> contains the contents of the
file 1o be downloaded.

Table 6-1 lists the file types for the <type> parameter.

"MMEMory:DOWNIcad < name >, <descrigtion >, <type >, <biock_data >

1= string of up to 10 aiphanumeric characters representing a valid file narme
= string of up to 32 aiphanurneric characters

v = integer (see Table 6-1)

= coments of file in block data format

Example:  QUTPUT XUGMMEMORY:DOWNLOAD "SETUP_VFILE CREATED FROM SETUP
QUERY' 16127, #800000643..."
Table 6-1. File Types
File . File Type
HP 1650/1 SYSTEM -16383
1650/1 CONFIG -16096
AUTOLOAD TYPE -15615
INVERSE ASSEMBLER -15614
TEXTTYPE -1561¢
MMEMory Subsystem

67

www.valuetronics.com




INITialize
L

INITialize command

The INITialize command formats the disc.

Command Syntax: MMEMory:INITialize

Example:
OUTPUT X000 MMEMORY INITIALIZE"
Note
Once executed, the initialize command formats the specified
disc, permanently erasing all existing information from the disc.
After thai, there is no way to retrieve the original information,
MMEMory Subsystem

6-8

www.valuetronics.com



LOAD

Command Syntax:

where;

<fame >

Exampies:

LOAD

[:CONFig] command

The LOAD command loads a file from the disc info the analyzer. The
[:CONfig] specifier is optional and has no effect on the command, The
< mname > parameter specifies the filename that will be loaded into the
logic analyzer.

Note

Any previous setups and data in the instrument are replaced by
the conients of the configuration file.

MMEMory:LOAD{:CONfig] <name>

= string of up to 10 alphanumeric characters representing & valid file name

OUTPUT XXX, " MMEMORY:LOAD:CONFIG 'FiLE__™
OUTPUT XXX MMEMORY:LOAD 'FILE__ ™
QUTPUT X00¢ " MMEM:LOAD:CONFIG 'FILE_A™

MMEMory Subsystem
6-9

www.valuetronics.com



LOAD

LOAD :IASSembier command

This variation of the LOAD command allows inverse assembier files to be
loaded into analyzer 1 or analyzer 2 of the HP 1650A/51A. The
<1A_name > parameter specifies the inverse assembler filename. The
parameter after the <IA_name > parameter specifies into which
machine the inverse assembler is loaded.

Note

Inverse assembler files should only be loaded into the state
analyzer. If an inverse assembler file is loaded into the timing
anafyzer no error will be penerated: however, it will not be
accessible.

Command Syntax: :MMEMory:LOADIASSembiler <1A_name >,{1]2}

where:

<lA name>= 1= sting of up to 1D alphanumeric characters representing a valid file name

Examples:  OUTPUT XX MMEMORY:LOADIASSEMBLER 'I88020 1P, 1
DUTPUT XXX :MMEM.LOAL:IASS "68020_iF'1"

MMEMory Sobsystemn
6-10

www.valuetronics.com



PACK

PACK | command

The PACK command packs the files on a disc in the dise drive.

Command Syntax: MMEMory:PACK

S Example:  CUTPUT XXX MMEMORY: PACK

MMEMory Subsystem
6-11

www.valuetronics.com



PURGe

PURGe command

The PURGe command deletes a file from the disc. The < name >
parameter specifies the filename to be deleted.

Command Syntax: :MMEMory:PURGe <name>

................................ Where:

<name> U= string of up to 10 alphanumeric characters representing & valid fle name
Examples: OUTPUT X00" MMEMORY: PURGE "FILET™

Note

Once execuled, the purge cornmand permanently erases all the
existing information from the specified file. After that, there is no
way to retrieve the original information.

MMEMery Subsystem
6-12

www.valuetronics.com



REName

Command Syntax:

where;

<name >
<new_name >

Exampies:

REName

command

The REName command renames a file on the disc. The < name >
parameter specifies the filename to be changed and the <new_name >
parameter specifies the new filename,

Note

You cannot rename a file to an already existing filename.

MMEMory;REName <narne >, <new_name >

siring of up 10 10 alphanumeric characters representing a valiid file name
string of up to 10 aiphanumeric characters representing a valid file name

OUTPUT XXX MMEMORY:RENAME 'OLDFILE ' NEWFILE™

MMEMory Subsystem
6-13

www.valuetronics.com




STORe

STORe

................ Command Syntax:

where:

< N&ME >
< description >

Example:

MMEMory Subsystem
6-14

[:CONFig] command

The STORe command stores a configuration onto a disc. The [:CONFig]
specifier is optional and has no effect on the command. ‘The < name >
parameter specifies the file to be stored to the disc. The < description >
parameter specifies the file description.

‘MMEMory: STORe [:CONfigl <name =, < description >

e string of up to 10 alphanumeric characters representing a valid file name
D= ogtring of up to 32 alphanumeric characters

QUTPUT X000 MMEMISTORE 'DEFAULTS’,'DEFALULT SETURS"™

www.valuetronics.com




UPLoad

Query Syntax;

where:

<name>

Returned Format:

Example:

UPLoad

query

The UPLoad guery uploads a file. The <name > parameter specifies the
file to be uploaded from the disc. The contents of the file are sent out of
the instrument in block data form.

MMEMory:UPLoad? <name >

= string of up to 10 alphanumeric characters representing a valid file name

f:MMEMory:UPLoad] <block_data > <NL >

10 DIM Block$[32000] !sllocate enocugh memory for biock data

20 DIM Specifiers[2}

30 QUTPUT XX SYSTEM HEAD OFF

40 QUTPUT XXX ":MMEMORY:UPLOAD? "FILE1™ isend upload query
50 ENTER XXX USING "#,2A% Specifier$ lread in #8

60 ENTER XXX USING "#,8D"Length ead in block length

70 ENTER XXX USING K Biock$ lread in file

80 END

MMEMory Subsystem
615

www.valuetronics.com




MACHine Subsystem 4

introduction The MACHine Subsystem contains the commands available for the
State/Timing Configuration menu. These commmands are:

ARM

ASSign

AUToscale (Timing Analyzer only)
NAME

TYPE

ey -
Y
TMACH I ne }-~-~w--d1 MM spoce H arm.source |-——-———-—~'~

*® & & & &

| |
e
T P -
(T e )
JASSan [ spoce pod_iist
( l ]
e ASSIGN? -

pamd AlfTOsCOl e
b
g NAME ‘ spoce }-’-: rnc:ch‘tms,,,‘nt:(rm-:5

e NAME? .
T pr——— T
e, TYEE : spoce i OFF } a

HES0/EX02

FPIO Figure 7-1. Machine Subsystem Syntax Diagram

MACHipe Subsystem
7-1

www.valuetronics.com




arm_source = {RUN | MACHine {I|2}}

pod_list = {NONE | <pod num>|, .., <pod_num=>]}
pod_num = {I|2]|3]4]5}

machine_name = string of up to 10 alphanumeric characiers

P/O Figure 7-1. Machine Subsystem Syntax Diagram

MACHine Subsystem
7-2

www.valuetronics.com



MACHine

O
MACHine

Command Syniax:

where:

<N>

selector

The MACHine <N > selector specifies which of the two analyzers
(machines) available in the HP i650A/51A the commands or queries
foliowing will refer to. Since the MACHine <N > command is a root
level command, it will normally appear as the first element of a compound
header.

MACHIne <N >

»= machine 1or 2

Example:  OQUTPUT XXX “MACHine 1:NAMe 'DRAMTEST™

MACHine Subsystem
7-3

www.valuetronics.com



ARM

ARM

Command Syntax:

where:

< arm_source >
Example:

Query Syntax:
Heturned Format:-

Example:

MACHine Sebsystem
74

command/query

The ARM command specifies the arming source of the specified analyzer
{machine}.

The ARM query returns the source that the corrent analyzer (machine)
will be armed by.

‘MACHIne {112}:ARM < arm_source >

n= {RUN|MACHIne{1]2} |BNC}

DUTPUT 2084 MACHIne 1 ARM MACHIne2"
MACHIne {1)2}:ARM?

IMACHIne {1]2}:ARM] <arm_source > <NL>

10 DiM String$ [100]

20 DUTPUT XXX; “MACHINE T ARM?"
30 ENTER XXX, String$

40 PRINT String$

50 END

www.valuetronics.com



ASSign

Command Syntax:

wherg;

<pod_list >
< pod# >

Example:
Query Syntax:
Returned Format:

Example:

ASSign

command/query

The ASSign command assigns pods te a particular analyzer (machine).
The ASSign query returns which pods are assigned to the current analyzer
(machine),

‘MACHIne {1]{2}:AS8ign <pod_fist>

e INONE| <pod# >, <pod # >, .., <pod #>]}
ww {112]31415)

OUTPUT XXX MACHIne 1:ASSign 5, 2, 1"
:MACHIne {1 |2}:ASSign?
MACHINE {1|2}:A88ign] <pod_lst> <NL>

10 DIM String$ [100]
20 DUTPUT X000 MACHINE 1:ASSIGN?*
30 ENTER XO0( String$

40 PRINT String$

50 END

MACHinre Subsystem
7-5

www.valuetronics.com




AUToscale
[
AlUToscale command

The AUToscale command causes the current analyzer (machine) to
autoscale if the current machine is a timing analyzer. ¥ the current
machine is not a timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands allow
execution of subsequent commands while the logic analyzer operations e :
initiated by the Overlapped Command are still in progress. Command
overlapping can be avoided by using the *OPC and *WAI commands in
conjunction with AUToscale (refer to Chapter 4).

Note

When the AUToscale command is issued, existing timing
analyzer configurations are erased and the other analyzer is
turmed off.

Command Syntax: :MACHine {1|2}:AUToscale

Example:  OUTPUT XXX MACH:ne 1:AUTossale"

MACHine Subsystem
7-6

www.valuetronics.com



NAME

Command Syntax:

where:

<machine_narme >

Exampie;

Query Syntax:
Returned Format:

Example:

NAME

command/query

The NAME command allows you to assign a name of up to 10 characters
to a particular analyzer (machine) for easier identification. The NAME
query returns the current analyzer name as an ASCH string.

IMACHIne {1]2HNAME < machine_name >

= string of up to 10 alphanumeric characters
QUTPUT XX0G"MACHIne 1:NAME "'DRAMTEST™
MACHIne {1]2}:NAME?

[MACHIne {1]2}:NAME] <machine name> <NL>

10 DIM String$ [100]

20 QUTPUT X004 MACHINE 1:NAME?"
30 ENTER XXX String$

40 PRINT String$

50 END

MACHine Subsystem
' 77

www.valuetronics.com



TYPE

TYPE

Command Syntax:

whare:

<analyzer type >

Example:
Query Syntax:
Returned Format:

Example:

MACHine Subsystem
7-8

command/query

The TYPE command specifies what type a specified analyzer (machine)
will be. The analyzer types are state or timing. The TYPE command also
allows you to turn off a particular machine.

Note

Only one of the two analyzers can be specified as a timing
analyzer af one time.

The TYPE query returns the current analyzer type for the specified
analyzer.

:MACHine {1]2}:TYPE < analyzer type >

i= {OFF|STATe | TiMing}

QUTPUT XXX MACHIne 1: TYPE STATE"
MACHIne {112):TYPE?

[:MACHIne {112}:TYPE] <analyzer type > < NL>

10 DM String$ [100]

20 DUTPUT X3XC"MACHINE 1 TYRE?"
30 ENTER X00(: Siring$

40 PRINT String$

50 END

www.valuetronics.com



DLISt Subsystem 8

introduction The DLISt {dual list) Subsystem contains the commands in the dual state
listing menu. These commands are:

¢« COLumn
LINE

. H
—~( N
;Di..ESt\'r"h ) —wel OO0 ummn ‘_.,..J space |——->! col.num m lobei_nome }—\

()

(—u(; bose ! s mach_hum r

et COLumn? ) —i space 5—-: coihum : o

—ﬁﬁ)—h soace }——b-i Vine_numomid_oscreen s

o TR

e 01850505
col_num = integer from 1to 8
label_name = « string of up to 6 alphanumeric characters
base = {BINary| HEXacecimal | OCTal | DECimal | ASCii}SYMBol}
mach_num = {J|2}
line_num_mid_screen = a real number from - 511to -+ 511
Figure 8-1. DLISt Subsystem Syntax Diagram
DLISt Subsystem

g-1

www.valuetronics.com



DLISt

DLISt selector

The DLIST selector (dual list) is used as part of a compound header to
access those settings normally found ir the Dual State Listing menu, The
dual list displays data when two state analyzers are run simuitaneously.

Command Syntax: DLISt

Example:  OUTPUT X04DLISTILINE 0,1

DLISt Subsystem
8§-2

www.valuetronics.com



COLumn

Command Syntax:

where:

<col_num >
<label_name >
<base>
<mach_num>

Example:

COLumn

command/query

The COLumn command allows you to configure the stale analyzer list
display by assigning a labe! name and base to one of eight vertical columns
in the menu. The machine number parameter is required since the same
label name can occur in both state machines at once. A column number
of 1 refers to the left most column. When a label is assigned to a column it
replaces the original label in that column, The label originally in the
specified column 1s placed n the column the specified label is moved from.

When the label name is "TAGS," the TAGS coluran is assumed and the
next parameter must specify RELative or ABSolute. The machine
number should be 1.

The COLumn query returns the column number, label name, and base for
the specified column.

:DUBLCOLumn < col_num >, <label_name>, <base >, <mach_num>

integer from {1 - 8}

2 string of up to § alphanumeric characters

1w {BlINary | MEXadecimal | OCTal | DECimal | ASCii | SYMBol}
w= {12}

]

H

OUTPUT X200 DLISt:COLumn 4,'DATA' HEXadecimal, 1°

DLISt Subsystem
8-3

www.valuetronics.com



COLumn

L
Query Syntax: :DLIStCOLumn? <col_num >

Returned Format:  {:DLIStCOLUMN] < coi_num >, <label_name >, <base >, <mach_num> <NL>

Example: 10 DIM Ci$[100]
20 QUTPUT 00" DLISECOLumn? 4
30 ENTER X018
40 PRINT Cig
................... 50 END

DLISt Subsystem
8-4

www.valuetronics.com




LINE

Command Syntax:

where:

<fine_num_mid_screen >
' <mach_num>

Example:
Query Syntax;
Returned Format:

Exampie:

LINE

command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state line number relative (o the
trigger that the specified analyzer will highlight at center screen.,

The T.INE query returns the line number for the state currently in the box
at center screen and the machine number to which it belongs.

:DLISELINE <line_num_mid_screen >, <mach_num >

a real number from -511 10 +511

{112}

¥

OUTPUT X0 DLISELINE 511,1"

:DLISLLINE?

[DUISLUINE]} <line_num_mid_screen>, <mach_num > <NL>

10 DIM Ln${100]

20 OUTPUT X004 DLISHLINE?
30 ENTER XXX:LA$

40 PRINT Ln$

50 END

DLISt Subsystem
8-5

www.valuetronics.com




WLISt Subsystem 9

introduction Two commands in the WLISt Subsystem control the X and O marker
placement on the waveforms portion of the Timing/State mixed mode
display. These commands are XTIMe and OTIMe. The XSTate and
OSTate queries return what states the X and O markers are on. Since the
markers can only be placed on the timing waveforms, the queries return
what state (state acquisition memory location) the marked pattern is
stored in.

Note

In order te have mixed mode, one machine must be a timing
analyzer, the other machine must be a state anaiyzer with time
tagging on (use MACHine <N>:STRace:TAG TIME).

I/",\A
{ P

—_— Y
{ :WLIS‘:)—‘W@-\-—W‘ -

e XSTale” -

R

el 07 IMe }spcce Htime-vclue E

fgp ™,
el 0T IMe?

e L

f )
] XTIMe/—H spoce «—>| time_volue ‘{ -
L ;

e AT T2 7 o
\"""'_"-_""/ 16510785202

Time_value = real number

Figure 9-1. WLISt Subsystem Syntax Diagram

WLISt Subsystem
91

www.valuetronics.com



WLISt

WLISt selector

The WLISt (Waveforms/listing) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu,
Since the WLISt command is a root level command, it will always appear
as the first element of a compound header.

Noie

The WLISt Subsystem is only available when one state analyzer-
{with time tagging on) and one iming analyzer are specified.

Command Syntax: wLISt

Example:  OUTPUT XXX:"WLISt:XTIMe 40.0E-6"

WLISt Subsystem
9.2

www.valuetronics.com



QOSTate

Query Syntax:
— Returned Format: -

where:

<state_nurm>

Example:

OSTate

query

The OSTate queryreturns the state where the O Marker is positioned. If
data is not valid, the guery returns 32757,

WLISEOSTate?

['WLIS::O8Tate] <state_num> <NL>

o= integer

1G DIM S0${100}

20 QUTPUT 200 WLIST:OSTATE?
30 ENTER XXX:50%

40 PRINT So%

50 END

WLISt Subsystem
9.3

www.valuetronics.com



XSTate

XSTate

Query Syntax:
Example:
Returned Format:

where:

<state_num >

Exampie:

WLISt Subsystem
9.4

guery

The XSTate query returns the state where the X Marker is positioned. If
data is not vahd, the guery returns 32767.

WLISHXSTate?
OUTPUT XXX WLISUXSTATE?

[:WLISt:XSTate] <state_num > <NL >

t= fnteger

10 DIM Sx$1100]

20 CUTPUT X000 WLIST:XSTATE?"
30 ENTER X0 Sx$

40 PRINT Sx$

50 END

www.valuetronics.com



OTIiMe

Command Syntax:

where:

<time_value >

Example:
Query Syntax:
Returned Format:

Example:

OTIMe

command/query

The OTIMe command positions the O Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
no action.

The OTIMe query returns the O Marker position in time. If data is not
valid, the guery returns 9.9E37.

WLIStCTIMe <time_value>

o real number

CUTPUT X00{"WLISt: OTIME 40.0E-6"
WUSEOTIMe?
[IWLISt:OTIMe] <time_value > <NL>

10 DIM To$[100}

20 QUTRUT 300" WLIST:OTIME?*
30 ENTER XXX:To$

40 PRINT To$

50 END

WLISt Subsystem
8.5

www.valuetronics.com



XTIMe

XTiMe

Command Syntax:

where:

< time_vaiue >

Example:
QGuery Syntax:
Returned Format:

Example:

WLISt Subsystem
9.6

command/query

The XTIMe command positions the X Marker on the timing waveforms in
the mixed mode display. If the data is not valid, the command performs
Do action.

The XTIMe query returns the X Marker position in time. If data is not
valid, the guery returns 9.9E37,

WLISEXTIMe <time_vatue >

= real number

DUTPUT 00 WLISEXTIMe 40.0E-6"
WLISEXT IMe?
[WLISEXTIMe] <time value > <NL>

10 DIM Tx$1100]

20 QUTPUT X004 “WLIST:XTIME?
30 ENTER X000 Tx$

40 PRINT Tx$

50 END

www.valuetronics.com



SFORmat Subsystem 10

Introduction The SFORmat Subsystem contains the commands available for the State
Format Menu iz the HP 1650A/51A logic analyzer. These commands are:
T « CLOCk
¢ CPERiod
« LABel
s MASTer
« REMove
¢ SLAVe
¢ THReshold
i
{ aFoRmat »——wi)——-—— CLOCK <N = space - — NORMo | } y -
|
l‘—"-\ DEMultiplex —
S —

bl CLOCRCNST ) e

—! CPE?iodD—ﬁ space

LT o
I GT

— CPERiad?

d H - H
e LAS@H space H nome ’-—H/:m\r——‘ poicrity ;—-ﬂ‘ ) )——bJ gssignment l—-—»

»-«;.-Aaw“ [ m‘
L €!? jmel space e nome |

f | "
--—/MASTeD—H space l—b-l clock_id W !

FP/O Figure 5-1. SFORmat Subsystem Syniax Diagram

SFORmat Subsystem
16-1

www.valuetronics.com



t—»@ASTerf’)—{ space H clock, id I - :
1

4\-'-‘1 nome

-b(SLAVe }l-« space 3;-—-1 clopock_id W -

|l SLAVe"f}—i space §—>{ clock.ig ! o

—JTHResholch::)—b-l spoce F—y——@ 1

§

G
Lﬁ" volue ]—-'
I ™
Seme THResholdah>? -
16510/5X04

<N> = {1]2{3]4]5}

GT = Greater Than 60 ns

LT = Less Than 60 ns

name = siring of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}

assignment = {pod <MS$> _spec/,pod<MS-1>_spec,..,pod <LS _spec>]}
pod <MS|LS> = pod number, MS being the highest pod number assigned and LS is the lowest pad
number assigned

5pec = number equal to or greater than § (zere) but less or equal to 65535
clock_id = {J | K |L | M| N}

clock_spec = {OFF | RISing | FALLing | BOTH | LOW | HIGH}

value = voltage (real number) -9.9 0 + 9.9

PIO Figure 5-1. SFORmuat Subsystern Syntax Diagram

SFORmat Subsystem
10-2

www.valuetronics.com



SFORmat

Command Syntax:

Example:

SFORmat

selector

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format Menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

:MACHIne{1|2}:SFORmat

OUTPUT XX MACHIne 2: SFORmat: MASTer J, RISing"

SFORmat Subsystem
10-3

www.valuetronics.com



CLOCk

CLOCK

Command Syntax:

where;

< N>
< clock_mode >

Example:
Query Syntax:

Returned Format:

Exarmple:

SFORmat Subsystem
10-4

command/query

The clock command selects the clocking mode for a given pod when the
pod 1s assigned to the state analyzer. When the NORMal option is
specified, the pod will sample all 16 channels on the master clock. When
the MIXed option is specified, the upper 8 bits will be sampled by the
master clock and the lower 8 bits will be sampled by the slave clock.
When the DEMultiplex option is specified, the lower 8 bits will be
sampled on the slave clock and then sampled again on the master clock.
The master clock always follows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

‘MACHIne {1]2}:5FORmat:CLOCKk < N> <clock_mode >

nw {112|314]5)
= {NORMat | MiXed | DEMuitiplex}

CUTPUT XXX MACHne 1:SFORmMat:CLOCK2 NORMal”
MACHIne{1|2}:8FORmat:CLOCk < N> 7

[MACHIne{1]2}:5FORMat:CLOCK < N>] <clock_mode> <NL>

10 DiM String$ [100]

20 QUTPLIT X00¢ “MACHINE1:SFORMAT: CLOCK2?"
30 ENTER XXX; String$

40 PRINT String$

50 END

www.valuetronics.com



CPERiod

Command Syntax:

where:

GT
LT

Example:
Query Syntax:

Returned Format:

Example:

CPERiod

command/query

The CPERiod (clock period) command allows you to set the state
anatyzer for input clock period of greater than or less than 60 ns. If the
state input clock period is less than 60 ns, this setting should be set to Less
Than (60 ns). If the state mput clock period is greater than 60 ns, this
setting should be Greater Than (60 ns). If CPERiod is set to Less Than

60 ns, tagging will be set to OFF in the STRace Subsystem. If the count is
set to time or states using the TAG command, this setting will
automatically be set to Greater Than because the minimum clock period
when counting is 60 ns.

The CPERiod returns the current setting of clock period.

‘MACHIne{1|2}:8FORmat:CPERiod {LT|GT}

fl

greater than 60 ns
less than 80 ng

CUTPUT X0 MACHIne 2: SFORmat: CPERiod GT"
MACHIne {1]2}:5FORmat:CPERiod?

1:MAGHine{ 1 12}:SFORmat:CPERiod] {GT|LT}

10 DiM String$[100)

20 QUTPUT 300 MACHINES: SFORMAT: CRPERIOD?
30 ENTER XXX 8tring$

40 PRINT String$

50 END

SFORmat Subsystem
10-5

www.valuetronics.com




LABel

LABel

Command Syniax:

where:

< fiame >

< polarity >
< assignmeni >
pod <MSiLS>

_spet

Exampie:

SFORmat Subsysiem
10-6

command/query

The LABel command allows you to specify polarity and assign channels to
new or existing labels, If the specified iabel name does not match an
existing label name, a new label will be created.

The order of the < assignment > parameters (from left to right as seen on
screen) is assumed to be the highest pod number first {left-most) followed
by any other assigned pods in decreasing poed number order. When
viewing the assignment value in binary (base 2), the binary valoe
represents the bit values in the label. A "1"in a bit position means the
associated channel in that pod is assigned to that pod and bit. A*0"in a

. bit position means the assoctated channel in that pod is exciuded from the

label. Since pods contain 16 channels (2*6-1) 65535 decimal is the
maximum value for the pod specification and 0 is the minimum value.

The 1.ABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned.

:MACHIne{1]2}.SFORmat:LABe! < name>, <polarity >, <assignment >

= string of up to § aiphanumeric characters

= {POSitive |NEGative}

= {pod <MS>_spec|pod <MS-1>_spsc..pod<lS spec>1}

= pod number, MS béing the highest pod number assigned and LS is the lowest
pod number assigned

= pnumber equal 1o or greater than { {zero) but less than or equal to 85535

CUTPUT )00 MACHIne2: SFORmat: LABel 'A", POSitive, 85538,127,0"

www.valuetronics.com




LABel -

A
Query Syntax:  :MACHine{1i2}:5FORmat:LABel? <name >

Returned Format:  MACHIne{1}2}:3FORmat;LABel] < name >, < polarity >, < assignment > <NL>

Example: 10 DIM String${100]
20 QUTPUT XXX MACHINEZ: SFORMAT.LABEL? "DATA™
30 ENTER XXX String$
40 PRINT String$
50 END

SFORmat Subsystem
10-7

www.valuetronics.com



MASTer

MASTer

Command Syntax:

wherea:

< clock_id >
< CiOCK_Spec

Example:

{Query Syntax:

Returned Format:

Example:

SFORmat Subsystem
10-8

command/query

The MASTer clock command allows you to specify a master clock for a
given machine. The master clock is used in all clocking modes (Normal,
Mixed, and Demultiplexed). Each command deals with only one clock
(3K L.M,N); therefore, a complete clock specification requires five
commands, one for each clock. Edges are ORed with edges, levels are
ORed with levels. ORed edges are ANDed with ORed levels. Levels
specified with MASTer will be the same for SL.AVe,

The MASTer query returns the clock specification for the specified clock.

Note

Al least one clock edge must be specified.

‘MACHIne {1]2}:SFORmai:MASTer <clock_id >, < clock_spec:>

t= {JIKILIMING
1= {OFF|RiSing fFALLIng | BOTHLOW | HIGH}

CUTPUT XX MACHIne2: SFORmat: MASTer J, RISing"
‘MACHine{1{2}:5FORmat:MASTer? <clock_id>
EMACHIne {1]2}:5FORmat:MASTer] <clock_id >, <clock_spec> <NL>

10 DIM String$[100]

20 OUTPUT XO0G MACHINEZ: SFORMAT:MASTER? < clock_id > *
30 ENTER XXX String$

40 PRINT Srring$

50 END

www.valuetronics.com




REMove

[
REMove command

The REMove command aliows you to delete all labels or any one label for
a given machine.

Command Syntax; :MACHine!{|2}:SFORmat:REMove { <name > [ALL}
where:

<name> = siring of up to & alphanumeric characters

Examples:  OUTPUT X046 MACHINE2: SFORMAT:REMOVE 'A™
OUTPUT X0 MACHINE2: SFORMAT: REMOVE ALL"

SFORmat Subsystem
10-%

www.valuetronics.com




SLAVe

SLAVe

Command Syntax:

where:

<eolock_id >
<olock_spec>

Exampie:
Query Syntax:
HReturned Format:

Exampie:

SFORmat Subsystem
10-19

command/query

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Mixed and Demultiplexed
clocking modes. Each command deals with only one clock (J, KL M, N);
therefore, a complete clock specification requires five commands, one for
each clock. Edges are ORed with edges. Levels are ORed with levels.
ORed edges are ANDed with ORed levels. Levels specified with SLAVe
will be the same 1n MASTer.

The SLAVe query returns the clock specification for the specified clock.

Note

When slave clock is being used at least one edge must be
specified.

‘MACHIne{1}2}:SFORmat:SLAVe <clock_id >, < clock_spec>

e [JIKILIMIN}
o w {OFFIRISing |FALLing 1 BOTH {LOW|HIGH)

QUTPUT XX MACHIne 2:8FORmat: SLAVe J, RiSing”
:MACHiIne {112}:SFORmat: SLAVe? < ¢lock _id >
[MACHIne{1]2}:8FORmat: 8l.AVe} < clock_id > , < clock_spec> <NL>

10 DIM String$[100]

20 CUTPUT XO0GMACHINE2: SFORMAT: SLAVE? <ciock_id>"
30 ENTER XX String$

40 PRINT String$

B0END

www.valuetronics.com



THReshold

Command Syntax:

where.

<N>
<value >
TTL

ECL

Example:
Guery Syntax:

Returned Format:

Example:

THReshold

command/query

The THReshold command allows you to set the voltage threshold for a
given pod to ECL, TTL, or a specific voltage from -9.9V 10 +9.9Vin (.1
volt increments.

Kote

The pod thresholds of pods 1, 2, and 3 can be set independently.
The pod thresholds of pods 4 and 5 are slaved together; therefore
when you set the threshold on either pod 4 or 5, both thresholds
will be changed to the specified vaiue.

The THReshold query returns the current threshold for a given pod.

‘MACHIne{1]2}:5FORmat: THReshoid « N> {TTL|ECL{ < value>}

#

pod number {1121314|5}

voltage (real number} -9.910 +8.9
defauit vaiue of + 1.6V

= defauit vajue of -1.3V

#

3

CUTPUT XXX :MACHIne 1: SFORmat: THReshold1 4,07

:MACHIne{1|2}:SFORmat: THResholid <N>7

[MACHIne {1]2}:SFORmat: THReshold <N>] <value > <NL>

10 DIM Vaiue$ [100]

20 OUTPUT XX MACHINE 1:SFORMAT: THRESHOLD4?*
30 ENTER XXX;Value$

40 PRINT Value$

50 END

SFORmat Subsystem
10-11

www.valuetronics.com




STRace Subsystem 11

introduction The STRace Subsystem contains the commands available for the State
Trace Menu in the HP 1650A/51A logic analyzer. The STRace Subsystem
commands are:

BRANCch
FIND
PREStore
RANGe
RESTart
SEQuence
STORe
TAG
TERM

O

VF_—'
Y
{ 18TRoce Lo I BRANonaN> >—-——-~i spote ;—DJ‘ Hranch_guaotiifier + S to_ievel num

"—--(BRANch-:Nﬂ

: ; T - i
! F IND<N> { space Mproceed_qus\r!ler?—iﬁ ) F—-'I poourrence i

= A
e FIND<NST L

«.-(PRES'{QW)—»; spoce ‘{ ‘ ‘% ? o
k.-‘.prestore_c(vuu\ ifier bm—’

e, .
- PREStore? A
H |
—»(RANGe)——: spoce r—«-—l igbel _nome i start.pcitern
R ——

| e

| % sigp.potiern
S S

A

P/O Figure 11-1. STRace Subsystem Syntax Diagram

STRace Subsystem
11.1

www.valuetronics.com



¥ 4
b RANGE?D b !
\—..—u—.—_—”

L restart_qualifier iLw/

—ee SEQuence \—-b-Lquce ]—-—a-ll rutonf_levels WTW»

- A
e BEQuence? A
e ST ORe o> >—'—-l=-i spoce M store_guotifier ; o

e STORe<N®? -

et BTN o n g G I -
‘ |

\—ﬁ-{s itotentag.quoti {ier)—)
—o TG P
W@ﬂspsce é—-»i LETML.IE ;—ﬁ@—w tabei_nome i ¥ paitern
Sl TERM? ”"bg spoce H term,id ) §e§>el“nm
1ES10/8X05

branch_gualifier = { <simple_qual> | <complex_gual>}

to_lev_num = {Ito <lev_of trig> -1} before or on the trigger level or {(lev_of trig} + 110 end} after
the trigger level

proceed qualifier = { <simple_qual> | <complex_gual> }

occurrence = number from I o 65535

prestore_qual = { <simple_qual> | <complex_qual> }

label_name = string of up to 6 alphanumeric characters

F/O Figure 11-1. STRace Subsystem Syntax Diagram

STRace Subsystem
11-2

www.valuetronics.com




start_pattern = siring in one of the following forms:

"#B0O1.." for binary

"#Q01234567.." for octal

“#HO1234567894ABCDEF..." for hex

"0123456789..." for decimal

stop_pattern = siring in onte of the following forms:

"#B01.." forbinary

"#Q01234567..." for octal

"#HO1234567804BCDEF..." for hex

"0123456789..." for decimal

restart_gualifier = { <simple_gual> | <complex_qual>}

num_ef_levels = {210 8} when ARM is RUN or {2 to 7} otherwise

lev_of_trig = 1o (<number_of levels> -1)

store_gualifier = | <simple_qual> | < complex_gual >}

state_tag qualifier = { <simple_gual > | <complex_gual >}

term_id = {4 |{B|C[D|E|FIG|H}

pattern = siring in one of the following forms:

"#BOIX..." forbinary

“#QOI234567X.." for octal

"#HGI23456789ABCDEFX..." for hex

"0123456789..." for decimal

simple_qual = {ANYStae|NOSTate| <range_pick > | <term> |[NOT <term >}
range_pick = {INRange| QUTRange}

term = {A{B[C|DIE|FIGIH}

complex_qual = ( <logical operand > | <logical_operator> <logical_operand > [)
logical_operator = {AND|OR}

logical_operand = { <simple_qualifier > | <and_expression > | <or_expression > }
and_expression = { <and_term> AND <and_term > [.AND <and_term> ]}
or_expression = {<or_term> OR <or_term > [...OR <or_term> J)

or_termm = {A|B|C|D|<range_pick > } in an ORed expression or {E|F|G{H} in a different ORed
expression

and_term = {NOTA |NOTB|NOTC|NOTD| <range_pick >} in an ANDed expression or
{NOTE|NGTF|NOTG|NOTH} in a different ANDed expression

PO Figure 11-1. STRace Subsystem Syntax Diagram

STRace Subsystem
11-3

www.valuetronics.com




STRace
L

STRace selector

The STRace (State Trace) selector is used as a part of a compound
header o access the settings found in the State Trace menu, If always
follows the MACHine selector because it selects a branch directiy below
the MACHine level in the command tree.

Command Syntax. :MACHne{1|2}:5TRace

Exampie: OQUTPUT XXX “MACHIne1:STRace: TAG TIME"

STRace Subsystem
11-4

www.valuetronics.com



BRANch

Command Syntax:

where:

<N>
<to_lev_num>

<rum_oi_levels>
<branch_qualifier >
<simple_gual>
<range_pick >

BRANch

command/query

The BRANch command defines the branch qualifier for a given sequence
level, When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

Note

Branching above the trigger term or below the trigger term is
valid. Branching from above to below or from below to above
the trigger term is not aliowed.

The branch qualifier consists of pattern or range recognizer terms
explained in the TERM and RANGe commands, It can be a single term
in the simple case, or a logical combination of two groups of logically
combined terms in the most complex case. An example of a complex
qualifter 1s shown in Figure 11-2.

Note

The RESTart PERLevel must be in effect for this command to
impact sequencer transitions (see RESTart command in this
chapter).

The BRANch query returns the current branch qualifier specification for
4 given sequence level.

‘MACHne{1]2}:5TRace; BRANCh < N> < branch_qualifier >, <to_level_num=>

fl

an integer from 1 to <number_of levels >
{110 <iev_of trig> -1} before or on the wrigger ievel

[

or

= {1+ trigger level) o <num_of_levels > } after the trigger level
n= {2108}

1= { <simpie_guai > | <compiex_qual>}

= {ANYState [NOSTate | <range_pick> | <term> [NOT <term>}
«e= {INRange | OUTRange}

STRace Subsystem
11-5

www.valuetronics.com




BRANch

L
<term> u= {A]B|C|DIE|F|GIH}
<complex_gual> = (<logical_operand > [ <logical_operator> <iogical_operand > ))
<logical_operator> 1= {ANDIOR}
<logical_operand>  := {<simpie_gualifier > | <and_expression> | <or_sexprassion > }
<and_expression> = {<and term> AND <and_term:>[..AND <and_term:=})
<or_expfession> = {<or_term> OR <or_term>[..0R <or_term >}
<or_term> o= {A|B|C|D| <range_pick >} in an ORed expression
or
1 ={EIF[G|H} in a ditferent ORed expression
<and term> = {NOTA|NOTB|NOTC|NOTD| <range_pick >} in an ANDed expression
or

1= {NOTEINCTF|NOTG | NOTH} in a ditferent ANDed expression

Examples  OUTPUT X0, “MACHIne 1:5TRace: BRANch1 ANYState, 3"
CUTPUT XXX, “MACHine {:STRace:BRANch2 A7
QUTPUT XX MACHIne 1:8TRace: BRANChS ({4 OR B! OR NOTG), 1"

Query Symtax  :MACHine{1|2}:STRace:BRANch <N>7

Returned Format:  [:MACHIne{t}|2}:STRace:BRANch < N> |
<branch_gualifier>, <to_level_num> <NL>

Example: 10 DIM String$]100]
20 OUTPUT XXX:*MACHINE1: STRACE: BRANCH3?"
30 ENTER XX 8iring$
40 PRINT String$
50 END

STRace Subsystem
11-6

www.valuetronics.com



BRANCch

G L I gy
m- Stnote Trace Specificalion
Trace meea
5 PR 1 _Rrmed by
@ Full OQuetlfier Specification (_Bone ) (Done ) [rRun H
1 o M i 2L
c i r ount
ronge [ G171 : u e ore
[ T S ] brtors
wt [T L——ﬂE' XX
Lang) ~g [T fing
Base wh[ _Un
f e ] T
e | Do)
s
.o J 0]

Figure 11-2. Complex gualificr

Figure 11-2 {above} is a {ront panel representation of the complex
qualifler (A or B) and (= E and = H). The following example wouid be
used 1o specify this complex qualifier.

CUTPUT XXX MACHINE 1: STRACE:BRANCHZ ({A OR B) AND (NOTE AND NOTH}), 4"

Note

Qualifiers a through d and range must be grouped together
and qualifiers e through h must be grouped iogether. A
gualifier from one group cannot be specified in the other qualifier
group. For example, the boolean equation

(@+ b +range}*(e +c + h) is not allowed because qualifier ¢
cannot be specified in the e-h group. The <logical_operator=>
AND can only be used to AND the not terms within a group (i.e.,
we- =hin figure 11-2). The <logical operator> AND can
be used to AND combined terms (or not terms} of one group
with the terms (or not terms) of the other group. For example,
the combined term (a OR b) is ANDed with the combined terms
{(=e AND =h) as shown in figure 11-2.

STRace Subsysfem
11-7

www.valuetronics.com




FIND

FIND

Command Syntax:

where:

< N>

< peeurrence >

< proceed _qualifier>
< simple_gual >
<range pick>
<term>
<eomplex_gual >
< logical_operator >
< logical_operand >
<and_expression >
< Qf_expression >
<or_term >

STRace Subsystem
11-8

command/query

The FIND command defines the proceed qualifier, for a given sequence
level, that tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of
times, the sequencer will proceed to the next sequence level. The state
that causes the sequencer to switch levels is automatically stored in
memaory whether it matches the associated store qualifier or not, Inthe
sequence level where the trigger is specified, the FIND specifies the
trigger gualifier.

The proceed gualifier consists of pattern or range recognizer terms
explained in the TERM and RANGE commands. It can be a single torm
in the simple case, or a logical combination of two groups of logically
combined terms in the most complex case. An example of a complex
qualifier ts shown in Figure 11-2.

The FIND query returns the current proceed gqualifier specification for a
given sequence ievel.

:MACHIne{1]2}:8TRace:FIND < N> <proceed_qualifier >, < occurrence >

an integer from 1 1o <number_of leveis >

number from 1 10 65535

{ <simple_qual> | <complex_qual>}

= [ANYState [NOSTate| <range_pick> | <term> {NOT <term >}
{INRange | OUTRange}

{A|B|C|DIE|F|G|H}

{«logical operand > [ <lopical_operator > <iogical_operand > )
= {AND|OR}

= {«simpie_gualifier > | <and_expression > | <or_expression >}
n= (s<and_term> AND <and term>{..AND <and_term>1}

n= (<or_term> OR <or_term>{...OR <or_term=>1})

n= {A|B|C|D} <range_pick>} in an ORed expressicn

or

1= {EIF|G|H} in a different CRed expression

]

]

#

www.valuetronics.com



FIND

<and_term> = {NOTA|NOTBINOTCINOTD| <range_pick > } in an ANDed expression
or
1= {NOTE|NOTF INOTGINOTH] in a different ANDed expression

Exampies: OUTPUT XXX, “MACHine1:STRace:FIND1 ANYState, 1*
OUTPUT XXX, “:MACHine 1:STRace:FINDZ A512"
OUTPUT XXX, “MACHine 1:STRace:FIND3 ({A OR B) OR NOTG), 1"

Query Syntax: :MACHine{1]2}:5TRace:FIND4?
Returned Format:  MACHine!1]2}:STRace:FIND < N> ] < proceed_gualifier >, <occurrence > < NL>

Example: 10 DIM String$[100]
20 QUTPUT XXX MACHINE1:STRACEFIND < N> 7
30 ENTER XXX String$
40 PRINT String$
50 END

STRace Subsystem
11-9

www.valuetronics.com



PREStore
e

PREStore command/query

The PREStore command turns the prestore feature on and off. It also
defines the qualifier required to prestore only selected states. The
prestore qualifier consists of pattern or range recognizer terms expiained
in the TERM and RANGe commands. PREStore can be a single term n
the simple case, or a logical combination of two groups of combined terms
in the most complex case. An example of a complex gualifier is shown in
Figure 11-2.

The PREStore query returns the current prestore specification.

Command Syntax: :MACHine{1}|2}:STRace:PREStore {OFF| < prestore_qualifier> }

where:

< prestore_gualifier> = { <simple_gual> | <complex_qual>}
<simple_gual> = {ANYState |NOSTate | <range_pick > | <term > [NOT <term >}
<range pick> = {INRange|OUTRange}

<term> = {AIBIC|DIE[FIGIH]}
<complex_gual > = {<logical_operand > [ <logical_operater > <logical_operand > ]
<logical_operator> = {ANDIOR}
<logical pperand> = {<simple_gualifier> | <and_expression> | <or_expression >}
<and expression> L= {<and_term> AND <and _term>[..AND <and term=>1J}
<or_expression> = (<or_term> OR <or_term>[...0R <or_term > )
<of term> - u= {A|B|C|D| «<range_pick>} in an ORed expression
or
n= {EIF|GiM} in a different ORed expression
<and_term>  u= {NOTA|NOTB|NOTCINOTD| <range_pick > } in an ANDed expression

or
1= {NOTEINOTF|NOTG |NOTH]} in a different ANDed expression

STRace Subsystem
11-10

www.valuetronics.com



PREStore

]
Exampies: OUTPUT XXX,"MACHine 1:5TRace:PREStore OFF"
QUTPUT X0, " MACH!ne 1:STRace: PREStore ANY State”
QUTPUT XXX, MACHIne 1:STRace: PREStore (A)
OUTPUT XX " MACHne 1: STRace: PREStore (A OR B) AND NOTG)”

Query Syntax: :MACHine{1|2}:5TRace:PREStore?
Returned Format,  [[MACHIne!1{2}:5TRace: PREStore]{OFF | < prestore_guaiifier > } < NL.>

Example: 10 DIM String$[100]
20 CUTPUT XX4" :MACHINE 1: STRACE PRESTORE?
30 ENTER XXX String$
40 PRINT String$
50 END

STRace Subsystem
11-11

www.valuetronics.com



RANGe

RANGe

Command Syntax:

where:

<label name>

STRace Subsystem
11-12

command/query

The RANGe command aliows you to specify a range recognizer term in
the specified machine. Since a range can only be defined across one label
and, since a label must contain 32 or Jess bits, the value of the start pattern
or stop pattern will be between (232)~1 and 0.

Note

A label can be defined across all pods (maximum of 32
channels} but the range term can only be specified on a label
defined across @ maximum of two pods.

When viewing the values in binary, the binary value represents the bit
values for the label at one of the range recogmzers’ end points. Don’t
cares are not allowed in the end point pattern specifications. Since only
One range TecogRIzer exists, it is always used by the first state machine
defined. :

The RANGe query returns the range recognizer end point specifications
for the range.

Note

When pwo state anaiyzers are on, the RANGe term is not
available in the second state analvzer assigned and there are only
4 pattern recognizers per analyzer.

:MACHIne{1{2}:5TRace: RANGE <label_name >, <start_pattern >, <stop_pattern>

= string of up to 6 alphanumeric characters

www.valuetronics.com




RANGe

< start_pattern> string in one of the following forms:

“#B01.." for binary
“#(Q01234567..." for octal
"#H0123456788ABCDEF.." for hex
"(123455789..." for decimal

string in one of the following forms:

"#B01..* for binary
"#Q01234567...F for octal
"#H(123456789ABCDEF..." for hex
"(123456789..." for decimal

fl

It

<stop_pattern >

Examples:  QUTPUT XXX, “MACHiIne1:STRace:RANGe ‘DATA’,'127", 255" *
' OUTPUT XXX, MACHIne 1: STRace:RANGS *ABC', #B00001 111", '#HCF *

Query Syntax: MACHine{1|2}:5TRace:RANGe?

Returned Format:  [:MACHine{t|2}:STRAce:RANGe] <label_name >, <start_pattarn>, <stop_pattern >
<NL>

Example: 10 DiM String$i100]
20 QUTPUT X4 MACHINET: STRACE: RANGE?"
30 ENTER XXX;String$
40 PRINT String$
B0 END

STRace Subsystem
11-13

www.valuetronics.com



RESTart
I

RESTart command/query

The RESTart command selects the typs of restart to be enabled during
the trace sequence. It also defines the global restart gualifier that restarts
the sequence in global restart mode. The restart gualifier consists of
paticrn or range recognizer terms explained in the TERM and RANGe
commands. RESTart can be a single term in the simple case, or a logical
combination of two groups of combined terms in the most complex case.
An example of a complex quaiifier is shown in Figure 11-2. '

The RESTart query returns the current restart specification.

Command Syntax:  :MACHIne{112)}:8TRace:RESTart {OFF | PERLevel | < restart_gualifier > }

where:
<restar_gualifier> = {<sirmple_gual> | <complex_gual>}
<simple_gual> 1= {ANYState |NOSTate | <range_pick > | <term > |NOT <term >}
<range_pick> 1= {INRange |OUTRange}
<term> = {A|BIC|DIEIF|G|H}
<compiex_qual> = (<iogical_operand > | <logical_operator> <jogical_operand >}
<iogical operator> = [AND|OR}
<logical operand> = {<simple gualifier> | <and_expression > | <or_sxpression > }
<and_expression> = {<and_term> AND <and_term>[..AND <and_term>1]}
<of_expression> um {<or_term> OR <or_term > [...0OR <or_term >}
<or_term>  u= {A|BIC|D| <range_pick> }in an (ORed expression
or
n={E[F}GiH} in a different ORed expression
<and_term> = {NOTA|NOTB|NOTC|NOTD| <range_pick >} in an ANDed expression
or
= {NOTEINOTFINOTG INOTH) in a different ANDed expression
STRace Subsystem

11-14

www.valuetronics.com



RESTart

Exampies:  OUTPUT XXX,":MACHine 1:STRace:RESTart OFF"
CUTPUT XXX, “MACHIne 1:STRace:RESTart PERLavel”
OUTPUT XXX, MACHIne1:5TRace: RESTart (A)"
OUTBUT XXX, MACHIne 1:STRace:RESTart ((A OR B} AND NOTG)"

Query Syntax: :MaCHine{t|2}:5TRace:RESTart?
Returned Format,  MACHIne{1}2}:STRace:RESTart]{ OFF | PERLavel | <restart_quatifier>} <NL>

Example: 10 DIM String$[100]
20 QUTPUT X0 MACHINE1: STRACE:RESTART?"
30 ENTER XXX; 8tring$
40 PRINT String$
50 END

STRace Subsystem
11-15

www.valuetronics.com




SEQuence

SEQuence

Command Syntax:

where:

<nurn_of levels >
<lev_of_trig >

Example:
Query Syntax:

Returned Format:

Example:

STRace Subsystem
11-16

command/query

The SEGuence command redeflines the state aralyzer trace sequence.
First, it deletes the current trace sequence. Then it inserts the number of
levels specified, with default seitings, and assigns the iriggertobe at a
specified sequence level. The number of levels can be between 2 and 8
when the analyzer is armed by the RUN key. When armed by the BNC or
the other machine, a level is used by the arm in; therefore, only seven
levels are available in the sequence,

The SEQuence query returns the current sequence specification.

‘MACHIne{1]2}:5TRace:Sequence <num_of_levels >, <iev_of_trig>

#

{2-8} when ARM is RUN or {2.7} otherwise
1to {<nurber_of_levels >-1)

%

QUTPUT XXX, MACHIine 1:STRace; Sequence 4,3"

MACHIne {1]2}:5TRace:Sequence?

[:MACHIne{1]2}:STRace:Sequence] <num_of levels>, <lev_of rig> <NL>

10 DIM String$[100]

20 QUTPUT XX MACHINE 1 STRACE: SEQUENCE?
30 ENTER XXX;String$

40 PRINT String$

50 END

www.valuetronics.com




STORe

STORe command/query

The STORe command defines the store qualifier for a given sequence
level. Any data matching the STORe qualifier will actually be stored in
memory as part of the current trace data. The store qualifier consists of
pattern or range recognizer terms explained in the TERM and RANGE
commands. It can be a single term in the simple case, or a logical
combination of two groups of logically combined terms in the most
complex case. An example of a complex qualifier is shown in Figure 11-2.

The STORe query returns the current store qualifier specification for a
given sequence level <N >,

Command Syntax: :MACHine{1}2}:STRace:STORe< N> <store_gualifier >

where:
<N> = an integer from 1o <number_of tevels>
< gtore_gualifier > = {<simpie_gual > | <complex_gual >}
<simple_gual> 1= {ANYState |[NOSTate| <range_pick > | <term> |[NOT <term >}
<range_pick> 1= {INRange|OUTRange}
<term> = {AIB|C|DIE|F|GiM}

< complex_gual > = {<logical_operand > [ <logicai_operator > <logical_operand > ])
< logical_operator > = {ANDIOR}
<logical_operand > = {<simple_quaiifier > | <and_expression > | <or_expression >}
<and_expressicn> 1= (<and_term> AND <and_term > [...AND <and_term> ]}

<or_expression> u= (<or_term> OR <or term> [L.OR <or_term>])

<or_term> &= {A|B|CID}<range_pick>} in an ORed expression

or
= {E|FIG]H}) in a different ORed expression

<and_term> = {NOTA|NOTB|NCYTC{NOTD] < range_pick >} in an ANDed expression
of
n= {NOTEINOTFINOTG INOTH;} in a different ANDed expression

STRace Subsystem
11.17

www.valuetronics.com



STORe

Examples:  OUTPUT XXX, MACHIne 1:5TRace: STORe 1 ANYState®
OUTPUT XX MACHIne 1:5TRace:STORe2 A*
OUTPUT X0 MACHine 1:STRace:STORe3 ((A OR B} OR NOTG)"

Guery Syntax: :MACHmne{1]2}:5TRace:STORe <N>7
Rewrned Format:  [;MACHine{1!2)}:STRace:STORe <N > ] < store_gualifier> <NL>

Example: 10 DM String${100]
20 OUTPUT XX0¢"MACHINE +: STRACE: STORE4?"
30 ENTER X00(String$
40 PRINT String$
50 END

STRace Subsystem
11-18

www.valuetronics.com




TAG

Command Syntax:

where:

<state_tag_qualifier >
<simple_qual >
<range_pick >
<term>
<compiex_gual >
<iogic_operator >

< logical_operand >
<and_expression >
<or_expression >
<or_term:>

<and_term >

TAG

command/query

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. 1t also defines the state tag qualifier
that will be counted in the qualificd state mode. The state tag qualifier
basicaliy consists of the pattern or range recognizer terms explained in the
TERM and RANGe commands. The tag can be a single term in the
simple case, or a logical combination of two groups of combined terms in
the most complex case. An cxample of a complex qualifier is shown in
Figure 11-2. I CPERiod (SFORmat Subsystem) is sef to Less Than 60 ns
and TAG is set fo time or states, CPERIod will automatically be set to
Greater Than 60 ns,

The TAG guery returns the current count tag specification.

:MACHIne{1]2}:8TRace: TAG {OFFITIME] <state_tag_gualifier»)

1 ={ <simple_gual ».| <compiex_gual>}

= {ANYState [NOSTate | <range_pick> | <term> | <NOT <term >}
i= {INRange | OUTRange}

= {AIBIC|DIEIFIGIH}

ne (<logical operand » [ <logical_cperator > <logical_operand > ]}
{AND|OR}

{ <simple_qualifier > | <and_expression > | <or_sexpression >}
{<and_term> AND <and_term[.AND <and_term> ]} '
i= (<or_term> OR <or_term>{.. OR <or_term>1})

= {AIB|CID| <range_pick>} in an OR expression

or

s= {E1F{G|H} in & different OR expression

i= {NOTA|NOTBNCTG|NOTD] <range_pick > } in an AND expression
or

(= {NOTE|NOTFINOTG|NOTH} in a different AND expression

]

L]

STRace Subsystem
11-19

www.valuetronics.com



TAG
L

Examples:  OUTPUT XXX, MACHine1:STRace TAG DFF"
OUTPUT XXX MACHIne 1:5TRace: TAG TIME"
OUTPUT XXX, “MACHIne 1:5TRace: TAG (A"
OUTPUT XXX, MACHIne 1:5TRace: TAG {(A OR B) AND NOTGY

Query Syntax: :MACHine{112} :STRace: TAG?
Returned Format:  [:MACHine{1]|2}:5TRace:TAG] {OFF|TIME| <state_tag_gualifier >} <NL>

Example: 10 DIM String$[100]
20 OQUTPUT X0 MACHINE 1: STRACE: TAG?"
30 ENTER XXX;String$
40 PRINT String$
50 END

STRace Subsystem
11-29

www.valuetronics.com



TERM

Command Syntax:

where:
<term_id>

<label_narme>
<pattern>

Exampie;

TERM

command/query

The TERM command allows you to a specify a pattern recognizer term in
the specified machine. Each command deals with only onc label in the
given term; therefore, a complete specification could require several
commands, Since a label can contain 32 or less bits, the range of the
pattern value will be between (232)—1 and G. When viewing the value of a
pattern in binary, the binary value represents the bit values for the label
inside the pattern recognizer term. Since the patiern parameter may
contain don’t cares and be represented in several bases, it is handled as a
string of characters rather than a number,

When a single state machine is on, all eight terms (A through H) are
available in the single machine. When two state machines are on, terms A
through I are used by the first state machine defined. The terms E
through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term
identification and label name.,

:MACHIne{112}:STRace: TERM <term_id >, <label_name >, <patiern >

{ABICIDIEIF|GIH]}
string of up to B alphanumeric charatlers
= string in one of the following forms:

"#BO1X..." for binary
“#Q01234567X.,." for octal
"#HO123456783ABCDERX.. " for hex
"0123456789..." for decimal

i’

QUTPUT XXX "MACHIne1:5TRace: TERM A'DATA''255" "
CUTPUT XXX, MACHIne 1:5TRace: TERM B ABC'#8XXXX1101""

STRace Subsystem
11-21

www.valuetronics.com




TERM

S
Query Syniax: :MACHIne{1]|2}:8TRace:TERM? <term_id >, <label_name >

Returned Format:  [:MACHIne{1]2}:5TRAce: TERM] <term_id >, <label_narme >, <pattern> <NL>

Example: 10 DIM String$[100]
20 CUTPUT X0 MACHINE1:STRACE: TERM? B, DATA'*
30 ENTER XX String$
40 PRINT String$
50 END

STRace Subsystem
1122

www.valuetronics.com



SLISt Subsystem 12

Introduction The SLISt Subsystem contains the commands available for the State
Listing Menu in the HP 1650A/51A logic analyzer. These commands are:

COLumn
DATA
LINE
MMODe
OPATtern
OSEarch
OSTate
QOTAG
RUNTi
TAVerage
TMAXimum
TMINimum
VRUNs
XOTag
XPATtern
XSEarch
XSTate
XTAG

& # & & & & * & » & & * & 5 & & ¢ »

SLIST Subsystem
12-1

www.valuetronics.com



\;' amm ol

it DL ﬂ}-b-i ! [ | label
\\.4 LMy space r—b‘%CO =Fum s i f 1 abe | _nome “"“"“‘\
J —

: MACHIne [112) L»@—.; bage f—em
——
—%COLumr—?}—H spoce ,i«w-{ col num | -

1 o
——-:-(DA‘?A?M space H label_name : 5 i 1ing_number -

Y

et | TINE space rwﬁ-; | éne_nuxrgmid_screen}

—@ Space OFF ] -

o PATTern b

ol WMGD 87

M

H I 1 T
—D-<GPAT€.Err'.\‘ - Spoce |>—>i fabe | nome ?m-wl— B )*-—b-l Eubel.._pctterfj——"
m»(()PATiern?j-—le; space |-—u-! tabe l.nome
—-W\OSEcrch}-‘ﬂ spuce i—-b-[occurrence .

o O

SEareh? -

O8Tale? .
1 C1550510 L

P/O Figure 12-1. SLISt Subsysterm Syntax Diagram

SLIST Subsystem
12-2

www.valuetronics.com



! 1 [
.O:AG*——j spoce Ev-Ehme_vciuel It
3
o
;stote_vaiue;——)

SO |

o= OTAGT } L
S v

b RUNT & ¢ et space ?—-—, run.uniiispec }

T,

e RUNT S 17 -

ST,

e TAVEroge? -

I . A
bt TRALX imum? -

e

et TMIN rrum?

rdm VRUNET ) -

‘ - i m i
" & h i N reme———t
“"";\XVATtern\/——l-“i shace g—'—w jabe i_name ‘ L igbelopottiern -

- XPATLernT)—b-; spuce M lapel_nome *

I - , H f Vi
e ¥SEarcn ———we spoce }——— occurrence gf-»t-f\_,/

p——

=i XSEGreh? f
M

b XSTote? )

R
—-—-:&_AG}—«? space :-‘—-: time.voiue i
\
S state_voiue
S XTAGT
W;\ A HEIG/EX0E
mack_num = {7]2}
col_num = integer from {I1-8}
line_number = integer from -1023 0 + 1024
label_name = g string of up to 6 alphanumeric characters
P/O Figure 12-1. SLISt Subsystem Syntax Diagram
SLIST Subsystem

12.3

www.valuetronics.com




base = {BINarv|HEXadecimal |OCTal | DECimal|ASCii|SYMBol|IASSembler}
for labels or {ABSolute | RELative} for tags

line_num_mid_screen = infeger from -1023 to + 1024

label_pattern = string in one of the following forms:

"#BOIX.." for bingry

"#Q01234567X..." for octal

"#HGI234567894ABCDEFX.." for hex

"0123456789.." for decimal

occurrence = jnteger

time_value = real number

state_value = real number

run_until_spec =

{OFF LT, <value > | GT, <value > | INRange, <value >, <value > | OUTRange, <value >, <vulue > }
value = real number

P/O Figure 12-1. SLISt Subsystent Syntax Diagram

SLIST Subsystem
12-4

www.valuetronics.com




SLISt

Command Syntax:

Example:

SLISt

selector

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the
MACHiIne level in the command tree.

:MACHIne{1|2):SLISt

QUTPUT XXX, ":MACHine 1: SLIStLINE 256°

SLIST Subsystem
12-3

www.valuetronics.com




COLumn
[

COLumn command/query

The COLumn command allows you to configure the state analyzer

list display by assigning a label name and base to one of the eight vertical
colomas in the meny. A column number of 1 refers to the left most
column. When a label is assigned to a column i replaces the original label
in that column. The label originally in the specified cotumn is placed in
the column the specified label is moved from.

‘When the label name is "TAGS," the TAGS column is assumed and the
next parameter must specify RELative or ABSolute.

The COLumn query returns the column number, label name, and base for
the specified column.

Command Syntax:  MACHIne{1]2}:5LIBLCOLumn <col_num>, <laba! name >, <base>

where:
<eol_num> = integer from {1-8}
<label_name> = astring of up 10 & aiphanumeric characters
<base> = {BWNaryiHEXadecimal{(QCTal | DECimal | ASCH I SYMBo! | IASSembiler] for labels

of
= {ABSolute |RELative} for tags

SLIST Subsystem
12-6

www.valuetronics.com



COLumn

Note

A label for tags must be assigned in order to use ABSoiute or
RELative state tagging.

Examples:  OUTPUT XX MACHIne 1:3LIStCOLumn 4,'A' HEX"
OUTPUT XXX " MACHine 1:SLISE COLumn 1,'TAGS’, ABSolute®

Query Syntax: MACHire{1}2}:S18t:C0LUMN? <col_num >
Returned Format:  [MACHine{112}:5LI8t:COLUMR] <col_num >, <label name > <base> <NL>

Example: 10 DIM Ci${100)
20 QUTPUT XXX MACHINE1; SLIST:COLUMN? 4
30 ENTER X0 CI$
40 PRINT Ci$
50 END

SLIST Subsystem
127

www.valuetronics.com



DATA

DATA

Query Syntax:

Returned Format:

where:

<line_number >
<label_name >
<pattern_string >

Example:

SLIST Subsystem
12-8

query

The DATA query returns the value at a specified Iine number for a given
label.

‘MACHIne {112}:5LISLDATA? <label_name >, <line_number>

[:MACHIne{1]2}:51I81:DATA] < label_name >, <line_number:>,
<pattern_string > <NL>

integer from -1023 to + 1024
string of up 10 & alphanumeric charactars
string in one of the following forms:

“#B01.." tor binary

"# Q01234567...° for ocial
"#140123456788ABCDEF.. * for hex
“0123456789..." for decimal

10 DIM Sd8[100] .
20 GUTPUT 00 MACHINE 1:5LIST:DATA? 512, 'RAS™
30 ENTER X004 5d%

40 PRINT Sd$

50 END

www.valuetronics.com




LINE

LINE ' command/query

The LINE command allows you to scroll the state analyzer listing
vertically. The command specifies the state ling number, relative to the
trigger, that the analyzer will highlight at center screen.

The LINE query returns the line number for the state currently in the
box at center screen.

Command Syntax: :MACHine{1]2}:SLISLLINE <line_num_mid_screen >
where:
<line_num _mid_screen> .= areal number from -1023 to + 1024
Example:  OUTPUT XX "MACHIine1:SLISLLINE 0"
Query Syntax: :MACHIne{1|2}:SLISLLINE?
Returned Format: . [MACHIne{1]2}:SLISLLINE] ‘<line_num__mid_screen> <NL>

Example: 10 DIM La$I100]
20 QUTPUT XXX MACHINE1:SLISTLINE?
30 ENTER X0 Ln$
40 PRINT Ln$
50 END

SLIST Subsystem
12-9

www.valuetronics.com




MMODe

MMODe

Command Syntax:

where:

< rnarker_mode >

Example:
Query Synitax:
Returned Format:

Example:

SLIST Subsystem
12-10

command/query

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on gualified states counted

‘between normally stored states, When TIME is selected and time tagging

is enabled, the markers move on time between stored states. When
MSTats is selected and time tagping is on, the markers are placed on
patterns, but the readouts will be time statistics. -

The MMODe query returns the current marker mode selected,

:MACHIne {1]2}:SLIStMMODe < marker_mode >

ww {OFF|PATTern | STATe | TIME | MSTats}

DUTPUT X " MACHine 1:SLISE MMOCDe TIME"
‘MACHine{1|2}:SLIStMMODe?
['MACHIne{1}2}:SLISt:MMQODe] <marker_mode > <NL>

10 DiM Mn${100]

20 QUTPUT 300G MACHINE 1:SLIST:MMODE?
30 ENTER XXX Mn$

40 PRINT Mn$

50 END

www.valuetronics.com



OPATiern

I
OPATtern command/query

The OPATtern command allows you to construct a pattern recognizer
term for the O Marker which is then used with the OSEarch criteria when
moving the marker on patterns. Since each command deals with only one
label in the pattern recognizer, a complete specification could require
several commands. Since a label can contain up to 32 bits, the range of
the pattern value will be between 0 and (232)-1.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. Since a

pattern recognizer may contain don’t cares and be represented in several
bases, the < label_pattern> parameter is handled as a string of
characters rather than a number.

The OPATtern query returns the pattern specification for a given label
name.

Command Symtax: :MACHIne{1[2}:SLIStOPATiern <labei_name >, <labe!_pattern >

where:

<tlabel name>
<label _paftern>

string of up 16 § aiphanumaeric characters
string in one of the foliowing forms:

“#BO1X..." for binary

"# Q01234567 X..." tor octal
“#H0123456789ABCDEFX...” for hex
"$123456788..." for decimal

¥

i

Examples:  GUTPUT XXX, “MACHine1:SLISLOPATtern 'DATA' '255'
QUTPUT XXX " MACHine 1:SLISL OPATIerm "ABC,'#BX0(X1101"

SLIST Subsystem
12-11

www.valuetronics.com



OPATtern

b
Query Symtax: :MACHine{112}:SLISLOPATIern? <label_name >

Returned Format: [:MACHine{1]2}:8LIStOPATIern) < label_name >, < label_pattern > < NL>

Example: 10 DiM Op$[100]
20 OUTPUT XCC MACHINE 1:SLIST. OPATTERNT 'A™

30 ENTER X0040p$
40 PRINT Op¢
50 END

SLIST Subsystem
12-12

www.valuetronics.com



QOSEarch

Command Syntax:

where;

< OCCUITENGE >
<origin >

Example:
Query Syntax:
Returned Format:

Example:

OSEarch

command/query

The OSEarch command defines the search criteria {or the O marker,
which 1s then used with the associated OPATtern recognizer

specification when moving the markers on patterns. The origin parameter
tells the marker to begin a search with the trigger, the start of data, or with
the X marker. The actual occurrence the marker searches for in the
OPATtern recognizer specification is determined by the occurrence
parameter, relative to the origin, An oceurrence of 0 places the marker on
the selected origin, With a negative occurrence, the marker searches
before the origin, With a positive occurrence, the marker searches after
the origin.

The OSEarch query returns the search criteria for the O marker,

MACHIne {1]2}:8LIStOSEarch <ocgurrence >, < origin >

It

infeger
{TRIGger | STARt | XMARKker}

It

CUTPUT X0 " MACHine 1:SLISt:OSEarch + 10, TRIGGER"

:MACHiIne{1|2}:8LI51:08Earch?

IMACHIne{t|2}:SLISt:O8Earch] < ocourrence >, < origin > < NL >

10 DIM Os$[100]

20 OUTPUT X004 MACHINE1:5LIST: OSEARCH?"
30 ENTER XX06:0s$

40 PRINT Os$

50 END

SLIST Subsystem
12-13

www.valuetronics.com




OSTate

QOSTate

Query Syntax:
Returned Format:.

where:

< siate hum >

Example:

SLIST Subsystem
12-14

auery

The OSTate guery returns the line number in the listing where the O
marker resides (-1023 to -+ 1024). If data is not valid , the guery returns
32767,

MACHine {1]2}:8LIStO8Tate?

[MACHine{112}:SLISt: OSTate} <state num> <NL>

= g integer from -1023 to + 1024 or 32767

10 DIM Os$[100]

20 OUTPUT XX ":MACHINE1: SLIST:OSTATE?
30 ENTER XXX:0s$

40 PRINT Os$

50 END

www.valuetronics.com




OTAG

Command Syntax:

where:

<lime_value>
< state_vajue >

Example:
Query Syntax;
Returned Format:

Example;

OTAG

command/query

The OTAG command specifies the tag value on which the O Marker
should be placed. The tag value is time when time tagging is on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The OTAG query returns the O Marker position in time wher time
tagging is on or in states when state tagging is on, regardiess of whether
the marker was positioned in time, states, or through a pattern search, If
data is not valid, the query returns 9.9E37.

‘MACHIne{1]2}:8LIBLOTAG { <time_vaiue > | <state value>}

real nurmber

¥

]

integer

DUTPUT XXX MACHIne 1:SLISUOTAG 40.0E-6"

:MACHine{1]2}:SLISLOTAG?

[:MACHIne{1]2}:SLIStCTAG] { <time_value > | < state_value >} <NL>

10 DIM Ot$[100)

20 QUTPUT XXX MACHINE: SLIST:OTAG?
30 ENTER XOO4Ot$

40 PRINT Ot$

50 END

SLIST Subsystem
12-15

www.valuetronics.com




RUNTIl

RUNTI

Command Syntax:

where:

<run_until_spec>

< yvalue >

Example:

SLIST Subsystem
12-16

command/query

The RUNTI {run until) command defines stop criteria based on the time
between the X and O markers, when the trace mode is repetitive. When
OFF is selecied, the analyzer will make runs untif gither the STOP key is
pressed or the STOP command is issued. The choices for Run Unil the
time between the X and O Markers are:

OFF

Less Than (LT) some time value

Greater Than (GT) some time value

In the range (INRange) between two time values

Out of the range (OUTRange) between two time values

& @ & @

End points for the INRange and OUTRange should be at least 10 rs apart.
The RUNTI query returns the current stop criteria.

‘MACHIne {1]2}:SUSHRUNTI <run_until_spec>

u= {OFFILT, <value » |GT, <value > |INRange, <valie >, <value >
IOUTRange, <vaiue >, <value >}
= real number

QUTPUIT XXX " MACHine 1:SLISt:RUNTI! GT,800.0E-6"

www.valuetronics.com




RUNTIl

R
Query Syntax: :MACHIine{1]2}:SLIStRUNTH?

Returned Format:  [:MACHine{1]2}:SLISERUNTIl] <run_until_spec> <NL>

Exampie: 10 DIM Ru$[100]
20 QUTPUT XXX, MACHINE 1:SLIST:RUNTIL?"
30 ENTER X00GRu$
40 PRINT Ru$
50 END

SLIST Subsystem
12-17

www.valuetronics.com



TAVerage

TAVerage

Query Syntax:
Returned Format:

where:

< time_value >

Example:

SLAST Subsystem
12-18

query

The TAVerage query returns the value of the average time berween the X
and O Markers. If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and
O markers was successful resulting in valid delta-time measurements.

‘MACHine {112}:SLISt: TAVerage?

[MACHine {12} :5LISt TAVerage)] <time_vaiue > < NL>

o= real number

10 DIM Tv$[100]

20 OUTPUT X000 MACHINE1: SLIST: TAVERAGE?"
30 ENTER X000 TV

a0 PRINT Tvg

50 END

www.valuetronics.com



TMAXIimum

IR
TMAXimum query

The TMAXimum query returns the value of the maximum time between
the X and O Markers. If data is not valid, the query returns 9.9E37.

Query Syntax:  :MACHine{1}2}:5LISETMAXimum?
Returned Format: ~ :MACHIne{t|2}:SLISE TMAXImum] < time_vaiue > < Ni.>

where:

<time_value> o= real number

Example: 10 DIM Tx${100)
20 CUTPUT X004  MACHINE 1: SLIST: TMAXIMUM?"
30 ENTER X0 TS
40 PRINT Tx$
5D END

SLIST Subsystem
12-19

www.valuetronics.com




TMINimum

TMINimum

Query Syntax:
Returned Format:

where:

<fime_value >

Example:

SLIST Subsystem
12-20

query

The TMINimum query returns the vaiue of the minimum time between
the X and O Markers. If data is not valid, the query returns 9.9E37.

MACHIne {112} SLISE TMINImum?

[MACHIne{1]2}:SLIStTMINimum] <time_value > <NL>

1= real number

10 DIM Tm$[100}

20 QUTPUT X006 MACHINE +: SLIST: TMINIMUM?*
30 ENTER X0(:Tm$

40 PRINT Trn$

50 END

www.valuetronics.com




VRUNS

duery Syntax:
Returned Format:

where:

<valid_runs>
<total_runs>

Example;

VRUNSs

query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the pattern search for both the X
and O markers was successful resulting in valid delta time measurements.

:MACHIne{1]2}:SLISLVRUNs?

EMACHIne {1] 2} SLISEVRUNS] < valid_runs >, <total_runs> <NL>

zero or positive integer
zero or posiiive integer

10 DIM Vr$[100]

20 OUTPUT XX MACHINE1:SLIST:VRUNS?"
30 ENTER X004 Vr$

40 PRINT Vr$

50 END

SLIST Subsystem
12.21

www.valuetronics.com



XOTag

XOTay

Guery Syntax:
Returned Format:

where:

<XO_time >
<XO_states >

Example:

SLIST Subsystem
12-22

Query

The XOTag query returns the time from the X to O markers when the
marker mode is time or number of states from the X to O markers when
the marker mode is state. If there is no data in the time mode the query
returns 9.9E37.

MACHIne {112}:8LISt:X0OTag?

[:MACHIne{112}:5L18t:X0Tag]{ <« XO_time > | «XO states> } <NL>

= regl nrumber
= integer

10 DIM Xot${100] :

20 DUTPUT XXX MACHINE1: SLIST:XOTAG?”
30 ENTER XXX, Xot$

40 PRINT Xot$

50 END

www.valuetronics.com




XPATtern

Command Syntax:

where:

<label_name >
<label_pattern >

Exampies:

XPATtern

command/query

The XPATiern command aliows vou 10 construct a pattern recognizer
term for the X Marker which i then used with the XSEarch criteria when
moving the marker on patterns. Since each command deals with only one
tabel in the pattern recogaizer, a complete specification could require
several commands. Since a label can contain up ta 32 bits, the range of
the pattern value wili be berween 0 and (23?“)-1.

When the value of a pattern is expressed in binary, it represents the bit
values {or the label inside the pattern recognizer term. Since a

pattern recognizer can contain don’t cares and be represented in several
bases, the < label_pattern > parameter is handled as a string of
characters rather than a number.

The XPATiern query returns the pattern specification for a given label
name.

iMACHINe {112} SLIStXPATIern <labei_name >, <label_pattarn>

string of up to 6 alphanumeric characters
= string in one of the following forms:

"#BO1X..." tor binary
“#001234567X..." for octal
“#H0123456780ABCDEFX..." for hex
“012345678%.. " for decimal

QUTPUT XXX, "MACHIne 1:SLISt XPATtern 'DATA' 285" "
CUTPUT XXX, “MACHIne 1:SLISt XPATtermn "ABC '#BX0O(1101"

SLIST Subsystem
12-23

www.valuetronics.com




XPATtern

Query Syntax: :MACHine{1]21:SLISEXPATterm? <labe! narme >
Returned Format:  [:MACHIne{1|2}:SLIStXPATtern] <label_name >, <iabel_pattern> <NL>

Exampie: 10 DIM Xp$[100]
20 QUTPUT XX MACHINE 1: SLISTIXPATTERN? ‘A"
30 ENTER XXX Xp$
40 PRINT Xp$
50 END

SLIST Subsystem
12-24

www.valuetronics.com



XSEarch

XSEarch command/query

The XSEarch command defines the search criteria for the X Marker,
which is then used with the associated XPATtern recognizer

specification when moving the markers on patierns. The origin parameter
telis the Marker to begin a search with the trigger or with the start of data.
The occurrence parameter determines which occurrence of the
XPATtern recognizer specification, relative to the origin, the marker
actually scarches for. An occurrence of 0 places a marker on the selected
origin.

The XSEarch query returns the search criteria for the X marker,

Command Syntax: MACHIne{1!2}:SLIStXSEarch <occurrence >, <origin >

where:

<Qgourrence >
<origin

integer
{TRIGger | STARt}

Example:  QUTPUT XXX “MACHine1:SLISt:XSEarch + 10,TRIGger"
Query Syntax: :MACHine{1]2}:SLISEXSEarch?
Returned Format:  [:MACHine{1|2}:SLISt:XSEarch] < occurrence >, <origin > <NL>

Example: 10 DIM Xs$1100]
20 QUTPUT XXX MACHINE1: SLIST: XSEARCH?
30 ENTER XX¥X;Xs$
40 PRINT Xs$
50 END

SLIST Subsystem
12-25

www.valuetronics.com



XSTate
S
XSTate query

The XSTate query returns the line number in the listing where the X
marker resides {-1023 to +1024). If data is not valid, the query returns
32767

Query Syntax: :MACHine{1]2}:SLISt:XSTate?
Returned Format:  [:MACHine{1|2}:SLIStXSTate] <state_num > <NL>

where:

<state_num> = aninteger from <1023 to + 1024 or 32767

Example: 10 DM Xs$[100]
20 QUTEUT X004  MAGHINE 1: SLIST XS TATE?
30 ENTER Y004 Xs$
40 PRINT Xs8
50 END

SLIST Subsystern
12-26

www.valuetronics.com




XTAG

Command Syntax:

where:

< time_value >
<siate_value>

Exampie:
Guery Syntax:
Returmed Format:

Exampie:

XTAG

command/guery

The XTAG command specifies the tag value on which the X Marker
should be placed. The tag value is time when time tagging 1s on or states
when state tagging is on. If the data is not valid tagged data, no action is
performed.

The XTAG query returns the X Marker position in time when time
tagging 1s On Or in states when state tagging is on, regardless of whether
the marker was posifioned in time, states, or through a pattern search. If
data 1s not valid tagged data, the query returns $.9E37.

‘MACHIne {1]2}:SLISEUXTAG { <time_value > | <state_value>}

1= teal number
= integer

:CUTPUT XXX, MACHine 1:SLISt: XTAG 40.0E-8*
MACHIne {1]2}:SLISLXTAG?
[:MACHIne{1|2}:SLISEXTAG) { <time_value > | <state_value >} <NL>

10 DIM Xt$[100]

20 CUTPUT 3000 MACHINE1: SLIST:XTAG?*
30 ENTER XXX:Xt$

40 PRINT Xt$

50 END

SLIST Subsystem
12.27

www.valuetronics.com



TFORmat Subsystem 13
O

introduction The TFORmat Subsystem contains the commands available for the
Timing Format menu in the HP 1650A/51A logic analyzer. These

commands are:

¢ 1.ABel
REMove
THReshoid
; .. S
. o I f ; T N ;
(@-—-—‘mw %_Auelj—J space 5_’"» nome m»—*b— polority '—.—'\.J,.)_F' assignment p—ie

. 1
- i_AEieI’.;}-—--'-E SpOCE e nome -
J

—*{REMO\;M spoce ‘ E { nome i -
!

WALL)-«-J

— THResm\c<N>>——§ spoce el TTL ) y

vaiue ;——*/
= THResho b d<hs7?
e 16340/5%07

<N>={112]314]35}

name = giring of up to & aiphanumeric characiers

polarity = {POSitive | NEGative}

assignment = {pod <MS> _specf,pod <MS§-1> spec,...pod <LS spec>]}

pod <MSILS> = pod number, MS being the highest pod munber assigned and LS is the lowest pod
mumber assigned

_spec = number equal to or greater than 0 (zero) but less or equal to 65535

value = voltage (real number) -9.9 1o + 9.9

Figure 13-1. TFORmat Subsystem Syntax Diagram

TFORmat Subsystem
13-1

www.valuetronics.com



TFORmat

TFORmat

selector

The TFORmat selector is used as part of a compound header to access
those settings normally found in the Timing Format menu. It always
foliows the MACH: ne selector because it selects a branch directly below
the MACHine level in the language tree.

Command Syntax:  :MACrine{1|2}: TFORmat

Exampte: QUTPUT XXX “ MACHIne 1. TFORmat: LABe!?*

TFORmat Subsystem
13.2

www.valuetronics.com



LABel

Command Syntax:

where:

<name >

< polarity >
< assignment >
pod <MS|LS>

_spec

Example:

LABel

command/query

The LABel command aliows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The pod number order and the assignment (number) is significant. The
order s assumed to be the highest pod number first {lefi-most) followed
by any other assigned pods in decreasing pod number order. When
viewing the assignment valoe in binary (base 2), the binary value
represents the bit values in the label. A "1" in a bit position means the
associated channel in the pod 1s included in the label. A "0"in a bit
position means the associated channel in the pod 1s excluded from the
label. Since pods contain 16 channels, (21(’} -1 1s the maximum value for
the pod specification and 0 1s the minimum value.

The LABel query returns the current definition for the selected (by name)
label, If the label does not extst, nothing is returned,

:MACHIne{1}2}:TFORmat:LABel <name >, <polarity >, < assignment >

W

string of up to & alphanumeric characters

{P{Sitive {NEGative}

{pod <MS>_spec[pod <MS8-1>_spec,..pod<LS-spec>]}

1w pod number, MS being the highest pod number assigned and LS being the lowest
pod number assigned

o= number equal to or greater than © {zero) but less than or equal to §5535

B

QUTPUT XXX; “MACHine 1;TFORmat: LABel "A' POSITIVE, 66535,127 0

TFORmat Subsystem
133

www.valuetronics.com




LABel
U

Query Syntax: :MACHine{1}2}; TFORmat:LABel? <name >

Returned Format:  [:MACHine{1|2}:TFORmat:LABel] <name >, <polarity >, <assignment > <NL>

Example: 10 DIM Lb$ [100]
20 OUTPUT X0 MACHINE 1. TFORMAT: LABEL? DATA™

30 ENTER XXX, LbE
40 PRINT Lb$
50 END

TFORmat Subsystem
13-4

www.valuetronics.com



REMove

Command Syntax:

where:

<pame >

Examples:

RENMove

command

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

‘MACHIne{1|2}:TFORmat:REMove {<name > [ALL}

= string of up to § alphanumetic characters

OUTPUT XX MACHIne 1. TFORmat: REMove "A™
or
OUTPUT X0¢MACHIne L TFORmat: REMove ALL"

TFORmat Subsystem
13-5

www.valuetronics.com




THReshold

THReshold

Command Syntax:

where:

N>

< vaiue >
TTL

ECL

Example:
Query Syntax:

Returned Format:

Example:

TFORmat Subsystem
13-6

command/query

The THReshold command allows you io set the voitage threshold for a
given pod to ECL, TTL or a specific voltage from -9.9V to +9.9V in 0.1
volt increments. :

Note

The pod thresholds of pods 1, 2, and 3 can be set independenily.
The pod thresholds of pods 4 and 5 are slaved together; therefore
when vou set the threshold on pod 4 or 5, both thresholds will be
changed o the specified value.

The THReshold query returns the current threshold for a given pod.

‘MACHine {112}:TFORmat: THReshoid < N> {TTLIECL| <value >}

n= pod number {1]2!3}415}

© = voltage (real number} 8.8t0 +9.8
= default value of +1.8V

= gefault value of -1.3V

OUTPUT X0 MACHIne 1. TFORmat: THReshold 1 4.0"
:MACHIne {112} :TFORmat THReshold <N > 7"

[MACHIne{1]2}: TFORmat: THReshold < N>] <value > <NL >

10 DIM Value$ {100}

20 QUTPUT X000 MACHINE 1 TFORMAT THRESHOLD2?®
30 ENTER XXX Vaiue$

40 PRINT value$

50 END

www.valuetronics.com



TTRace Subsystem 14

introduction The TTRace Subsystem contains the commands avaitabie for the Timing
Trace Menu in the HP 1650A/51A logic analyzer. These commands are:
¢« AMODe
« DURation
¢« EDGE
s GLITch
¢« PATTem
o o
1
{ :TTRaoce rm@mJAMODeD-H space GLITeh ) 1 -
.‘"I-'.‘ TRANs i tionol ww/!
el AMCDE 7 )

. " | . .
e DuRet fon jm spoce | S e D

LT

R
el DURGL 00> F
I ™ ! ) prrm——— ey
EDGE ’———————-Dj{ space 1—-’] lebel. . nome }-—b-m EUYEFPEE by
e~ EDGE? U space =) tabel_nome |

T H e
-—."(GLITCT!‘\ : space %——-«i tobel..nome @W

- GLITch% —; spoce H fobei_nome |

- ] i ] i
-—’-(PATnern J spoce }-—'hl tabetoname —m{ , T POILErn_ S Frm——

[l
\'M'/F’ATTern?\——{ spoce M fope!_nome }

16510/5X 08

P/O Figure 14-1. TTRace Subsystem Syntax Diagram

TTRace Subsystem
14-1

www.valuetronics.com



GT = greater than

LT = less than

duration_valoe = real number

label name = swring of up to 6 alphanumeric characters
edge_spec = string of characters {R|F}T1X}

R = rising edge

F = falling edge

T = ioggling or cither edge

X = don’t care orignore this channel

glitch_spec = string of characters {*|.}

* = search for a gliich on this channel

. = ignore this channel

pattern_spec = swring in one of the following forms:
*#B(1X..." for binary

“#O01234367X..." for octal
"H#HOI123456789ABCDEFX.." for hex
"01234567859..." for decimal

FJO Figure 14-1, TTRace Subsystem Syntax Diagram

TTRace Subsystem
14-2

www.valuetronics.com



TTRace

Command Syntax:

Example:

TTRace

Selector

The TTRace selector is used as part of a compound header to access the
settings found in the Timing Trace menu. It atways follows the MACHine
selector because it selects a branch directly below the MACHine level in
the langnage tree.

‘MACHEne{1]2}:TTRace

OUTPUT XXX;:MACHIne 1: TTRace:GLITCH "ABC,".. *x»»

TTRace Subsystem
14-3

www.valuetronics.com




AMODe

Command Syntax:

wherg:

< acguisition_mode >

Example:

Guery Syntax:

Returned Format:

Example:

TTRace Subsystem
14-4

command/query

The AMODe command allows you to select the acguisition mode nsed for
a particular timing trace. The acquisition modes available are
TRANsitional and GLITc¢h.

The AMODe query returns the current acquisition mode.

‘MACHIne {112} TTRace:AMODe <acquisition_mode >

= {GLITeh ] TRANSsItonal}

OUTPUT XXX, “MACHine 1. TTRace: AMODe GLITch"
MACHIne 1:TTRace: AMODe?
[:MACHIne 1:TTRace: AMODe] {GLITCH | TRANSITIONAL}

10 DIV MS[100]
20 OUTPUT XXX " MACHINE1: TTRACE: AMODE?"
30 ENTER YO0 MS

40 PRINT M$

50 END

www.valuetronics.com




DURation

S
DURation command/query

The DURation command allows you to specify the duration qualifier to
be used with the pattern recognizer term in generaling the timing trigger,
The duration valee can be specified in 10 ns increments within the
{ollowing ranges:

s Greater than (GT) qualification - 30 ns to 10 ms.
s Lessthan (LT) quahification - 40 ns to 10 ms.
The DURation query returns the current pattern duration gualifier

specification.

Command Syntax: :MACHine{1|2}:TTRace:DURation {GT|LT}, <duration_vaiue >

where:
GT = greater than
LY = jess than
<duration_vaiue > = real number

Example: QUTPUT Y04 MACHIne 1. TTRace: DURation GT, 40.0E-8"
Query Syntax: :MACHine{1:2}:TTRace:DURation?
Returned Format:  [:MACHine{1!2}:TTRace:DURation] {GT|LT}, <duration_value> <NL >

Example: 10 DIM D$[100]
20 QUTPUT X0 ":MACHINE1: TTRACE: DURATION?”
30 ENTER Y00GD$
40 PRINT D
50 END

TTRace Subsystem
14-5

www.valuetronics.com



EDGE

EDGE , command/query

The EDGE command allows you to specily the edge recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in the given edge specification; therefore, a complete
specification could require several commands. The edge specification
uses the characters R, F, T, X to indicate the edges or don’t cares as
follows: '

R = rising edge

F = falling edge

T = toggling or either edge

X = don’t care or ignore the channel

The position of these characters in the string corresponds with the
position of the channels within the label. All channels without "X are
ORed together to lorm the edge trigger specification.

The EDGE query returns the edge specification for the specified label,

Command Syntax: MACHIne{1}2}:TTRace:EDGE <labei_name >, <edge_spec>

where:
<label_name> = string or up to 6 aiphanumeric characters
<gdge spec> = string of characters {RIF[T|X}

Exampie:  QUTPUT XXX “MACHIne 1:TTRace: EDGE 'POD T, XOOOMXR™

TTRace Subsystem
14-6

www.valuetronics.com



EDGE

R
Query Syntax: :MACHine{1]2}:TTRace:EDGE? «label_name >

Returned Format: [EMACHine{112):TTRace:] <labsl_name>,<edge_spec> <NL>

Example: 10 DiM E${100]
20 QUTRUT X0 “MACHINE1: TTRACE:EDGE? 'POD1™
30 ENTER XXX.E
40 PRINT E$
50 END

TTRace Subsystem
14.7

www.valuetronics.com



GLITch
R

GLITch command/query

The GLITch command aliows you to specify the ghtch recognizer term for
the timing analyzer trigger on a per label basis. Each command deals with
only one label in a given glitch specification; therefore, a complete
specification could reguire several commands, The glitch specification

o

uses the characters "*" {asterisk) and ™" {period).

where;
v (agteriskl 1= search {or a glitch on this channel
" {period} = ignore this channel

The position of these characters in the string corresponds with the
position of the channels within the label. Al channels with the "*" are
ORed 1ogether to form the glitch trigger specification.

The GLITch query returns the glitch specification for the specified label.

Command Symtax:  :MACHine{1]2}:TTRace:GLITch <label_name >, < giiteh_spec >

where:
<label_name> U= string of up 1o 6 alphanumeric characters
< glitch_spec> = string of characters {*|.}

Exampie:  OUTPUT XXX “MACHine 1: TTRace:GLIToh 'PODYT,"™*....... i

TTRace Subsystem
14-8

www.valuetronics.com



GLiTch

IR
Query Syntax: :MACHine1:TTRace:GLITch? <iabel_name >

Returned Format:  [MACHine1.TTRace:GL{Tch] <label_name >, <glitoh_spec> < NL>

Exampie: 10 DiM G8{100]
20 QUTPUT 3004 "MACHINET: TTRACE:GLITCH? "POD1"
30 ENTER XXX:G$
40 PRINT G$
50 END

TTRace Subsystem
14-9

www.valuetronics.com



PATTern

PATTern

Command Syniax:

whare:

<labe! _name >
< pattern_spec >

Example:

TTRace Subsystem
14-10

command/query

The PATTern command allows you to construct a pattern recognizer
term for the timing analyzer trigger on a per label basis, Each command
deals with only one label in the giver pattern; therefore, a complete timing
trace specification could require several commands. Since a iabel can
contain up to 32 bits, the range of the pattern value will be between 0 and
(232)»1. When viewing the value of a pattern in binary, the binary value
represents the bit values for the fabel inside the pattern recognizer term.
Since a pattern valoe can contain don’t cares and be represented in
several bases, the pattern specification parameter is handled as a string of
characters instead of a number,

The PATTern query returns the pattern spf:ciﬁcatibn for the specified
label in the base previously defined for the label,

:MACHIne{1]|2}:TTRace:PATTern <label_name >, < patiern_spec>

#

string of up to 8 aiphanumeric characiers
string in one of the following forms:

"#BO1X.,." for binary
"#01234867X..." for octal
‘#HOT2345678ABCDEFRX..." for hex
"0123456788..." for decimat

¥

CUTPUT XXX, "MACHine1:TTRace:PATTern 'DATA, '255™

www.valuetronics.com



PATTern

TR
Query Syntax: :MACHine{1|2}:TTRace:PATTem? <label_name >

Returned Format:  [MACHine{1|2}:TTRace:PATTern] <iabel_name >, < patiern_spec> <NL>

Example: 10 DIM P§[100]
20 QUTPUT X000 “MACHINEZ: TTRACE: PATTERN? 'DATA™
30 ENTER X00PS
40 PRINT P$
50 END

TTRace Subsystem
14.11

www.valuetronics.com



TWAVeform Subsystem 15

introduction The TWAVeform Subsystem contains the commands available for the
Timing Waveforms Menu in the HP 1650A/51A logic analyzer. These
commands are:

ACCumulate
DELay
INSert
MMODe
OCONdition
QOPATtern
OSEarch
OTIMe
RANGe
REMove
RUNTIl
SPERiod
TAVerage
TMAXimum
TMINimum
VRUNs
XCONdition
XOTime
XPATtern
XSEarch
XTiMe

® & & & 2 & © & P O * « & B+ ® S P G

TWAVeform Subsystem
15-1

www.valuetronics.com



Is : "

1
bopmd, J | I

CTWEVefarm b C;}—-——ﬂ-‘ ACCumu | ote )—‘—i spoce | \&} i

ctmd OFF M
Sl
bomel ACCumU | 0187 ) -

Nt

et DEL oy P—l'g space H delay_velve i

el 81 Oy 7

~ . frrm— |
o THGer F—imd Space ; bl I
L OVER | oy

MMOGE ——®- spoce - : L OFF —7
; ATr——— .
el PATTer s
: R—
e MMOD ?
~ T T =
s GOONG T tion b spoce L ENTering T
W\?CONM 1ian?
= OPATtern )—-G-z space ;ﬁﬁ lagbe i .name 5—’(’, lobel _putiern | —

7 1T
N H :
--G—M{BPA tern? j-s- space p-e- lobei.nome ;

—e-\ OSEarchn | space f—-’j cccurrencef—m

TRIGger

XMARKer
l—e{ OBEGreh?
—J\EEE_\W space J{—"— time.volue J

Il 01650808

PIO Figure 15-1. TWAVeform Subsvstem Syntax Diagram

TWAVeformm Subsystem
15-2

www.valuetronics.com



-—--(RANGQI—D‘! space -——b“ fime_ronge : -

=l RANGE? -
Nttt

[ REMove -

eid FUNT & I>->-5 spoce J}M—l—irun_unii _spec b -
ST,

ot FAINT 3 17}
h o~

P ™
L EPERIGg? ;
S —

!

I ™
ol TAVErGoe? } -

pNUAS A
=t TaAAK I mum? b
—

e ~
o TRATN I mum?

! VRUNS? }
{ VRUNS -

m-thCONditian spaze }—|—n £N?ermg/. i -
i i

Sl EXITing b—r
T ———,

—e XCONdition? -

i X0OT ime?

LT ] i H
ﬂXPATternf«-a——b-} spoce Pw lobel_name j-—o-\_z_/»—-—; tabel.poltern

T 1 [
—JXPATterH?f—ﬂ spoce —= icbel_nome }

T H H ST .
—a- XSEgron = spoce ?—-—h-f CCCurrence )-—-v-i e (L TRIGGeT prmmmmmr i
L —

7 ™

—# XSEaren? g -
R —

W@-———N{ space Ewﬁ-l timewvoive |

Sl KT IMe? b

GIEHDE04

FPiO Figure 15-1. TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem

15.3

www.valuetronics.com




delay_value = rea! number between -2500 5 and + 2500 5
bit_id = integer from G 1o 31

label_name = string of up o ¢ alphanumeric characters
label_pattern = string in one of the following forms:
"#BOIX..." for binary

"#QO1234567X..." for octal
"#IH0123456780ABCDEFX.." for hex

"0123456759..."for decimal

eccurrence = jnfeger

time_value = real number

label_id = string of one alpha and one numeric characier
time_range = real number between 100 ns and 10 ks
run_until_spec =

{OFF|LT, <value> |GT, <value > |INRange <valuc >, <value> |QUTRange <value >, <value >}
GT = greater than

LT = less than

value = real number

PO Figure 15-1. TWAVeform Subsvstem Syntax Diagram

TWAVeform Subsystem
15-4

www.valuetronics.com



TWAVeform

[
TWAVeform Selector

The TWAVeform seiector is used as part of a compound header to aceess
the settings found in the Timing Waveforms Menu. 1t always follows the
MACHine selector because it selects a branch below the MACHine level

in the command tree,

Command Syntax: MACHine{1|2}:TWAVeicrm

Example:  OUTPUT XXG":MACHIne 1 TWAVeiorm: DELay 100£-9¢

TWAVeform Subsystem
15-5

www.valuetronics.com



ACCumuiate

ACCumulate

Command Syntax;

where:

< setting >

Exampie:
Query Syntax:
Returned Format;

Exampie:

TWAVeform Subsystem
13-6

command/guery

The ACCumulate command controls whether the waveform display gets
erased between individual runs {accumulate off) or whether it
accumulates {accumulate on).

The ACCumaulale guery returas the current setting.

MACHINe {1} 21: TWAVeform: ACCumulate < setting >

n= {0|OFF} or {1|ON}

QUTPUT X0 MACHIne 1: TWAVetorm: ACCumulate ON®
:MACHIne {112} TWAVetorm: ACCumuiate?
[:MACHine{112}: TWAVeterm:ACCumulate ] {01} < NL>

10 DIM P§ [100]

20 GUTPUT 5000 MACHINE 1: TWAVEFORM: ACCUMULATE?"
30 ENTER XXX P$

40 PRINT P$

50 END

www.valuetronics.com




DELay

Command Syntax:

whars;

<delay_value >

Exampie:
Query Syntax:
Returned Format:

Example:

DElLay

command/qguery

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the timing wavelorm display. The
allowable values for delay are -2500 s 1o + 2500 5. In glitch acquisition
mode, as delay becomes large in an absolute sense, the sample rate is
adjusted so that data will be acquired in the time window of interest. In
transitional acquisition mode, data may not {all in the time window since
the sample period 1s fixed at 10 ns and the amount of time covered in
memory is dependent on how frequent the input signal transitions oceur,

The DELay query returns the current time offset (delay) value from the
trigger.

‘MACHine{ ]2} TWAVetorm:DELay <« detay_value >

= real number between 2500 s and +2500 s

OQUTPUT XXX “:MACHIne 1. TWAVetorm:DELay 100E-8"
‘MACHIne{1 |2} TWAVeform: DELay?
[}MACHiIne{1!2}: TWAVeform:DELay]} <time_value > <NL>

10 DIM Di§ [100]

20 DUTPUT XXX MACHINE L TWAVEFORM: DELAY?"
30 ENTER XXX DI

40 PRINT DI$

5D END

TWAVeform Subsystem
1587

www.valuetronics.com




INSert

iINSert command

The INSert command inserts waveforms in the iming waveform display.
The wavelorms are added from top to bottom. When 24 waveforms are
present, inserting additional waveforms replaces the last waveform .

The first parameler specifies the label name that will be inserted. The
second parameter specilics the label bit number or overlay.

IFOVERLAY is specified, all the bits of the label are displayed as a
composite overlaid wavelorm,

Command Syntax:  MACHIne{1]|2):TWAVeform:INSen < label_name > { <pit_id > | OVERIay}

where:

]

<label_name>
< bit_d>

string of up 1o 6 aiphanumeric characters
integer tfrom 0 to 39

"

Example:  OUTPUT XX("MACHIne 1: TWAVeform:INSer, "WAVE", 10"

TWAVeform Subsystem
13.3

www.valuetronics.com



MMODe

MMODe command/query

The MMODe (Marker Mode) command selects the mode controlling
marker movement and the display of the marker readouts, When
PATTern is selected, the markers will be placed on patterns, When
TIME is selected, the markers move on time. In MSTats, the markers are
placed on patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode,
Command Syntax: :MACHine{1[2}:TWAVetorm:MMODe {OFF|PATTern | TIME | M3Tats}
Example:  OUTPUT 300 “MACHine 1: TWAVeform: MMODe TIME"
Query Syntax: MACHine{1}2}:TWAVetorm:MMODe?
Returned Format:  [:MACHine{112}: TWAVeform:MMODe] < marker_mode > <NL>
where

<marker_mode> = {OFF|PATTemn [TIME|MSTais}

Exampie: 10 DIM M§ [100]
20 QUTPUT XX0C MACHINE 1. TWAVEFORM: MMODE?"
30 ENTER XXX M$
40 PRINT M$
50 END

TWAVelorm Subsystem
159

www.valuetronics.com



OCORNdition

R
OCORNdition

Command. Syntax;
Exampte:

Query Syntax:
Returned Format:

Exampie:

TWAVeform Sobsystem
15-10

command/query

The OCONdition command specilies where the O marker is placed. The
O marker can be placed on the entry or exit point of the OPATtern when
in the PATTern marker mode.

The OCONdition query returas Fhs current setting,
‘MACGHIne{1[2}: TWAVeiorm:OCONdition {ENTering |EXITing}
DUTPUT XXX, " MACHIne 1:TWAVetorm: OCONdition ENTERing”
MACHIne {1{2): TWAVetorm: QCONdition?

[:MACHIne {12} TWAVeform:OCONdition] {ENTering [EXITing} <NL>

10 DIM Oc$ [100]

20 QUTPLT 00G  MACHINE 1 TWAVEFORM: DCONDITION?
30 ENTER XX 0Ocs

40 PRINT Ocs

50 END

www.valuetronics.com



OPATtern

I
OPATtern command/query

The OPATlern command allows vou to construct a patiern recognizer
term for the O marker which is then used with the OSEarch criteria and
QOCONdition when moving the marker on patterns. Since each command
deals with only one label in the pattern recognizer, a complete
specification could require several commands. Since a label can contain
up to 32 bits, the range of the pattern value will be from O to (232)-1.
When viewing the value of a pattern in binary, the binary value represents
the bit values for the label inside the pattern recognizer term.

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker
is not placed on valid data, dashes (- - - -) are returned.

Command Syntax:  :MACHine[1]2): TWAVeform:OPATIern <label_name >, < label_pattern »

where:
<labet_name> = string of up o 6 alphanumeric characters
<label_pattern> = string in one of the foliowing forms:

*#BO1X..." for binary
“#Q01234567X..." for octal
*#HO123456789ABCDEFX..." for hex
"0123458789,, Hor decimal

Example;  OUTPUT XXX “MACHInet; TWAVeform:OPATtern 'A",511"

TWAVeform Subsystem
15.11

www.valuetronics.com



OPATtern

]
Quoery Syntax:  :MACHine{1]2}: TWAVeform:OPATtern? <label_name >

Returned Format:  [:MACHine{1]2}:TWAVeiorm:DPATtern} < iabel_name >,
<iabel_pattern> <NL>

Exarnple: 10 DM Op$ {100)
20 QUTPLIT XXX;": MACHINE 1: TWAVEFORM: OPATTERN? "A™
30 ENTER XXX Op$
40 PRINT Dp$
50 END

TWAVeform Subsystem
15-12

www.valuetronics.com



OSEarch

Command Syntax:

where:

< ongin >
< peourrence >

Example:
Query Syntax;
Returned Format:

Example:

OSEarch

command/query

The OSEarch command defines the search criteria for the O marker
which is then used with the associated OPATiern recognizer specification
and the GCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger or with the X
marker. The actual occurrence the marker searches for in the QPATtern
recognizer specification is determined by the occurrence parameter,
relative to the origin. An occurrence of 0 places a marker on the selected
origin, With a negative occurrence, the marker searches before the origin,
WHE a positive occurrence, the marker searches after the origin.

The OSEarch query returns the search criteria for the O marker.

‘MACHiIne{1|2}: TWAVetorm:OSEarch <oceurrence >, <origin>

{TRIGger | XMARKker}
integer

QUTPUT XXX; “MACHiIne 1: TWAVeform:OSEarch + 10, TRIGger”

:MACHIne {1 |2} TwAVetorm:O8Earch?

[:MACHIne{1]2}: TWAVetorm:Q8Earch] <occurrence >, < origin> < NL>

10 DiM Os$ {100]

20 OUTPUT XXX MACHINE 1: TWAVEF ORM: OSEARCH?"
30 ENTER XXX Os$

40 PRINT Os$

50 END

TWAVeform Subsystem
15-13

www.valuetronics.com




OTIMe

OTiMe

Command Syntax:

where:

<time_value >

Example:
Query Syntax:
Returned Format:

Example:

TWAVeform Subsystem
18-14

command/query

The OTFIMe command positions the O marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The OTIMe query returns the O marker position in time. If data is not
valid, the guery returns 9.9E37,

:MACHine {1]2}: TWAVeform:OTIMe <time_value >

= regl number

OUTPUT X, ":MACHIne 1 TWAVeform: OTIMe 30.0E-8"
:MACHINne {1} 2} TWAVeform: OTIMe?
[:MACHIne{1]2}: TWAVetorm:OTiMe ]} <time_vaiue > <NL>

10 DIM Ot$ [100]

20 QUTPUT XXX;*:MACHINE 1: TWAVEFORM:OTIME?"
30 ENTER XXX Ot§

40 PRINT Ot$

50 END

www.valuetronics.com




RANGe

Command Syntax:

where:

<iime_range >

Example:
Guery Syntax:
Returned Format:

Example:

RANGe

command/query

The RANGe command specifies the full-screen time in the liming
waveform menu. It is eguivalent to ten times the seconds-per-division
setting on the display. The allowable values for RANGe are from 100 ns
to 10 ks.

The RANGe query returns the current fuli-screen time.

‘MACHIne {1 |2} TWAVetorm:RANGe <time_value >

;1= real nurber between 100 ns and 10 ks

OQUTPUT X4 MACHIne 1: TWAVeform: RANGe 100E-9"
:MACHIne {1 |2} TWAVeform:RANGe?
[:MACHIne {12} TWAVetorm:RANGel <time_value > <NL >

10 DIM Rg§ [100]

20 QUTPUT XXX MACHINE1: TWAVEFORM: RANGE?"
30 ENTER XXX Rg$

40 PRINT Rg$

50 END

TWAVeform Subsystem
15-18

www.valuetronics.com




REMove
[

REMove command

The REMove command deletes all waveforms from the display.
Command Syntax: :MACHIne{1]2}: TwaVetorm:REMove

Exampie:  QUTPUT XX04MACHIne 1:TWAVeiorm: REMove”

TWAVeiorm Subsystem
15-16

www.valuetronics.com



RUNTII

w
RUNTI! command/query

The RUNTI! {run until} command defines stop criteria based on the time
between the X and O markers when the trace mode 15 in repetitive. When
OFF is selected, the analyzer wili run untif either the STOP key is pressed.
or the STOP command is sent. Run until the time between X and O
marker options are:

OFF

Less Than (LT} a specified time value

Greater Than (GT) a specified time value

In the range (INRange) between two time values

Out of the range (OUTRange) between two time values

o % 9 @ @

End pomits for the INRange and OUTRange should be at least 10 ns apart
since this is the minimum time at which data is sampled.

The RUNTI] query returns the current stop criteria,

Command Syntax:  :MACHine{1]2}:TWAVetorrm: RUNTIl < run_until_spec >

where:
<run_until_spec>  1={0FF|LT, <value > {|GT, <value > |INRange <value >, <valus >
IOUTRange <vaiue >, <value >}
<value> 1= real number

Example: QUTPUT X0 “MAGCHIne 1: TWAVetorm:RUNTI GT,800.0E-8¢

TWAVeform Subsystem
15-17

www.valuetronics.com



RUNTII

T
Query Symiax:  :MACHiIne{1]2): TWAVeform:RUNTI?

Returned Format:  [:MAGHIne{1}2)}: TWAVeform:RUNTHl} < run_until_spec> < NL>

Example: 10 DIM Rus [100]
20 OUTRUT XX%  MACHINE 1 TWAVEFORM:RUNTIL?"
30 ENTER XXX Ru$
40 PRINT Ru$
50 END

TWAVeform Subsystem
158-18

www.valuetronics.com



SPERiod

SPERiod query
The SPERi}od query returns the sample period of the last run.
Query Syntax:  :MACHine{1]2};TWAVetorm: SPERiod?
Returned Format:  [MACHIne{1|2}: TWAVeicrm: SPERiod] <time_value> < NL>

where:

<time_value> . = real number

Example: 10 DiM Sp$ [100]
20 QUTPUT XXX MACHINET: TWAVEFORM: SPERIQD?"
30 ENTER XXX 808
40 PRINT Sp$
53 END

TWAVeform Subsystem
15-19

www.valuetronics.com



TAVerage

TAVerage

Query Syntax:
Returned Format:

where:

<time_vaiue >

Example:

TWAVeform Subsystem
15-20

query

The TAVerage guery returns the value of the average time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

‘MACHIne {12} : TWAVetorm: TAVerage?

[:MACHIne {12} TWAVetorm: TAVerage] <time_vaiue> <NL>

s raal numiber

10 DM Tv$ 1100]

20 QUTPUT XXX MACHINE 1: TWAVEFORM: TAVERAGE?"
30 ENTER XXX Tvs

40 PRINT Tvg

50 END

www.valuetronics.com



TMAXimum

[T
TMAXimum _ gquery

The TMAXimum query returns the value of the maximum time between
the X and O markers. If there is no valid data, the query returns $.9E37.

Query Syntax: :MACHine{1]2}:TWAVeform: TMAXimum?
Returned Format:  [[MACHine{1]2}:TWAVeform: TMAXimum] < time_value > <NL >

where

<time_value> 1= real number

Example: 10 DIM Tx$ [£00]
20 GUTPUT X004 MACHINE £ TWAVEFORM TMAXIMUM?"
230 ENTER XXX Tx$
40 PRINT Tx$
50 END

TWAVeform Subsystem
15-21

www.valuetronics.com



TMINimum
R

-TMINimum query

The TMINimum query returns the value of the minimum time between
the X and O markers. If there is no valid data, the query returns 9.9E37,

Query Syntax: MACHiIne{1]2}:TwaVeform: TMINimum?
Returned Format:  1:MACHIne{1}2}:TWAVeform:TMiNimum] <time_value> <NL>
where:

<time_value> 1= real number

Example: 10 DIM Tm$ {100]
20 GUTPUT XX0GH MACHINE 1 TWAVEFORM: TMINIMUM?®
30 ENTER XX Tm$
40 PRINT Tms$
50 END

TWAVeform Subsystem
1522

www.valuetronics.com



VRUNs

Query Syniax:
Returned Format:

where:

<valid_runs >
<total_runs >

Example:

VRUNs

query

The VRUNs query returns the number of valid runs and total number of
runs made. Valid runs are those where the patiern search for both the X
and O markers was successful resulting in valid delta time measurements.

iMACHIne {112} TWAVeform:VRUNs?

[:MACHine{1]2}:TWAVeform:VRUNs] <valid_runs >, <total_runs> <NL>

1= ZOTO Or positive integer
1= Zero or positive integer

10 DIM Vr§ [100]

20 QUTPUT X0CMACHINE 1: TWAVEFORM VRUNS?"
30 ENTER OO s

40 PRINT Vr$

50 END

TWAVeform Subsystem
15.23

www.valuetronics.com



XCONdition
S

XCONdition _ command/query

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATlern when
in the PATTern marker mode.

The XCONdition: query returns the current setting.
Command Syntax: MACHIne{1|2}:TwAVetorm: XCONgition {ENTering | EXITing}
Example:  QUTPUT XXX “MACHine . TWAVetorm:XCONdition ENTering"
Query Syniax:  MACHine{1|2}: TWAVeform:XCONdition?
Returned Format:  [MACHIne {1]2}: TwAVeform: XCONdition] {ENTaring | EXiTing} < NL>

Exarmple: 10 DIM Xes [100}
20 DUTPUT X004 MACHINE 1 TWAVEFORM: XCONDITION?
30 ENTER XXX Xct
40 PRINT Xc$
50 END

TWAVeform Subsystem
15-24

www.valuetronics.com



XOTime

XOTime query

The XOTime guery returns the time from the X marker to the O marker.
If data 1s not valid, the query returns 9.9E37.

Query Synmtax:  :MACHiIne {1]2}: TWAVetorm:XOTime?
Returned Format:  [:MACHine{1{2}: TWAVetorm:XOTime] < time_value > < NL >

where:

<time_value> = real number

Exampie: 10 DIM Xot§ [100]
20 OUTPUT X0UMACHINE 1 TWAVEFORM: XOTIME?"
30 ENTER X0 Xot$
40 PRINT Xot$
50 END

TWAVeform Subsystem
15.25

www.valuetronics.com



XPATiern
[

XPATtern command/qguery

The XPATtern command allows you 1o construct a patiern recognizer
term for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since each command
deals with only one label in the patiern recognizer, a complete
specification could require several commands. Since a label can contain
up to 32 bits, the range of the patiern value will be from 0 to (23?‘}-1.
When viewing the value of a pattern binary, the binary value represents
the bit values for the label inside the pattern recognizer term.

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name, In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker
1s not placed on valid data, dashes (- - - -} are returned.

Command Syntax: MACHIne{1]2)}:TWAVeform:XPATtern <iabel_name >, <label pattern >

where:
<lapel_name> 1= siring of up to 6 alphanumeric characters
<label_pattern> = string in one of the foliowing forms:

‘#BO1X,.." for binary
"#01234567X..." for octal
"#H0123456T80ABCDEFX. " for hex
"0123456788... for decimai

Example: OQUTPUT X0 “MACHine 1: TWAVeform:XPATtern 'A" 511"

TWAVeform Subsystem
158-26

www.valuetronics.com



XPATtern

]
Query Syntax: MACHine{1|2}:TWAVeform:XPATtern? <label_name >

Returned Format:  ['MACHine{1|2}:TWAVetorm:XPATtern] < label_name >
<label_paftern> <NL>

Exampie: 10 DIM Xp$ [100]
20 OUTPUT X000 : MACHINE 1: TWAVEFORM: XPATTERN? 'A"

30 ENTER XXX Xp$
40 PRINT Xp$
50 END

TWAVeform Subsystem
15-27

www.valuetronics.com



XSEarch

XSEarch

Command Syntax;

where:

< origin >
< pecutrence >

Example:
Guery Syntax:
Returned Format:

Exampie:

TWAVetorm Subsystem
15828

command/query

The XSEarch command defines the search eriteria for the X marker
which 1s then used with the associated XPATtern recognizer specification
and the XCONdition when moving markers on patterns. The origin
parameter tells the marker to begin a search with the trigger. The
occurrence parameter determines which occurrence of the XPATtern
recognizer specification, relative to the origin, the marker actually
searches for. An occurrence of 0 (zero} places 2 marker on the origin.

The XSEarch query returns the scarch criteria for the X marker,

MACHIne {1 |21 TWAVeform: XSEarch <ocourrence >, <origin=>

1= TRIGger
s integer

QUTPUT XXX, "MACHine 1: TWAVeform:X8Earch + 10, TRIGger
‘MACHIne {1 ]2} TWaAVetorm: XSEarch? <occurrence >, <origin >
[:MACHIne {12} TWAVeform:XSEarch] <ocecurrence >, <origin > <NL>

10 DIM Xs$ £100]
20 DUTPUT XXX“ MACHINE 1: TWAVEFORM:XSEARCH?"
30 ENTER XXX Xs$

40 PRINT Xs$

50 END

www.valuetronics.com



XTiMe

Command Syntax:

whare:

<time value >

Exampie:
Guery Syntax:
Returned Format:

Example:

XTiMe

command/query

The XTIMe command positions the X marker in time when the marker
mode is TIME. If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time. If data is not
vahd, the query returns 9.9E37,

:MACHIne {1121 TWAVetorm:XTIMe <time_value >

= real number

QUTPUT XXX, “MACHine 1. TWAVeform:XTIMe 40.0E-6
‘MACHIne {1]2} - TWAVetorm: XTIMe?
[:MACHIne {1]2}. TWAVeform:XTiMe] <time_vaiue > <NL >

10 DIM XS [100]
20 QUTPUT XX4GSMACHINE 1: TWAVEFORM: XTIME?*
30 ENTER XXX Xi$ '

40 PRINT Xt3

50 END

TWAVeform Subsystem
15829

www.valuetronics.com




SYMBol Subsystem 16

introduction The $YMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the HP 1650A/31A Logic
Anaivzer. The commands in this subsystem are:

s BASE
o PATTern
e RANG:
¢« REMove
s WIDTh
imwcwm\%ﬁ/‘ﬂ spoce I——-Jl labet_name | . i Blhary . |

| 1
é »

——
E—N HEXadecimai e

,

i

|

i

—-—(PATTGH‘)—*; spase I}—#—k lgbe i name ‘L—N ) Fﬁm‘!—w

(‘—-“L,)—v- sottern. volue ;——-——c—
--OJ’R’ANGE/' space ,...J‘ ienei.nome %WI

—
o]

I
i REMowve
. " i i i - H
St WD s spate = iobe|lnome s widthovaiue T
i L L - 1E510/88 10

P{O Figure 16-1. SYMBol Subsystem Syntax Diagram

SYMBol Subsystem
16-1

www.valuetronics.com



<label_name> = string of up to 6 alphanumeric characters
< symbol_name> = string of up to 16 aiphanumeric characlers
< pattern_value™> = string of one of the following forms:
“#BOIX.." for binary

"#O01234567X.." for octal

“#HOI234567894ABCDEFX..." for hexadecimal
"(1123436789..." for decimal

<start_value> = string of one of the following forms:
"#B01.." for binary

"#01234567.." for octal

“#HOI1234567894BCDEF...” for hexadecimal
"123456789..." for decimal

< stop_value> = swring of one of the following forms:
“#B01.." for binary

"#01234567.." for octal

"#HOI23456789ABCDEF... for]zexadeamaf
"0123456789..." for decimal

<width_value> = integer from 1o 16

PO Figure 16-1. SYMBol Subsvstem Syntax Diggram

SYMBol Subsystem
16-2

www.valuetronics.com



SYMBoI

Command Syntax:

Example:

SYMBol

selector

The SYMBol selector is used as a part of a compound header to access
the commands used 1o create symbols, It always follows the MACHine

selector because it selects a branch directly below the MACHine level in
the command tree.

:MACHIne {112}:SYMBol

QUTPUT XXX ":MACHIne 1:SYMBoL BASE "DATA’, BINary"

SYMBel Subsystem
16-3

www.valuetronics.com




BASE

BASE

command

The BASE command sets the base in which symbols for the specified label
will be displaved in the symbol menu, It also specifies the base in which
the symbol offsets are disptayed when symbols are used.

Note

BINary is not available for labels with more than 20 bits
assigned. In this case the base will default to HEXadecimal.

Command Syntax: :MACHIne{1|2}:8YMBoI:BASE <iabel_name >, <base_value>

where;

<label name> = string of up to 6 alphanumeric characters

<pase value> = {BINary | HEXadecimal | OCTal | DECimal | ASCil}

Example:  OUTPUT XXX *MACHine1:SYMBol:BASE 'DATA' HEXadecimal®

SYMBol Subsystem
16-4

www.valuetronics.com



PATTern

Command Syntax:

where:

<label name >
< symbol_name >
< pattern_vaiue >

PATTern

command

The PATTern command aliows you to create a pattern symbol for the

specified label. The patiern may contain "don’t cares” in the form of
KX Xs,

MACHIne {112}:SYMBol:PATTern < label_name >, < symboi_name >, <pattern_vaiue >

1]

string of up to 6 aiphanumeric characters
string of up o 16 glphanumeric characters
string of one of the following forms:
"#BOIX." for binary
“#Q01234567X.." for octal
“#HO123456788ABCDEFX..." for hexadecimal
"0123456788...* for decimal

Example:  QUTPUT XXX MACHIne1:SYMBol:PATTern "STAT', "MEM_RD", #HO1XX™

SYMBol Subsystem
16-8

www.valuetronics.com




RANGe

RANGe command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label.

Note

Don’t cares are not allowed in range symbols.

Command Syntax: :MACHIne{1|2}:SYMBol:RANGe <label_name > , < symbol_name >,
<start_value >, <stop_value >

where:

<label_name >
< symbo! _name >
<start_vajue >

string of up 10 & alphanumeric characters
string of up 16 16 alphanumeric characters

string of one of the foliowing forms:

*#B01.." tor binary
“#Q01234567.." for octal
*#H0123456788ABCDEF .. " for hexadecimal
"0123456789..." for decimal

string of one of the foliowing forms:

"#B01.." tor binary

"#Q01234587.." for octal
“#H0123456788ABCDEF.. " for hexadetimal
"0123456789..." for decimal

i

< stop_vaiue >

Example:  OUTPUT X00("MACHIne 1:SYMBoL RANGe 'STAT', tO_ACCESS', #HO0Q00','#+000F™

SYMBol Subsystem
16-6

www.valuetronics.com




REMove

[ .
REMove command

The REMove command deletes al! symbols from a specified machine.

Command Syntax: :MACHine{1|2}:SYMBot:REMove

Example:  OUTPUT »00¢"MACHIne 1:SYMBol: REMove”

SYMBol Subsystem
16-7

www.valuetronics.com



WIDTh

WIDTh command

The WIDTh command specifies the width {number of characters) in
which the symbol names will be displayed when symbols are used.

Note

The WIDTH command does not affect the displayed length of the
symbol offset vaiue.

Command Symtax: :MACHine{1!2}:SYMBol:WIDTh <label_name >, < width_value >

where:

<label name> = string of up to 6 alphanumeric characters

<width_vaiue> 1= integer from 110 16

Example:  OUTPLT XSG MACHINe 1:SYMBolWIDTh 'DATA B "

SYMBol Subsystem
16-8

www.valuetronics.com



Message Communication A
and System Functions

introduction This appendix describes the operation of instruments that operate in
compiiance with the IEEE 488.2 (syntax) standard. Although the
HP 1650A and HP 1651A logic analyzers are RS8-232C instruments, they
were designed 1o be compatible with other Hewlett-Packard IEEE 4882
compatible mstruments.

The IEEE 488.2 standard is a new standard. Instruments that are
compatible with [EEE 488.2'must also be compatible with IEEE 488.1
(HP-IB bus standard); however, TEEE 488.1 compatible instraments may
or may not conform to the IEEE 4882 standard. The IEEE 488.2
standard defines the message exchange protocols by which the instrument
and the controller will communicate. It also defines some common
capabilities, which are found in all IEEE 488.2 instruments. This
appendix also contains a few items which are not specilically defined by
TEEE 488.2, but deal with message communication or system functions.

Note

The syntax and protocol for RS-232C program messages and
response messages for the HP 16504/514 are structured very
similar to those described by 488.2. In most cases, the same
structure shown in this appendix for 488.2 will also work for
RS-232C. Because of this, no additional information has been
included for RS-232C.

Message Communication and System Functions
A-1

www.valuetronics.com



Protocols The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining
when it 1s appropriate for devices to talk or listen, and what happens when
the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer. The input buffer of the instroment is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send z string of commands to the
instrument which couid 1ake some time to execute, and then proceed to
talk to another instruraent while the first instrument is parsing and
executing commands.

Output Queune. The output quene of the instrument is the memory area
where all output data (< response messages > ) are stored until read by
the controller.

Parser. The instrument’s parser is the component that imterprets the
commands sent to the instrument and decides what actions shouid be
taken. "Parsing” refers to the action taken by the parser 1o achieve this
goal. Parsing and executing of commands begins when sither the
instrumaent recognizes a < program message terminator > (defined later
in this appendix) or the input buffer becomes full. If you wish to send a

- long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the < program message terminator >.

Message Communication and System Functions
A-2

www.valuetronics.com



Protocol Overview The instrument and controller communicate using < program message >
and <response message >s. These messages serve as the containers into
which sets of program commands or instrument responses are placed.
< program message > s are sent by the controller to the instrument, and
< response message > s are sent from the instrument to the controlier in

' response to a query message. A < query message > is defined as being a
< program message > which contains one or more gueries. The
instrument will only talk when it has received a valid quéry message, and
therefore has something to say. The controller should only attempt to
read a response after sending a complete guery message, but before
sending another < program message>. The basic rule to remember is
that the instrument will only talk when prompted to, and it then expects to
talk before being told to do something else.

Protocol Operation = When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root ievel of the command tree.

The instrument and the controller communicate by exchanging complete
< program message > s and <response message > 5. This means that the
controiler should always terminate a < program message > before
attempting {o read a response. The instrument will terminate <response
message > s except during a hardcopy output,

If & query message is sent, the next message passing over the bus should
be the < response message >. The controller should aiways read the
complete <response message > associated with a query message before
sending another < program message > to the same instrument.

The instrument allows the controiler to send muitiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this appendix, multipie queries in a query message are
separated by semicolons, The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

Message Communication and System Functions
A-3

www.valuetronics.com




Protocol Exceptions  If an error occurs during the information exchange, the exchange may not
be completed in a normal manner. Some of the protocoel exceptions are
shown below,

Command Error, A command error will be reported if the instrument
detects a syntax error or an unrecognized command header,

Execution Error. An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not aliow execution
of a requested command or guery.

Device-specific Error. A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device dependent
TEASON,

Query Error. A query error will be reporied if the proper protocol for
reading a query is not {ollowed. This includes the mterrupted and
unierminated conditions described in the foliowing paragraphs.

Message Communication and System Functions
A-d

www.valuetronics.com



Syntax The syntax diagrams in this appendix are similar to the syntax diagrams in

Diag rams the IEEE 488.2 specification. Commands and queries are sent to the
instrument as a sequence of data bytes. The allowable byte sequence for
each functional element is defined by the syntax diagram that is shown
with the element description.

The allowable bvie sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional, If there is a path from right to left
around one or more elements, that element or those elements may be
repeated as many times as desired.

L

Syntax This overview is intended to give a quick glance at the syntax defined by

Overview IEEE 488.2. It should allow you to understand many of the things about
the syntax you need to know. This appendix also contains the details of
the IEEE 488.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to
the instrument. A whole string of commands can therefore be broken up
into individual components.

Figure A-1 shows a breakdown of an example < program message> .
There are a few key items to notice:

L. A semicolon separates commands from one another. Each < program
message umit > serves as a container for one command. The < program
message unit > s are separated by a semicolon.

2. A < program message > 1s terminated by a <NL > {new line). The
recognition of the < program message terminator >, or <PMT >, by the
parser serves as a signal for the parser 1o begin execution of commands.
The <PMT> also affects command tree traversal {see the Programming
and Documentation Conventions chapter).

Message Communication and System Functions
A-5

www.valuetronics.com



3. Multiple data parameters are separated by a comma.

4, The first data parameter is separated from the header with one or more
spaces.

5. The header MACHINEL:ASSIGN 2,3 is an example of a compound
header. 1t places the parser in the machine subsystem until the <NL > is
encountered.

6. A colon preceding the command header returns you to the top of the
command tree.

Message Communication and System Functions
A-6

www.valuetronics.com



CTWAVEF ORM: OSEARCH 38 TRIGGER  DELAY 3.8 ns <NL>

S

<pragrom messoge unii>
TWAVEFORM :QOSEARCH 38, TRIGGER
NS

N

<command progrom neocders> <progrom heoder separailor>

<progrom date>

TWAVEF ORM: OSEARCH SP 36 . TRIGGER
f’ \ ‘\ ]\ /,/ {‘ \ :
/ l N | sp o, 5P
A B | Forx
/ | Y i / %
/ | | A
/ z ! / 3 \\
/ | \\ <white spoce> <white spoce> [<white spoce>
’f " . H
/ ! N\

\
/ \ e
DFOGrom mnemonic> . <RrOQEOMm MNemonic> <program dalc> <proegram doto separaotor>

T

3

<decime! numeric progrom date> <program datla>

30 TRIGGER

N

«progrom dota>
TWAVEFORM QSEARCH 30 TRIGGER

<program message unit seporators J
gB o ogp

f

<program messoge Lerminator>
| SP <hL>
<progrom messoge unit> Y

. . \
<white spoce> i <white spoce> BELAY 3.8 nsg

\
\

<while spoce> N

-
<progrom heoder> <progrom header seporoior> <progrom doato>
DELaY oF 3.8 ns

<white spocer <decimal program deto> <suffix progrom data»

38 SP nsg

<wnite spoge> <suffix muitipiier>

2}
16530813

Figure A-1. < program message > Parse Tree

<suffix unit>
s

Message Communication and Systern Functions

A-T

www.valuetronics.com




Device Listening  The listening syntax of IEEE 488.2 is designed to be more forgiving than
Syniax the talking syntax. This allows greater flexibility in writing programs, as
well as aliowing them to be easier to read.

Upper/Lower Case Equivalence. Upper and lower case letters are
equivalent, The mnemonic SINGLE has the same semantic meaning as
the maemonic single.

< white space >. <white space > is defined to be one or more characters
from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). <white
space > is used by several instrument listening components of the syntax.
1t is usually optional, and can be used to increase the readability of a

program.

i

E <white space 2

chorocier> |
i

54120/81L 38

Figure A-2. <white space >

Message Communication and System Functions
A-8 '

www.valuetronics.com



< program message>. The <program message > is a complete message
to be sent to the instrument. The mstrument will begin executing
commands once it has a complete < program message >, or when the
input buffer becomes full, The parser is also repositioned to the root of
the command free after executing a complete < program message >.
Refer to the "Tree Traversal Rules” in the "Programming and
Documentation Conventions” chapter for more details.

<program

T messoge unit

|
\
’ <program

5

- <grogrom
e i . messuge
H message unitb> E K
i H 1 terminglor>
!
é 1\
i
% }
L i 452028038

Figure A-3. <program message >

< program message unit>. The <program message unit > is the
container for individual commands within a < program message > .

(—b <commend message unilx

f
i
;
Sl <query message uniid S

541 20/BL40

Figure A-4. <program message unil >

Message Communication and System Functions
A9

www.valuetronics.com




<progrom

prog dalo
i separators
|

i

1

<tommond ////2;:::::;\\\\
progrom header gl Cprogrom doloy

hecqer) se:urotor>

Jiar- Ba3y20s8L 40
-

Figure A-5. <command message wnit >

<progrem decio
separator>

4FJ/// uary Lprogram N
srogram 4 hecder RN <progrom dalgr proeeemsiogemgie-
\\\ziiiir> | seporator>

B 5A120/BLAL
o

Figure A-6. < query message unit >

Message Communication and System Functions
A-10

www.valuetronics.com



< program message unif separator>, A semicolon separates < program
message unit >3, or individual commands.

<white Spocel i

4

SAI20/BL 62

Figure A-7. <program message unif separator >

< command program header >/ < query program header>. These

elements serve as the headers of commands or queries. They represent
the action to be taken.

i
|
e

Cwhite spoces - <gimple commond
N mmm;;;m;mwmmmwWJ"__7_T_—ﬂ" progrom hegder> )

|
i
|
|
|

T

b <comapound command
prograom heoder> )

<eammon command
]

A, N S
program header>

BA120/BL44

Figure A-8. <command program header>

Message Communication and System Functions
A-11

www.valuetronics.com



Where <simple command program header> Is defined as

—

Lprogran
mnemonic>

i

54120/8: 4%

Where <compound command program header > is defined as

<prograomn
MrEermen | ¢

<progrom
mAEMOr 1 e

541204845

Where <common command program header> is defined as

«—-—«-h-o%-b-

N

<progrom
mRemon o

N

S41207/BL4S

Where < program mnemonic > is defined as

<upper /lower
ccse alpha>

<upper/lower

Where <upperflower case alpha > is defined as a single ASCIT encoded

I/Mb case olpha>
i
) R _
VO, ( >
|
<digii> —————-}

B $2Z0/BL A5

byte in the range 41 - 54, 61 - 74 (65 - 90, 97 - 122 decimal).

Where <digit> is defined as a single ASCII encoded byte in the range 30 -

39 (45 - 57 decimal).

Where { _ ) represents an "underscore”, a single ASCli-encoded byte with the
vaiue 5F (95 decimal).

Figure A-8. <command program header> (continued)

Message Communication and System Functions

A-12

www.valuetronics.com




L <simple guery
I | progrem hegder> Y

-—~§-~—h- <white space>

¥

< S oGuer
h CoOMpoUNG Guery
proqrom hegder>

\ <common query
Brogrom heodee>

S 1 20/8L 46

Where <simple query program header> is defined as

<progrom
o] SETOD _____.,f/a\,__..
muemnes o> \J
$4120/BL46

Where < compound query program header > Is defined as

7’ : \ L <p.foq=lom [ - <prog ,am \/f‘\;\
] \/ mremen i ¢ \_/ Mremor : C>
L ) 54120/8L 46

Where < common guery program header > is defined as

N %
v CRrogrom P ’;
A N

A i emon I &>

JA1ZO/BLAL

Figure A-9. <guery program header >

Message Communication and System Functions
A-13

www.valuetronics.com




< program data>. The <program data> element represents the
possible types of data which may be sent to the instrument. The

HP 1650A/51A will accept the following data types: < character program
data>, < decimal numeric program data >, < suffix program data >,

< string program data >, and <arbitrary block program data>.

| |

m
— ! Hlock ;
me»n

$8120/8L47

o
-

Figure A-10. < program data >

progrom
T - b
mnermoen 1o

S4120/85 48

Figure A-11. <character program data >

Message Communication and System Functions
A-14

www.valuetronics.com



, <white
emonlissar

Y

spoces o <exponent> %m?7m‘-
|
! HW

Where <mantissa> is defined as

54120/8L4%

//”\\ <optionai ﬂM\ é . ;
(ww-—r\mk/»m\ J/——b— S te s <digity —Lw
i - i
3 ‘\\
\i I/ b —:__._ T
|
i \-WMQH/ [ el cgigits ——’T»w'/'Q—P «;?;D:?
| L | ts
| ~ i S B
., ) / N - 54120781 45
Where <optional digits > is defined as
: - Y

J‘

- <digit> ——2-7——>
1 |
| |

H4920/B.3

Where <exponent > is defined as

i

// = <while space>
\-./ !

<digil> -

Y

5412078050

Figure A-12. <decimal numeric program data >

Message Communication and Systern Functions

A-15

www.valuetronics.com



————®» <white spoce> P Couffix muits #- <suffix uniter ———

54120781 52 E

Figure A-13. <suffix program data >

Suffix Multiplier. The suffix multipliers that the 1nstrument will accept
are shown in table A-1.

Table A-1. <suffix mult >

Value Mnemonic
1EIR EX
1E15 FPE
1E12 T
1E@ G
1E6 MA
1E3 K
1E-3 M
1E-6 U
1E-S N
1E-12 P
1E-i5 F
1E-18 A

Suffix Unit. The suffix units that the instrument will accept are shown in
table A-2.

Table A-2. < suffix unit >

Suffix Referenced Unit
V Volt
S Second

Message Communication and System Functions
A-16

www.valuetronics.com



A

<insertied >

<non-gingle
quete char>

A

Al

<inseried >

<non-goghle
guste char>

412078153

Where <inserted '> is defined as a single ASCII character with the vaiue 27
(39 decimal}.

Where <non-single guote char > is defined as a single ASCII character of
any value except 27 (39 decimal).

Where <inserted "> is defined as a single ASCII character with the value 22
(34 decimal).

Where <non-double quote char> is defined as a single ASCIH character of
any value except 22 (34 decimal)

Figure A-14. <string program data >

Message Communication and Sysfem Functions

A-17

www.valuetronics.com




4

JE——

&

o
<Non—Ter . . P 4 <HB-Dit
p— T b adigity e —
‘ sigit> 8 ‘ data byte> I
- [
b
\ ;
N 0
SN # }._/
] I
] I
{ |
SN 1 <B-pit ' I/ \
——i s_e_., ._Z..,_..‘ !‘
\\?/ ) date byte>
!
| !
i I
% L 5412078154

Where <non-zero digit> is defined as a single ASCIH encoded byte in the

range 31 - 39 (49 - 57 decimal).

Where < 8-bit byte > is defined as an 8-bit bvte in the range 00 - FF (0 - 255

decimal}.

Figure A-15. <arbitrary block program data >

< program data separator>. A comma separates multiple data

parameters of a command from one another.

<white spoce> ———7~M\ s Tﬁ» <white space>

Figure A-16. < program data separator >

Message Communication and System Functions
A-18

£4120/BLE5

www.valuetronics.com




< pregram header separator >. A space separates the header from the
first or only parameter of the command.

| Cwhite Spaced g

BatznsaLbe
Figure A-17. < program header separator >

< pregram message ferminator>. The < program message terminator >
or < PMT> serves as the terminator to a complete < program

message >. When the parser sees a compiete < program message > it
will begin execution of the commands within that message. The <PMT>
also resets the parser to the root of the command tree.

|
T» <while spoce> 7—4»: ,\<\§i~/>j—-‘“@
| |
| (L)
- N

Where <NL = is defined as a single ASCll-encoded byte 04 (10 decimal).

¥

58 1Z0/BL YD

Figure A-18. <program message terminaior >

Messape Communication and System Functions
A-19

www.valuetronics.com



CSYSTEM: ARMBNC 1 TWAVEFORM: DELAY

3.BE-9 <NL>

[

<response Mmessuge unil> <response messoge unst seporostors

SYSTEM: ARMBNC 1

5
\
<response header> <response neadéer seporocior>
TBYSTEM: ARMBNC Sk

o \

N \

<Tesponse mnemonic> <regponse mremonic> <whiie spoce> <NR1 numeric response doia>

SYSTEM ARMBNC

i
H

'

<resmonse doto>

o

<response message unit>
CTWAVEFORM I DELAY 3.BE-8

“,

AN
<response header> <response heoder sepcralor>
CTWAVEFORM : DELAY SP

- :/\ T\

E

i

<response message lermingior>

Nl

<response dola>
3.88~9
e TkTE

<rezponse muemonic Cresponse MNEmonic> <white spoce> <NR2 numeric¢ response dotak

TWAVEF ORM DEL &Y

Figure A-19. <response message > Tree

Message Communication and System Functions
A-20

3.BE-8

1EH00/BLID

www.valuetronics.com



Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precise than the
listening syntax. This allows the programmer to write routings which can
easily mterpret and use the data the instrument 1s sending. One of the
implications of this is the absence of < white space > i the talking
formats. The instrument will not pad messages which are being sent to the
controller with spaces.

< response message> . This element serves as a complete response from
the instrument. It is the result of the instrument executing and buffering
the resuits from a complete <program message > . The complete

< response message > should be read before sending another < program
message > to the instrument.

£response

. Y
message unit ;dmm\
Senarators>
| |
i
1
|

|
|

L <response L eSBONsE MEsEoGe Y
[, N

message uniL> k terminalor>
g L

BAEDIBLET

Figure A-20. <response message >

< response message unit> . This element serves as the container of
individual pieces of a response. Typically a < query message unit > will
generate one < response message unit >, although a < query message
unit > may generate multiple < response message unit > 8.

< response header>. The <response header >, when retorned,
indicates what the response data represents.

Message Communication and System Functions
A-21

www.valuetronics.com



<simple
rEEpONEE —
hecder>

<compound
response —
hegder>

Lcommon
response [LE—————

heoder>

5412081 58

Where <simple response mnemonic > Is defined as

<response
M amon 1 &>

B4 TRG/BLSS

Where < compound response header > is defined as

!

f

|

i

P i
" 5

=

<response
mhemanic>

~
W(- \_L> <response I

\“// mremonic>

|
] J

S

B4126/8L60

Where <common response header> is defined as

LT

<tresponge
mnemonic>

54120/BLE

Figure A-21. <response message unit >

Message Communication and System Functions

A-22

www.valuetronics.com




<upper

{ case aipha> W
|
|
<upper i ; __ffﬂ\\ {\ -
e t o Lt R L
case olphoas 3 \\_/j
L——h» <digit> oo

5412078062
Where < response mnemonic > is defined as

Where <uppercase alpha > Is defined as a single ASCII encoded byte in the
range 41 - 34 (65 - 90 decimal).

Where { _ ) represents an "underscore”, a single ASCI-encoded byte with the
value SF (95 decimal).

Figure A-21. <response message unit> (Continued)

<response data>, The <response data> element represents the
various types of data which the instrument may return, These types
include: <character response data >, <nrl numeric response data >,
< nr3 numeric response data >, <string response data >, <definite
length arbitrary block response data >, and < arbitrary ASCII response

data>.

<response
[RT———— A S -
mnamaen i &>

541 Z0/BLED

Figure 4-22. < character response data >

Message Communication and System Functions
A-23

www.valuetronics.com



—T< >7—-}*">' <digit> A
: |

S4120/BL B4

Figure A-23. <nrl numeric response data >

. - -

(—"U\ i | % ‘
I T T e I
-...“?.4 <gigit> '\:/W <digit> —%
. !
| |
| |
]
; -
i ok
| et : 1
! ] {
et T )—-L> <digity
\\_// 3
\\TJ 5412078, 68
Figure 4-24. <nr3 numeric response data >
[ - i
!
<insaried'> g
11
<non-double |/ i
; quote chor>
5
|

5412078166
Figure A-25. <string response data >

Message Communication and System Functions
A24

www.valuetronics.com



e,
/”—\\ l 2}
e ! i L <B-pit
{ # (ﬁ;rciz‘im *- <gigit> A : date 2)Ir'e>
’ T i igit | l byt

54120/BL 67

Figure A-26. <definite length arbitrary block response data >

—y
o |

<ASETT ) s
“\;"3‘—* L PN { END

dote myte> - -

: ‘ 54120/BLER

|

Where <ASCII
data byte > represents any ASClI-encoded data byte except <NL > (4, 10
decimal).

Notes:

1. The END message provides an unanibiguous termination to an element
that containg arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of terminating this
element as well as terminating the < RESPONSE MESSAGE >, Itis only
sent once with the last byte of the indefinite block data. The NL is present
for consistency with the < RESPONSE MESSAGE TERMINATOR >,
Indefinite block data format is not supported in the HP 16504/51A.

Figure A-27. <arbitrary ASCH response data >

Message Communication and System Functions
A-25

www.valuetronics.com



<response data separator >, A comma separates multiple pieces of
response data within a single <response message umnif >,

B4120/BL 6%

Figure A-28. <response data separator >

< response header separator >, A space (ASCII decimal 32) delimits the
response header, if returned, from the {irst or oaly piece of data.

N

54120/8L 70

Figure A-29. <response header separator >

< response message pnit separator >. A semicolon delimits the .
< response message unit > s if multiple responses are returned.

—

S41Z008ELTY

Figure A4-30. <response message unit separator >

< pesponse message terminator >, A <response message lerminator >
{NL) terminates a compilete <response message >. It should be read
from the instrument along with the response itself.

Message Communication and System Functions
A-26

www.valuetronics.com




Common IEEE 488.2 defines a st of common commands, These commands

Commands perform functions which are common to any type of instruient. They can

therefore be implemented in a standard way across a wide variety of

instrumentaiion. All the common commands of IEEE 488.2 begin with an
asterisk. There is one key difference between the TEEE 488.2 common
commands and the rest of the commands found in this instrument, The
1EEE 488.2 common commands do not affect the parser’s position within
the command tree. More information about the command tree and tree

traversal can be found in the Programming and Documentation

Conventions chapter,

Table A-3. HP 16504/514°s Contmon Convmands

Command

Command Name

*CLS
*ESE
*ESE?
*ESR?
*IDN?
*OPC
*OPC?
*RET
*SRE
*SRE?
*STB?
*WAI

Clear Status Command

Event Status Enable Command
Event Status Enabie Query

Event Status Register Query
Identification Query

Operation Complete Command
Operation Complete Query

Reset (not impiemented on HP 1650A/51A)
Service Request Enable Command
Service Request Enable Query
Read Status Byte Query
Wait-to-Continue Command

Message Communication and System Functions

A-27

www.valuetronics.com




Status Reporting B

introduction The status reporting feature available over the bus is the serial poll. JEEE
488.2 defines data structures, commands, and commen bit definitions.
There are also instrument defined structures and bits,

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if the
gueue is not empty. For registers, the summary bit 15 set if any enabled bit
in the event register is set. The events are enabled via the corresponding
event enable register. Events captured by an event register remain set
until the register is read or cleared. Registers are read with their
assoctated commands. The "*CLS" command clears all event registers
and all queues except the output queve. If "*CLS" is sent immediately
following a < program message terminator > |, the output queue will also
be eleared.

Status Reporting
B-1

www.valuetronics.com



EVENT REGISTER
(MESR

ENARLE
REGISTER
(MESE)

m, EVENT
gC; REGISTERS
ILi (gsr)

ROC NOT IMPLEMENTED

0o
O
IRy
M
LR R L)
1T
o loom
amno

Z
2
vt
[l
o
B
(8]
»
Z

ENagLE
REGISTERS
LEGE

QUELES .
O-QUTPUT
M—MESSAGE

-
]

STATUS

ek
[T ] o peee—
o Y L
T el
mwn
o
s
i
m

T SERVICE
i o
EQEEEET 16500802
— REGISTER
(»SRED

Figure B-1. Status Bvte Struciures and Concepts

Status Reporting
B-2

www.valuetronics.com



Event Status Register The Event Status Register is a 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit wili only be cieared if the register 1s read.

Service Request The Service Request Enable Register s an 8-bit register. Each bit enables

Enable Register the corresponding bit in the states byte (o cause a service request. The
sixth bit does not logically exist and is always returned as a zere. To read
and write to this register use the *SRE? and *SRE commands.

Bit Definitions MAV - message available, Indicates whether there is a response in the
' output queue.

ESB - event status bit, Indicates if any of the conditions in the Standard
Event Status Register are set and enabled,

MSS - master summary status. Indicates whether the device has a reason
for requesting service. This bit is returned for the *STBE? query.

RQS - request service. Indicates if the device is requesting service. This
bit 1s retarned during a serial poll. RQS will be set to 0 after being read
via a serial poli (MSS s not reset by *STB?).

MSG - message. Indicates whether there i1s a message in the message
queue.

PON - power en. Indicates power has been turned on.
URQ - user request, Always 0 on the HP 1650A/51A.,
CME - command error. Indicates whether the parser detected an error.

Note

The error numbers andjor strings for CME, EXE, DDE, and
QYE can be read from a device defined queue (which is not part
of 488.2) with the query :SYSTEM:ERROR?.

EXE - execution error, Indicates whether a parameter was out of range,
or inconsistent with current settings.

Status Reporting
B-3

www.valuetronics.com



DDE - device specific error. Indicates whether the device was unable (o
complete an operation for device dependent reasons.

QYE - guery error, Indicates whether the protocol for queries has been
violated.

RQC - request control. Always 0 on the HP 1650A/51A,

OPC - operation complete. Indicates whether the device has compileted
all pending operations. OPC is controlled by the *OPC common
command. Because this command can appear after any other command,
it serves as a general purpose operation complete message generator.

LCL - remote to local. Indicaies whether a remote to loca!l transition has
occurred.

MSB - module summary bit. Indicates that an enable event in one of the
modules Status registers has occurred.

Key Features A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technigue
which can be used te find out if any operation is finished. The *OPC
command, when sent to the instrument after the operation of interest, will
sef the OPC bit in the Standard Event Status Register, If the OPCbit and
the RQS bit have been enabled a service request will be generated. The
commands which affect the OPC bit are the overlapped commands.

QUTPUT X" SRE 32 ; *ESE 1 ienables an OPC service request

Status Byte. The Status Byte contains the basic status information which
is sent over the bus in a serial poll. If the device 1s requesting service
{ROS set), and the controlier serial polis the device, the RQS bit is
cleared, The MSS (Master Summary Status) bit (read with *STB?) and
other bits of the Status Byte are not be cleared by reading them. Only the
RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command,

Status Reporting
B4

www.valuetronics.com



Error Messages C

This section covers the error messages that relate to the HP 1650A/51A
Logic Analyzers.

Device Dependent 200
Errors

201

202

203

300

Label not found
Pattern string invalid
Qualifier invalid
Data not avaiiable

RS-232C error

Error Messages
C-1

www.valuetronics.com




Command Errors 1) Command error (unknown command){generic error)
-101 Invalid character received
-110 Command header error
-111 Header delimiter error
-120 Numeric argument error
-121 Wrong data type (numeric expected)
123 Numeric overflow
-129 Missing numeric argument
-136 Non numeric argument error (character,string, or block)
-131 Wrong data type (character expected)
-132 Wrong data type (string expected)
-133 Wrong data type (block type #D required)
~134 ;{)ata overflow (string or block too long)
-13% Missing non numeric argument
~142 Too many arguments
-143 Argument delimiter error

-144 Invalid message unit delimiter

Error Messages
C-2

www.valuetronics.com



Execution Errors 206 No Can Do (generic execution error)
-201 Not executable in Local Mode
-202 Settings lost due to return-to-local or power on
-203 Trigger ignored
211 Legal command, but settings conflict
-212 Argument out of rangs
-221 Busy doing something else
-222 Insufficient capability or configuration
-232 Output buffer full or overflow
-240 Mass Memory error (generic)
-241 Mass storage device not present
242 No media
-243 Bad media
244 Media full
-245 Directory full
-246 File name not found
-247 Duplicate file name

-248 Media protected

Error Messages
C-3

www.valuetronics.com



irternal Errors

Error Messages
C-4

-300 Device Failure (generic hardware error)
-301 Interrupt fault

-302 System Error

~303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss {software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incompatible
-330 Power on test {ailed

340 Self Test failed

-350 Too Many Errors (Error gueue overflow)

www.valuetronics.com



Query Errors  -400 Query Error {generic)
-410 Query INTERRUFTED
-420 Guery UNTERMINATED
-421 Query received. Indefinite block response in progress
-422 Addressed to Talk, Notil'mg to Say

-430 Query DEADLOCKED

Error Messages
C-5

www.valuetronics.com



*CLS command  4-3
*ESE command  4-4
*FESR command  4-6
*IDN command  4-8
*QPC command 4-9
*RST command  4-10
*SRE command  4-11
*STB command  4-13
*WAI command 4-15
32767 3-5

99E+37 3.5

n= o 36

A

ACCumulate 15-6
Addressing the instrument
RS _232C 13
AMODe 144
Analyzer 1 Data Information 5-9
Angular brackets 1-3,3-6
Arm -4
ARMBnc command 5.4
Assign 75
AUTolcad command 6-4
Autoscale 7-6

Index

B
BASE 16-4
Baud rate 2-5
Binary 1-8
Bit definitions  B-3
Block Data

definition of 5-7
biock length specifier  5-7
Braces 3-6
BRANch 11-5/11-7

C

Cabie

RS-232C 22
CATalog command  6-5
Character data  1-8, 1-13
Character program data  1-8, 1-13
Clear To Send (CTS) 2-4
CLOCk 1G4
CME B-3
COLumo  12-6/12-7
COLumn command  8-3
COLumn query &-3
Command 1-4, 1-13

*CLS 43

*ESE 44

*OQPC 4-9

*RST 4-10

Index - 1

www.valuetronics.com




*SRE 4-11

*WAI 4-15
ACCumulate 15-6
AMODe 14-4
Arm  7-4

ARMBnc 5-4
Assign  7-5
AUToload 6-4
Auloscale  7-6
BASE  16-4
BRANch 11-3
CLOCk 10-4
COLumn  8-3, 12-6
COPY 6-6
CPERiod 10-5
DELay 15-7
DOWNigad 6-7
DSP 35-18
DURation 14-5
EDGE 146

FIND 11-8
GLITch 14-8
HEADer i-12, 520
INITialize 6-8
INSert 15-8

LARel 10-6,13-3
LINE 85, 129
LOAD:CONFig 6-9
LOAD:IASSembler  6-10
Lockout 2-8, 5-24
LONGform 1-12,5-25
Machine 7-3
MASTer 10-8
MENLU] 5-26
MMODe 12-10,15-9
NAME 727
OCONdition  15-10
OPATtern 12-11, 15-11
OSEarch 12-13 15-13
OTAG 12-13
OTIMe 9-5, 15-14
PACK 611

Index -2

PATTern 14-10, 16-3

PREstore 11-10

PRINt 5-31

PURGe 6-12

RANGe 131-12, 15-15, 16-6

REMove 10-9, 13-5, 15-16, 16-7

REName 6-13

RESTart 11-14

RMODe 532

Run Control  5-1

RUNTi 12-16, 15-17

SEQuence 11-16

SFORmat 10-3

SLAVe 10-10

SLISt 12-5

STARt 5-35

STOP 35-36

STORe 11-17

STORe:CONFig  6-14

SYMBol 16-3

SYStemuDATA 55

SYStemuSETup 5-33

TAG 11-19

TERM 11-21

TFORmat 13-2

Threshold 10-11, 13-6

TTRace 14-3

TYPE 7-8

WIDTh 16-8

WLISt 9.2

XCONdition 15-24

XPATtern 12.23, 15-26

XSEarch 12-25,15-28

XTAG 12-27

XTiMe 9.6, 15-29
Command cross-reference  3-11
Command errors  C-2
Command header 1-4
Command set organization 3-10
Command structure  1-1%, 3.7
Command tree  3-2/3-3
Command types  3-2

www.valuetronics.com




Common command header 1-6 DOWNIload command  6-7

Common commands  A-27, 3-2, 3-8, 4-1 DSP command 5-18
Complex qualifier 11-7 _ DTE 2-1
Compound command header 1-5 DURation 14-5

Compound header 3-4

Configuration file  3-16/1-11

Controliers  1-2 E
COPY command 6-6

CPERiod 105 EDGE 14-6/14-7

Eliipsis  3-6

D Enier statement  1-2
ERRor command 5-19
Error messages C-1

Data 12-8 ‘ ESB B-3
State {no tags 5-12 Event Status Register B-3
State {with either time or stata tags 513 EXE B-3
Timing Glitch  5-15 : Execution errors  C-3
Transitional Timing 5-15 Extended interface 2-3
DATA
command 5-5 F

Databits 2-5/2-6

7-Bit mode  2-6

8-Bitmode 2-6 Fit e 6.7
Drata Carrier Detect (DCD)  2-4 F}Ii‘g P c;}_ 8 ; 1.9
Data Command Configuration  5-8
Data Communications Equipment 2-1
Data Preamble 5-8 G
Data Section  5-12 ‘
Data Set Ready (DSR) 2-4

Data Terminal Equipment 2-1 GLITck 14-8/14-9

Data Terminal Ready (DTR) 2-3

DCE 21

DDE B-4 H

Decimal  1-8

Definite-iength block response data  1-13

Definitions  3-7 HEADEI. command 1-12, 5-20
DELay 157 Hexadecimal 1-8

Device address

RS-232C  1-3,2-7
Device dependent errors  C-1
DLISt Subsystem  8-1

Index-3

www.valuetronics.com



IEEE 4881 A-1
IEEE 48382 A-1
infinmity 3-3
Initialization 1-10
INITialize command  6-8
Input buffer A-2
INSert 15.8
Interface capabilities
RS§-232C 25
Interface select code  1-3
RS-232C 2.7
Internal errors C-4

L

LABel 10-6/10-7,13-3/ 13-4
1CL B4

LER command 3523

LINE 129

LINE command 8-5

LINE query &-5

Linefeed 3-7

Listening syntax  A-8
LOAD:CONFig command  6-9
LOAD:IASSembler command  6-10
Lockout command  2-8, 5-24
Longform 1.7

LONGform command  1-12, 5-25
Lowercase 1-7

M

Machine 7-3
MACHine Subsystem  7-1

Index - 4

www.valuetronics.com

MASTer 10-8

MAV B-3

MENU command  5-20
Message termunator  1-3
MMEMory subsystem  6-1
MMODe 12-10, 15-9

MSB B-4

MSG B3

MSS B-3

Multiple data parameters 1-8
Multiple numeric variables 1-16
Multiple program commands 1.9
Multiple queries  1-16
Multiple subsystems  1-9

N

NAME 7.7

NL 1-8 3.7

Notation conventions  3-6
Numeric base  1-8, 1-14
Numeric data  1-8
Numeric program data  1-8
Numeric variables  1-15

O

OCONdition  15-1¢
Octal 1-8

OPATtern 12-11/12-12, 15-11/15-12
OPC B-4

Operation Compiete B-4
OR notation 36
OSEarch 12-13,15-13
OSTate 9.3, 12-14
OTAG 12-15

OTIMe 98-8, 15-14
QUTPUT command 1-3




Ouiput queue  A-2
Output statement  1-2

Overlapped command  4-9, 4-15, 5-35/5-36

Overlapped commands  3-5

p

PACK command 6-11
Parity 2-5
Parse tree  A-7
Parser A-2
PATTern 14-10/14-11, 16-5
PON B-3
PREstore  11-10/11-11
PRINi command  5-3%
Program command 14
Program data 1-8, A-14
Program examples 3-9
Program message 1-4, A-9
Program message syntax 1-4
Program message terminator
Program message unit 14
Program query 1-4
Program syntax 1-4
Programming examples  1-1
Protocol A-3,2-5
None 2-5
XON/XOFF 246
Protocol exceptions  A-4
Protocols A-2
PURGe command 6-12

Q

Query 1-4,1-6,1-13
*ESE  4-4
*ESR  4-6
*IDN  4-8

*OPC 49

*SRE 411

*STB 4-13
AMODe 14-4
Arm 74
ARMBnc 5-4
Assign 7-5
AUToload 6-4
BRANch 11-5
CATalog 6-5
CLOCk 10-4
COLumn 8-3,12-6
CPERiod 10-5
DATA 12-8
DELay 157
DURation 14.5
EDGE 14-6
ERRor 5-19
FIND 11-8
GLITch 148
HEADer 5-20
LABel 1046, 13-3
LER 5-23

LINE 8.5 12.9
LOCKout 5-24
LONGform 5-25
MASTer 10-8
MMODe 12-10
NAME 7.7
OCONdition  15-10
OPATtern 12-11, 15-11
OSEarch 12-13,15-13
OSTate 9-3,12-14
OTAG 12-15
OTIMe 6-5, 15-14
PATTern 14-10
RANGe 11-12, 15-15
RESTart 11-14
RMOCDe 532
RUNTHl 12-16, 15-17
SEQuence 11-16
SETup 3533

Index - &

www.valuetronics.com




SLAVe 10-10
SPERiod 15-19
STORe 13-17
SYSTem:DATA 5.6
TAG 11-19
TAVerage 12-18, 15-20
TERM 11-2%
Threshold 10-11, 13-6
TMAXimem 12-19, 15-21
TMINimum 12-2¢, 15-22
TYPE 7-8
UPLoad 6-15
VRUNs 12-21,15-23
XCONdition  15-24
XOTag 12-22
XOTime 15-25
XPATtern 12-23,15-26
XSEarch 12-25, 15-28
XSTate 9-4,12-26
XTAG 12-27
XTIMe 9-6, 15-29
Query command  1-6
Query errors -5
Query response 1-11
Query responses  3-6
Question mark 1-6
OYE B4

R

RANGe 11-12/11-13, 15-15, 16-6
Receive Data (RD) 2-2/2.3
REMove 10-9, 13-5, 15-16, 16-7
REName command 6-13
Request To Send (RTS) 24
Response data  1-15

Response message A-21
RESTart 11-14/11-15

RMODe command 3-32

Root  3-2, 3-4, 3-8

Index -6

‘ROC B-4

ROS B-3

RS-232C  A-1,1-3,2-1,2-7

Run Control Commands  5-1
RUNTI 12-16/12-17, 15-17/ 15-18

S

section data format 5.7
Separator  1-4, A-18
SEGuence 11-16
Sequential commands  3-5
Service Request Enable Register B-3
SFORmat 10-3
SFORmat Subsystem  10-1
Shortform 1.7
Simple command header 1-4
SLAVe 10-10
SLISt 12-5
SLISt Subsystem  12-1
sp 37
Space 3-7
SPERiod 15-19
Square brackets 3-6
STAR! command 5-35
State Data (no tags) 5-12
State Data (with either time or state tags} 5-13
Status  1-17, B-1, 4-2
Status byte B-4
Status registers  1-17
Status reporting  B-1
Stop bits  2-5
STOP command 5-36
STORe 13-17711-18
STORe:CONFig command  6-14
STRace 11-4
STRace Subsystem  11-1
String variables 1-i4
Subsystem

DLIST 8-1

www.valuetronics.com



MACHImne 7-1
MMEMory 6-1
SFORmat 10-1
SLISt 12-1
STRace 1i-1
SYMBol  16-1
TFORmat 13-1
TTRace 14-1
TWAVeform 15-1
WLISt 61
Subsystem commands  3-2, 3-8
Suffix multipher  A-16
Suffix units  A-16
SYMBol 163
SYMBol Subsystem  16-1
Syntax A-B
Syntax diagram
Common commands 4-2
DLISt Subsystem  8-1
Machine Subsystem 7-1

MMEMory subsystem 6-2/6-3

SFORmat Subsystem  10-1
SL.ISt Subsystem 12-2
STRace Subsystem  11-1
SYMBol Subsystem  16-2
System commands  5-3
TFORmat Subsystem  13-1
TTRace Subsystem  14-1

TWAVeform Subsystem  15-2

_ WLISt Subsystem  9-1
Syntax diagrams 3.7

IEEE 4882 A-5
System commands  3-2, 3-§, 5-1

T

TAG 11-19/11-20

Talking syntax  A-21

Talking to the instrument  1-2
TAVerage 12-18, 15-20

TERM 11-21/13-22
Terminator 1-3, 1-8, A-26
TFORmat 13-2

TFORmat Subsystem 13-1
Three-wire Interface 2-2
Threshold 10-11, 13-6
Timing Glitch Pata  5-15
TMAXImum  12-19, 15-21
TMINimum 12-20, 15-22
Trailing dots  3-6
Transitional Timing Data  3-15
Transmit Data (TD) 2-2/2-3
Tree traversal rules  3-4
Trancation rule  3-1
TTRace 14-3

TTRace Subsystem  14-1
TWAVeform 15-5
TWAVelorm Subsystem  15-1
TYPE 7-8

U

UPLoad command  6-15
Uppercase  1-7
URQ B3

Vv

VRUNs 12-21, 15-23

W
White space  3-7
WIDTh 16-8
WLISt 9-2

WLISt Subsystem  9-1

Index -7

www.valuetronics.com




X

XCONdition 15-24

XOTag 12.22

XOTime 15-25

XPATtern 12-23/12-24, 15-26/15-27
XSEarch 12-25,15-28

XSTate 9-4, 12.26

XTAG 1227

XTIMe 9-6, 15-26

XXX 1-10/1-11, 1-14, 3.4, 3-6

Index - §

www.valuetronics.com



