PROGRAM MING MANUAL Digital Storage Oscilloscope MODEL: 2190D, 2190E ## www.valuetronics.com # **TABLE OF CONTENTS** | Using Status Registers | | |--------------------------------|-----| | About these Commands & Queries | | | How they are listed? | 3 | | How they are described? | | | Command Notation | 4 | | Table of Commands & Queries | 5 | | Commands & Queries | 12 | | Index | 132 | # **Using Status Registers** A wide range of status registers allows the oscilloscope's internal processing status to be determined quickly at any time. These registers and the instrument's status reporting system are designed to comply with IEEE 488.2 recommendations. Following an overview, starting this page, each of the registers and their roles are described. Related functions are grouped together in common status registers. Some, such as the Status Byte Register (STB) or the Standard Event Status Register (ESR), are required by the IEEE 488.2 Standard. Other registers are device-specific, and include the Command Error Register (CMR) and Execution Error Register (EXR). Those commands associated with IEEE 488.2 mandatory status registers are preceded by an asterisk <* >. ### **About these Commands & Queries** This section lists and describes the remote control commands and queries recognized by the instrument. All commands and queries can be executed in either local or remote state. The description for each command or query, with syntax and other information, begins on a new page. The name (header) is given in both long and short form at the top of the page, and the subject is indicated as a command or query or both. Queries perform actions such as obtaining information, and are recognized by the question mark (?) following the header. ### How they are listed? The descriptions are listed in alphabetical order according to their long form. Thus the description of ATTENUATION, whose short form is ATTN, is listed before that of AUTO SETUP, whose short form is ASET ### How they are described? In the descriptions themselves, a brief explanation of the function performed is given. This is followed by a presentation of the formal syntax, with the header given in Upper-and-Lower-Case characters and the short form derived from it in ALL UPPER-CASE characters. Where applicable, the syntax of the query is given with the format of its response. sd ### **Command Notation** The following notation is used in the commands: - < Angular brackets enclose words that are used as placeholders, of which there are two types: the header path and the data parameter of a command. - := A colon followed by an equals sign separates a placeholder from the description of the type and range of values that may be used in a command instead of the placeholder. - {} Braces enclose a list of choices, one of which one must be made. - [] Square brackets enclose optional items. - ... An ellipsis indicates that the items both to its left and right may be repeated a number of times. As an example, consider the syntax notation for the command to set the vertical input sensitivity: ``` <channel>:VOLT_DIV <v_gain> <channel> : = {C1, C2, C3, C4} <v_gain>: = 2 mV to 5 V ``` The first line shows the formal appearance of the command, with <channel> denoting the placeholder for the header path and <v_gain> the placeholder for the data parameter specifying the desired vertical gain value. The second line indicates that one of four channels must be chosen for the header path. And the third explains that the actual vertical gain can be set to any value between 2 mV and 5 V. 4 # **Table of Commands & Queries** | Short Form | Long Form | Subsystem | What the Command or
Query Does | |------------|-----------------|---------------|--| | ALST? | ALL_STATUS? | STATUS | Reads and clears
the contents of all
status registers. | | ARM | ARM_ACQUISITION | ACQUISITION | Changes acquisition state from "stopped" to "single". | | ATTN | ATTENUATION | ACQUISITION | Selects the vertical attenuation factor of the probe | | ACAL | AUTO_CALIBRATE | MISCELLANEOUS | Enables or disables automatic calibration. | | ASET | AUTO_SETUP | ACQUISITION | Adjusts vertical, time base and trigger parameters. | | AUTTS | AUTO_TYPESET | ACQUISITION | Selects the display type of automatic setup. | | AVGA | AVERAGE_ACQUIRE | ACQUISITION | Selects the average times of average acquisition. | | BWL | BANDWIDTH_LIMIT | ACQUISITION | Enables/ disables the bandwidth-limiting low-pass filter. | | BUZZ | BUZZER | MISCELLANEOUS | Controls the built-in piezo-
electric buzzer. | | * CAL? | *CAL? | MISCELLANEOUS | Performs complete internal calibration of the instrument. | | CHDR | COMM_HEADER | COMMUNICATION | Controls formatting of query responses. | | * CLS | * CLS | STATUS | Clears all status data registers. | | CM R? | CM R? | STATUS | Reads and clears the
Command error Register
(CM R). | | CONET | COMM_NET | COMMUNICATION | Specifies network addresses of scope and printers. | | CPL | COUPLING | ACQUISITION | Selects the specified input channel's coupling mode. | | CRMS | CURSOR_M EASURE | CURSOR | Specifies the type of cursor/parameter measurement. | |--------|-----------------|---------------|---| | CRST? | CURSOR_SET? | CURSOR | Allows positioning of any one of eight cursors. | | CRVA? | CURSOR_VALUE? | CURSOR | Returns trace values measured by specified cursors. | | CRAU | CURSOR_AUTO | CURSOR | Changes the cursor mode to auto mode. | | CSVS | CSV_SAVE | SAVE/ RECALL | Saves specified waveform data of CSV format to USB device. | | COUN | COUNTER | FUNCTION | Enables or disables the cymometer to display on the screen. | | CYMT | CYM OM ETER | FUNCTION | Returns the current cymometer value which displaying on the screen. | | DATE | DATE | MISCELLANEOUS | Changes the date/time of
the internal real-time
clock. | | DDR? | DDR? | STATUS | Clears the Device Dependent Register (DDR). | | DEF | DEFINE? | FUNCTION | Specifies math expression for function evaluation. | | DELF | DELETE_FILE | M ASS STORAGE | Deletes files from mass storage. | | DIR | DIRECTORY | M ASS STORAGE | Creates and deletes file directories. | | DTJN | DOT_JOIN | DISPLAY | Controls the interpolation lines between data points. | | * ESE | * ESE | STATUS | Sets the Standard Event
Status Enable register
(ESE). | | * ESR? | * ESR? | STATUS | Reads, clears the Event
Status Register (ESR). | | EXR? | EXR? | STATUS | Reads, clears the Execution error Register (EXR). | | FLNM | FILENAM E | M ASS STORAGE | Changes default filenames. | | FRTR | FORCE_TRIGGER | ACQUISITION | Forces the instrument to | | | | | make one acquisition. | |--------|----------------|---------------|---| | FVDISK | FORMAT_VDISK | M ASS STORAGE | Reads the capability of the USB device. | | FILT | FILTER | FUNCTION | Enables or disables the filter of specified source. | | FILTS | FILT_SET | FUNCTION | Selects the type of filter,
and sets the limit value of
filter. | | FFTW | FFT_WINDOW | FUNCTION | Selects the window of FFT. | | FFTZ | FFT_ZOOM | FUNCTION | Selects the zoom in/out times of FFT trace. | | FFTS | FFT_SCALE | FUNCTION | Selects the vertical scale of FFT trace. | | FFTF | FFT_FULLSCREEN | FUNCTION | Enables or disables to display the FFT trace full screen. | | GRDS | GRID_DISPLAY | DISPLAY | Selects the type of grid | | GCSV | GET_CSV | WAVEFORMTRANS | Specifies waveform data of format to controller. | | HM AG | HOR_M AGNIFY | DISPLAY | Horizontally expands the selected expansion trace. | | HPOS | HOR_POSITION | DISPLAY | Horizontally positions intensified zone's center. | | HCSU | HARDCOPY_SETUP | HARD COPY | Configures the hard-copy driver. | | *IDN? | *IDN? | MISCELLANEOUS | For identification purposes. | | INTS | INTENSITY | DISPLAY | Sets the grid or trace/text intensity level. | | ILVD | INTERLEAVED | ACQUISITION | Enables/disables random interleaved sampling (RIS). | | INR? | INR? | STATUS | Reads, clears INternal
state change Register
(INR). | | INVS | INVERT_SET | DISPLAY | Invert the trace or the math waveform of specified source. | | LOCK | LOCK | MISCELLANEOUS | Lock keyboard | | MENU | MENU | DISPLAY | Enables or disables to display the current menu. | | MTVP | MATH_VERT_POS | ACQUISITION | Controls the vertical position of math waveform of specified source. | | MTVD | MATH_VERT_DIV | ACQUISITION | Controls the vertical sensitivity of math waveform of specified source. | |--------|-------------------|---------------|--| | M EAD | M EASURE_DELY | FUNCTION | Selects the type of delay measure. | | OFST | OFFSET | ACQUISITION | Allows output channel vertical offset adjustment. | | * OPC | *OPC | STATUS | Sets the OPC bit in the
Event Status Register
(ESR). | | * OPT? | *OPT? | MISCELLANEOUS | Identifies oscilloscope options. | | PACL | PARAM ETER_CLR | CURSOR | Clears all current parameters in Custom, Pass/Fail. | | PACU | PARAM ETER_CUSTOM | CURSOR | Controls parameters with customizable qualifiers. | | PAVA? | PARAM ETER_VALUE? | CURSOR | Returns current parameter, mask test values. | | PDET | PEAK_DETECT | ACQUISITION | Switches the peak detector ON and OFF. | | PERS | PERSIST | DISPLAY | Enables or disables the persistence display mode. | | PESU | PERSIST_SETUP | DISPLAY | Selects display persistence duration. | | PNSU | PANEL_SETUP | SAVE/ RECALL | Complements the *SAV/*RST commands. | | PFDS | PF_DISPLAY | FUNCTION | Enables or disables to
display the test and the
message options of
pass/fail. | | PFST | PF_SET | FUNCTION | Sets the X mask and the Y mask. | | PFSL | PF_SAVELOAD | SAVE/ RECALL | Saves or recalls the created mask setting. | | PFCT | PF_CONTROL | FUNCTION | Selects the "operate", "output" and the "stop on
output" which are the options of pass/fail. | | PFCM | PF_CREATEM | FUNCTION | Creates the mask of the pass/fail. | | PFDD | PF_DATEDIS | FUNCTION | Return the number of the | | | | | pass/fail monitor which | |--------|-----------------|----------------|----------------------------------| | | | | can be displayed on the | | | | | screen. | | * DOI | + 001 | 041/5/050411 | Recalls one of five non- | | * RCL | * RCL | SAVE/RECALL | volatile panel setups. | | | | | Recalls a file from mass | | REC | RECALL | WAVEFORMTRANS | storage to internal | | | | | memory. | | BCPN | RECALL PANEL | SAVE/ RECALL | Recalls a front-panel setup | | NOPIN | RECALL_PAINEL | SAVE/ RECALL | from mass storage. | | * BST | * BST | SAVE/RECALL | The * RST command | | noi | noi | SAVE/ RECALL | initiates a device reset. | | REFS | REF SET | FUNCTION | Sets the reference | | ner3 | HEF_SET | FUNCTION | waveform and its options. | | | | | Stores current state in | | *SAV | *SAV | SAVE/RECALL | non-volatile internal | | | | | memory. | | SCDP | SCREEN DUMP | HARD COPY | Causes a screen dump to | | 30D1 | SCILLE 1_DOIVIT | TIATID COLL | controller. | | SCSV | SCREEN SAVE | DISPLAY | Controls the automatic | | | CONTED V_CAVE | DIG DAT | screen saver. | | * SRE | *SBE | STATUS | Sets the Service Request | | - G 1L | O IL | 5171100 | Enable register (SRE). | | *STB? | * STB? | STATUS | Reads the contents of IEEE | | 0.2. | 0.2. | G | 488. | | STOP | STOP | ACQUISITION | Immediately stops signal | | | 0.0. | 7.000.01.01 | acquisition. | | STO | STORE | WAVEFORM TRANS | Stores a trace in internal | | | | | memory or mass storage. | | STPN | STORE PANEL | SAVE/RECALL | Stores front-panel setup | | | 0.0.= | | to mass storage. | | STST | STORE SETUP | WAVEFORM TRANS | Controls the way in which | | | | | traces are stored. | | SAST | SAM PLE STATUS | ACQUISITION | Return the acquisition | | | | | status of the scope | | SARA | SAM PLE RATE | ACQUISITION | Return the sample rate of | | | = | | the scope | | | | | Return the number of | | SANU | SAM PLE_NUM | ACQUISITION | sampled points available | | | | | from last acquisition and | | | | | the trigger position | | SKEW | SKEW | ACQUISITION | Sets the skew of specified | | SET50 | SETTO%50 | FUNCTION | trace. Sets the trigger level of | | SE13U | 3E11U%3U | FUNCTION | æts trie trigger ievel of | | | | | the trigger source to the | |-------|----------------|----------------|-------------------------------| | | | | centre of the signal | | | | | amplitude. | | | | | Sets the type of the | | SXSA | SINXX_SAMPLE | ACQUISITION | interpolation. | | | | | Modifies the time base | | TDIV | TIME_DIV | ACQUISITION | setting. | | | | WAVEFORM | Produces a complete | | TM PL | TEM PLATE | TRANSFER | waveform template copy. | | | | THAT ET | Enables or disables the | | TRA | TRACE | DISPLAY | display of a trace. | | | | | Executes an ABM | | * TRG | * TRG | ACQUISITION | command. | | | | | Sets the coupling mode of | | TRCP | TRIC COLIBIING | ACOLUSTION | | | INCP | TRIG_COUPLING | ACQUISITION | the specified trigger source. | | | | | Sets the time at which the | | TRDL | TRIG_DELAY | ACQUISITION | | | | | | trigger is to occur. | | TDIV | TDIO 15/5 | A COLUCITION | Adjusts the trigger level of | | TRLV | TRIG_LEVEL | ACQUISITION | the specified trigger | | TDIAD | TRIGULAGE | ACCUMENTAL | source. | | TRM D | TRIG_M ODE | ACQUISITION | the trigger mode. | | TRSE | TRIG SELECT | ACQUISITION | Selects the condition that | | | | | will trigger acquisition. | | TDO | TDIO 01005 | A COLUMNIAN | Sets the trigger slope of | | TRSL | TRIG_SLOPE | ACQUISITION | the specified trigger | | | | | source. | | UNIT | UNIT | ACQUISITION | Sets the unit of specified | | | | | trace. | | VPOS | VERT POSITION | DISPLAY | Adjusts the vertical | | | | | position of the FFT trace. | | VDIV | VOLT DIV | ACQUISITION | Sets the vertical | | | _ | | sensitivity. | | | | | Controls the vertical | | VTCL | VERTICAL | ACQUISITION | position of the slope | | | | | trigger line. | | WF | WAVEFORM | WAVEFORM TRANS | Gets the waveform from | | | | | the instrument. | | = | | | Specifies amount of | | WFSU | WAVEFORM_SETUP | WAVEFORMTRANS | waveform data to go to | | | | | controller. | | | | | Prevents new analysis | | WAIT | WAIT | ACQUISITION | until current has been | | | | 1 | completed. | | XYDS | XY_DISPLAY | DISPLAY | Enables or disables to | |------|------------|---------|------------------------| | i . | | | display the XY format | ## **Commands & Queries** **STATUS** ### ALL_STATUS?, ALST? Query **DESCRIPTION** The ALL_STATUS? Query reads and clears the contents of all status registers: STB, ESR, INR, DDR, CMR, EXR and URR except for the MAV bit (bit 6) of the STB register. For an interpretation of the contents of each register, refer to the appropriate status register. The ALL_STATUS? Query is useful in a complete overview of the state of the instrument QUERY SYNTAX ALL STatus? RESPONSE FORM AT ALL_STatus STB.<value>.ESR.<value>.INR.<value>.DDR.<value>.C MR,<value>,EXR,<value>,URR,<value> <value> : = 0 to 65535 **EXAM PLE** The following instruction reads the contents of all the status registers: Command message: ALST? Response message: ALST STB, 0, ESR, 52, INR, 5, DDR, 0, CMR, 4, EXR, 24, URR, 0 **RELATED COM M ANDS** * CLS, CM R?, DDR?, * ESR?, EXR?, * STB?, URR? 12 ## ARM_ACQUISITION, ARM Command **DESCRIPTION** The ARM_ACQUISITION command enables the signal acquisition process by changing the acquisition state (trigger mode) from "stopped" to "single". COM M AND SYNTAX ARM acquisition **EXAM PLE** The following command enables signal acquisition: Command message: ARM RELATED COM M ANDS STOP, * TRG, TRIG_MODE, WAIT ### ATTENUATION, ATTN Command /Query **DESCRIPTION** The ATTENUATION command selects the vertical attenuation factor of the probe. Values of 1, 5, 10, 50, 100, 500, and 1000 may be specified. The ATTENUATION? Query returns the attenuation factor of the specified channel. COM M AND SYNTAX <channel>: ATTeNuation <attenuation> <channel> : = {C1, C2, C3, C4} <attenuation>: = $\{1, 5, 10, 50, 100, 500, 1000\}$ QUERY SYNTAX <channel>: ATTeNuation? RESPONSE FORM AT <channel>: ATTeNuation <attenuation> **EXAM PLE** The following command sets to 100 the attenuation factor of Channel 1: Command message: C1:ATTN 100 #### **MISCELLANEOUS** ### AUTO_CALIBRATE, ACAL Command /Query **DESCRIPTION** The AUTO_CALIBRATE command is used to enable or disable the quick calibration of the instrument. The quick calibration may be disabled by issuing the command ACAL OFF. Whenever it is convenient, a *CAL? Query may be issued to fully calibrate the oscilloscope. The response to the AUTO_CALIBRATE? Query indicates whether quick -calibration is enabled. The command is only used in the CFL series instrument. COM M AND SYNTAX Auto_CALibrate <state> <state> : = {ON, OFF} QUERY SYNTAX Auto CALibrate? RESPONSE FORM AT Auto CALibrate < state> **EXAM PLE** The following instruction disables quick-calibration: Command message: ACAL OFF RELATED COM M ANDS * CAL? ### AUTO_SETUP, ASET Command **DESCRIPTION** The AUTO SETUP command attempts to identify the waveform type and automatically adjusts controls to produce a usable display of the input signal. COM M AND SYNTAX AUTO_SETUP **EXAM PLE** The following command instructs the oscilloscope to perform an auto-setup: Command message: **ASET** RELATED COM M ANDS AUTTS ### **AUTO_TYPESET, AUTTS** Command /Query **DESCRIPTION** The AUTO_TYPESET command selects the specified type of automatically adjusting which is used to display. COM M AND SYNTAX AUTO_TYPESET <type> <type>: = {SP,MP,RS,DRP,RC} SP means only one period to be displayed, MP means multiple periods to be displayed, RS means the waveform is triggered on the rise side, DRP means the waveform is triggered on the drop side, and RC means to go back to the state before auto set. QUERY SYNTAX AUTO_TYPESET? **RESPONSE FORM AT**AUTO_TYPESET <type> **EXAM PLE** The following command sets the type of automatic adjustment to multiple periods: Command message: AUTTSMP RELATED COM M ANDS ASET ### AVERAGE_ACQUIRE, AVGA Command /Query **DESCRIPTION** The AVERAGE_ACQUIRE command selects the average times of average acquisition. The response to the AVERAGE_ACQUIRE query indicates the times of average acquisition. COM M AND SYNTAX AVERAGE_ACQUIRE < time> <time> : = {4, 16, 32, 64,128,256} QUERY SYNTAX AVERAGE ACQUIRE? RESPONSE FORM AT AVERAGE ACQUIRE < time> **EXAM PLE** The following turns the average times of average acquisition 16: Command message: AVGA 16 ### BANDWIDTH_LIMIT, BWL Command /Query **DESCRIPTION** BANDWIDTH_LIMIT enables or disables the bandwidth-limiting low-pass filter. If the bandwidth filters are on, it will limit the bandwidth to reduce display noise. When you turn Bandwidth Limit ON, the Bandwidth Limit value is set to 20 MHz. It also filters the signal to reduce noise and other unwanted high frequency components. The response to the BANDWIDTH_LIMIT? Query indicates whether the bandwidth filters are on or off. COM M AND SYNTAX BandWidth_Limit <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode>]]] <channel>: = {C1, C2, C3, C4} <mode>: = {ON, OFF} QUERY SYNTAX BandWidth_Limit? **RESPONSE FORM AT**BandWidth_Limit <channel>, <mode>[, <channel>, <mode>[, <channel>, <mode>[, <channel>, <mode>111 **EXAM PLE** The following turns on the bandwidth filter for all channels, when Global BWL is on (as it is by default The following turns the bandwidth filter on for Channel 1only: Command message: BWLC1, ON #### **MISCELLANEOUS** ### **BUZZER, BUZZ** Command /Query **DESCRIPTION** The BUZZER command enables or disables sound switch. The response to the BUZZER? query indicates whether the sound switch is enabled. COM M AND SYNTAX BUZZer <state> <state> : = {ON, OFF} QUERY SYNTAX BUZZER? RESPONSE FORM AT BUZZER <state> **EXAM PLE** Sending the following code will let the oscilloscope turn on the sound switch. Command message:
BUZZ ON #### **MISCELLANEOUS** * CAL? Query **DESCRIPTION** The * CAL? query cause the oscilloscope to perform an internal self-calibration and generates a response. QUERY SYNTAX *CAL? RESPONSE FORM AT * CAL < diagnostics> <diagnostics> : = 0 0 = Calibration successful **EXAM PLE** The following instruction forces a self-calibration: Command message: * CAL? Response message: * CAL 0 RELATED COM M ANDS AUTO CALIBRATE #### COMMUNICATION ### COMM_HEADER, CHDR Command/ Query #### DESCRIPTION The COMM_HEADER command controls the way the oscilloscope formats responses to queries. There are three response formats: LONG, in which responses start with the long form of the header word; SHORT, where responses start with the short form of the header word; and OFF, for which headers are omitted from the response and units in numbers are suppressed. Unless you request otherwise, the SHORT response format is used. This command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in their long or short form regardless of the COMM HEADER setting. Querying the vertical sensitivity of Channel 1 may result in one of the following responses: COMM HEADER RESPONSE LONG C1:VOLT_DIV 200E-3 V SHORT C1:VDIV 200E-3 V OFF 200F-3 COM M AND SYNTAX Comm_HeaDeR < mode> <mode> : = {SHORT, LONG, OFF} QUERY SYNTAX Comm HeaDeR? RESPONSE FORM AT EXAM PLE Comm HeaDeR < mode> The following code sets the response header format to SHORT: Command message: CHDR SHORT STATUS *CLS Command **DESCRIPTION** The *CLS command clears all the status data registers. COM M AND SYNTAX * CLS **EXAM PLE** The following command causes all the status data registers to be cleared: Command message: * CLS **RELATED COM M ANDS** ALL_STATUS, CM R, DDR, * ESR, EXR, * STB, URR STATUS CMR? **DESCRIPTION** The CM R? Query reads and clears the contents of the Command error Register (CMR) --- see table next page---which specifies the last syntax error type detected by the instrument. QUERY SYNTAX CMR? RESPONSE FORM AT CMR < value> <value> : = 0 to 14 **EXAM PLE** The following instruction reads the contents of the CM R register: Command message: CM R? Response message: CMR0 RELATED COM M ANDS ALL STATUS?,* CLS #### ADDITIONAL INFORM ATION Command Error Status Register Structure (CMR) | Command Err | Command Error Status Register Structure (CMR) | | | |-------------|---|--|--| | Value | Description | | | | 1 | Unrecognized command/query header | | | | 2 | Invalid character | | | | 3 | Invalid separator | | | | 4 | Missing parameter | | | | 5 | Unrecognized keyword | | | | 6 | String error | | | | 7 | Parameter cannot allowed | | | | 8 | Command String Too Long | | | | 9 | Query cannot allowed | | | | 10 | Missing Query mask | | | | 11 | Invalid parameter | | | | 12 | Parameter syntax error | | | | 13 | Filename too long | | | #### **MISCELLANEOUS** ### COMM_NET, CONET Command /Query **DESCRIPTION** The COMM_NET command changes the IP address of the oscilloscope's internal network interface. The COMM_NET? query returns the IP address of the oscilloscope's internal network interface. COM M AND SYNTAX COM M _NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3> < ip add >:= 0 to 255 QUERY SYNTAX COMM_NET? **RESPONSE FORM AT**COM M_NET <ip_add0>, <ip_add1>, <ip_add2>, <ip_add3> **EXAM PLE** This instruction will change the IP address to 10.11.0.230: Command message: CONET 10.11.0.230 ### COUPLING, CPL Command /Query **DESCRIPTION** The COUPLING command selects the coupling mode of the specified input channel. The COUPLING? query returns the coupling mode of the specified channel. COM M AND SYNTAX <channel>: CouPLing <coupling> <channel> : = {C1, C2, C3, C4} <coupling> := {A1M, A50, D1M, D50, GND} The A of the <coupling> is alternating current. The D of the <coupling> is direct current. 1M and 50 is the impedance of input. Some series (CML) couldn't have the set of input impedance. QUERY SYNTAX <channel>: CouPLing? RESPONSE FORM AT channel>: CouPLing coupling> **EXAM PLE** The following command sets the coupling of Channel 2 to 50 ΩDC : Command message: C2: CPL D50 #### **CURSOR** ### CURSOR_MEASURE, CRMS Command /Query DESCRIPTION The CURSOR_M EASURE command specifies the type of cursor or parameter measurement to be displayed The CURSOR_MEASURE? query indicates which cursors or parameter measurements are currently displayed. | | Notation | |------|---| | HREL | Selected tract-cursor mode | | VREL | Selected manual-cursor mode and set to voltage type | | AUTO | Selected auto mode | | OFF | Cursors and parameters off | COM M AND SYNTAX CuRsor_MeaSure <mode> <mode>={ OFF,HREL,VREL,AUTO} QUERY SYNTAX CuRsor_MeaSure? RESPONSE FORM AT CuRsor_MeaSure <mode> **EXAM PLE** The following command determines cursor function is turned off: Command message: CRMSOFF RELATED COM M ANDS CURSOR VALUE, PARAMETER VALUE #### **CURSOR** # CURSOR_SET, CRST Command /Query #### DESCRIPTION The CURSOR_SET command allows the user to position any one of the eight independent cursors at a given screen location. The positions of the cursors can be modified or queried even if the required cursor is not currently displayed on the screen. When setting a cursor position, a trace must be specified, relative to which the cursor will be positioned. The CURSOR_SET? Query indicates the current position of the cursor(s). The values returned depend on the grid type selected. | Notation | | | |----------|--|--| | HREF | The time value of curA under Track cursor mode | | | HDIF | The time value of curB under Track cursor mode | | | VREF | The volt-value of curA under manual cursor mode | | | VDIF | The volt -value of curB under manual cursor mode | | | TREF | The time value of curA under manual cursor mode | | | TDIF | The time value of curB under manual cursor mode | | #### COM M ANDSYNTAX <trace>:OuRsor_SeT<cursor>,<position>[,<cur sor>,<position>,<cursor> ,<position>] <position>: = -4 to 4 DIV (vertical) <position>: = -6(or -9) to 6 DIV (horizontal of manual, the range of the value is related to the size of the screen) QUERY SYNTAX <trace>: OuRsor SeT? [<cursor>, ...<cursor>] <cursor> :={ HREF, HDIF, VREF, VDIF, TREF, TDIF} <cursor>, <position>, <cursor>, <position>] **EXAM PLE** The following command positions the VREF and VDIF cursors at +3 DIV and -1 DIV respectively, using C1 as a reference: Command message: C1: CRST VREF, 3DIV, VDIF, -1DIV **RELATED COM M ANDS** CURSOR_M EASURE, CURSOR_VALUE, PARAM ETER_VALUE #### **CURSOR** ### CURSOR_VALUE?, CRVA? Query DESCRIPTION The CURSOR_VALUE? Query returns the values measured by the specified cursors for a given trace. (The PARAMETER_VALUE? query is used to obtain measured waveform parameter values.) | | Notation | |------|---| | HREL | the cursor value under track cursor mode | | VREL | the dalta volt-value under manual cursor mode | > <trace> : = { C1, C2, C3, C4} <mode> : = { HREL, VREL} RESPONSE FORM AT <trace> : CuRsor_Value HREL, <B->T - A->T>,<B->V - A->V>,<A->T>, <B->T>, <(B->V - A->V)/(B->T - A->T)> <trace> : CuRsor_Value VREL,<delta_vert> **EXAM PLE** The following query reads the dalta volt value under manual cursor mode (VREL) on Channel 2: Command message: C2:CRVA? VREL ---- Response message: C2:CuRsor Value VREL 1.00V RELATED COM M ANDS CURSOR SET, PARAMETER VALUE **CURSOR** CURSOR_AUTO, CRAU Command **DESCRIPTION** The CURSOR_AUTO command changes the cursor mode to auto mode COM M AND SYNTAX CRAU **EXAM PLE** The following code changes the cursor mode to auto mode Command message: CRAU #### SAVE/RECALL # CSV_SAVE, CSVS Command /Query DESCRIPTION The CSV_SAVE command selects the specified option of storing CSV format waveform. The CSV_SAVE? query returns the option of storing waveform data of CSV format. COM M AND SYNTAX CSV_SAVE.DD.<DD>.SAVE.<state> The option DD is the data depth which is saved as. The option SAVE is that if the waveform data is stored with parameter. <DD>: ={MAX, DIS} the meaning of MAX is saved as the maximum data depth. The meaning of DIS is saved as the date depth which is displayed on the screen <save>: = {OFF, ON} QUERY SYNTAX CSV SAVE? RESPONSE FORM AT CSV_SAVE DD, <DD>, SAVE, <state> EXAM PLE The following command sets the save data depth as the $\,$ maximum and "para" save to off Command message: CSV SAVE DD, MAX, SAVE, OFF #### **FUNCTION** ### COUNTER, COUN Command /Query **DESCRIPTION** The COUNTER command enables or disables the cymometer display on the screen of instrument. The response to the COUNTER? query indicates whether the cymometer is displayed on the screen of instrument. COM M AND SYNTAX COUNTER < state > < state > : = {ON, OFF} QUERY SYNTAX COUNTER? RESPONSE FORM AT COUNTER < state > **EXAM PLE** The following command enables the cymometer display Command message: COUN ON #### **FUNCTION** # CYMOMETER, CYMT **DESCRIPTION** The response to the CYM OM ETER? query is the value of the counter which displays on the screen of the instrument. When the signal frequency is less than 10Hz, it returns 10Hz. QUERY SYNTAX CYM OM ETER? RESPONSE FORM AT CYM OM ETER < option > **EXAM PLE** The following instruction returns the value of the counter which displays on the screen of the instrument. Response message: CYM T 10Hz #### **MISCELLANEOUS** #### DATE Command /Query DESCRIPTION The DATE command changes the date/time of the oscilloscope's internal real-time clock. The command is only used in the CFL series instrument COM M AND SYNTAX DATE <day>, <month>, <year>, <hour>, <minute>. <second> <day> : = 1 to 31 <month> : = {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC) <year> : = 1990 to 2089 <hour> : = 0 to 23 <minute> : = 0 to 59 <second> : = 0 to 59 **QUERY SYNTAX** DATE? RESPONSE FORM AT DATE <day>,
<month>, <year>, <hour>, <minute>, <second> **EXAMPLE** This instruction will change the date to NOV. 1, 2009 and the time to 14:38:16: Command message: DATE 1, NOV, 2009,14,38,16 STATUS DDR? **DESCRIPTION** The DDR? Query reads and clears the contents of the Device Dependent or device specific error Register (DDR). In the case of a hardware failure, the DDR register specifies the origin of the failure. QUERY SYNTAX DDR? RESPONSE FORM AT DDR <value> <value> : = 0 to 65535 **EXAM PLE** The following instruction reads the contents of the DDR register: Command message: DDR? Response message: DDR0 RELATED COM M ANDS ALL STATUS? ,* CLS #### **DEFINE, DEF** Command /Query DESCRIPTION The DEFINE command specifies the mathematical expression to be evaluated by a function. COM M AND SYNTAX DEFine EQN,'<equation>' <equation> the mathematical expression | Function Equations | | | | | |---|----------------|--|--|--| | <source1> + <source2></source2></source1> | Addition | | | | | <source1> - <source2></source2></source1> | Subtraction | | | | | <source1>* <source2></source2></source1> | Multiplication | | | | | <source1>/<source2></source2></source1> | Ratio | | | | | FFT(source x) | FFT | | | | QUERY SYNTAX DEFine? RESPONSE FORM AT DEFine EQN,'<equation>' **EXAM PLE** Command message: DEFine EQN,'C1* C2' #### **MASS STORAGE** ### DELETE_FILE, DELF Command **DESCRIPTION** The DELETE_FILE command deletes files from the currently selected directory on mass storage. COM M AND SYNTAX DELete_File DISK, <device>, FILE, '<filename>' <device>: ={UDSK} <filename>: = a file of specified directory and the specified file should be up to eight characters. **EXAM PLE** The following command deletes a front-panel setup from the directory named SETUP in a USB memory device: Command message: DELF DISK, UDSK, FILE, '/ SETUP/001.SET' **RELATED COM M ANDS DIRECTORY** #### MASS STORAGE #### DIRECTORY, DIR Command /Query DESCRIPTION The DIRECTORY command is used to manage the creation and deletion of file directories on mass storage devices. It also allows selection of the current working directory and listing of files in the directory. The query response consists of a doublequoted string containing a DOS-like listing of the directory. COM M AND SYNTAX Directory DISK, <device>, ACTION, <action>, '<directory>' **QUERY SYNTAX** Directory? DISK, <device> [, '<directory>'] <device>: ={UDSK} <action>: ={CREATE, DELETE} < directory >: = A legal DOS path or filename. (This can include the '/' character to define the root directory.) RESPONSE FORM AT DIRectory DISK, <device> "<directory>" **EXAM PLE** The following asks for a listing of the directory of a USB memory device: Command message: DIR? DISK, UDSK Response message: DIRectory DISK, UDSK,"A: BK1000 BK1000AA BB.SET 2.00 KB BK00001.SET 2.00 KB BK00002.SET 2.00 KB 3 File(s), 2 DIR(s) RELATED COM M ANDS DFI F 40 #### DISPLAY # DOT_JOIN, DTJN Command /Query **DESCRIPTION** The DOT_JOIN command controls the interpolation lines between data points. COM M AND SYNTAX DoT JoiN <state> <state> : = {ON, OFF} QUERY SYNTAX DoT_JoiN? RESPONSE FORM AT DoT JoiN <state> **EXAM PLE** The following instruction turns off the interpolation lines: Command message: DTJN OFF STATUS *ESE Command /Query **DESCRIPTION** The * ESE command sets the Standard Event Status Enable register (ESE). This command allows one or more events in the ESR register to be reflected in the ESB summary message bit (bit 5) of the STB register. COM M AND SYNTAX * ESE < value > <value> : = 0 to 255 QUERY SYNTAX * ESE? **RESPONSE FORM AT** * ESE < value> **EXAM PLE** The following instruction allows the ESB bit to be set if a user request (URQ bit 6, i.e. decimal 64) and/or a device dependent error (DDE bit 3, i.e. decimal 8) occurs. Summing these values yields the ESE register mask 64+8=72. Command message: * ESE 72 RELATED COM M ANDS *ESR STATUS *ESR? Query **DESCRIPTION** The * ESR? query reads and clears the contents of the Event Status Register (ESR). The response represents the sum of the binary values of $% \left\{ 1\right\} =\left\{ 1\right$ the register bits 0 to 7. QUERY SYNTAX * ESR? **RESPONSE FORM AT** * ESR < value > <value> : = 0 to 255 **EXAM PLE** The following instruction reads and clears the contents of the ESR register: Command message: * ESR? Response message: * ESR 0 RELATED COM M ANDS ALL_STATUS, * CLS, * ESE #### **ADDITIONAL INFORM ATION** | Standard Event Status Register (ESR) | | | | | | |--------------------------------------|-----------|----------|------------------|--|------| | Bit | Bit Value | Bit Name | Description Note | | Note | | 15~8 | | | 0 | reserved by IEEE 488.2 | | | 7 | 128 | PON | 1 | Power off-to-ON transition as occurred | (1) | | 6 | 64 | URQ | 1 | User Request has been issued | (2) | | 5 | 32 | CME | 1 | Command parser Error has been detected | (3) | | 4 | 16 | EXE | 1 | Execution Error detected | (4) | | 3 | 8 | DDE | 1 | Device specific Error occurred | (5) | | 2 | 4 | QYE | 1 | Query Error occurred | (6) | | 1 | 2 | RQC | 1 | Instrument never requests bus control | (7) | | 0 | 1 | OPC | 1 | Instrument never requests bus control | (8) | #### Notes - (1) The Power On (PON) bit is always turned on (1) when the unit is powered up. - (2) The User Request (URQ) bit is set true (1) when a soft key is pressed. An associated register URR identifies which key was selected. For further details refer to the URR? guery. - (3) The CoMmand parser Error bit (CME) is set true (1) whenever a command syntax error is detected. The CME bit has an associated CoMmand parser Register (CMR) which specifies the error code. Refer to the query CMR? for further details. - (4) The EXecution Error bit (EXE) is set true (1) when a command cannot be executed due to some device condition (e.g. oscilloscope in local state) or a semantic error. The EXE bit has an associated Execution Error Register (EXR) which specifies the error code. Refer to query EXR? for further details. - (5) The Device specific Error (DDE) is set true (1) whenever a hardware failure has occurred at power-up, or execution time, such as a channel overload condition, a trigger or a timebase circuit defect. The origin of the failure may be localized via the DDR? or the self test *TST? query. - (6) The Query Error bit (QYE) is set true (1) whenever (a) an attempt is made to read data from the Output Queue when no output is either present or pending, (b) data in the Output Queue has been lost, (c) both output and input buffers are full (deadlock state), (d) an attempt is made by the controller to read before having sent an <END>, (e) a command is received before the response to the previous query was read (output buffer flushed). - (7) The ReQuest Control bit (RQC) is always false (0), as the oscilloscope has no GPIB controlling capability. - (8) The OPeration Complete bit (OPC) is set true (1) whenever *OPC has been received, since commands and queries are strictly executed in sequential order. The oscilloscope starts processing a command only when the previous command has been entirely executed. STATUS *EXR? **DESCRIPTION** The EXR? query reads and clears the contents of the Execution error Register (EXR). The EXR register specifies the type of the last error detected during execution. QUERY SYNTAX EXR? RESPONSE FORM AT EXR < value> <value> : = to **EXAM PLE** The following instruction reads the contents of the EXR register: Command message: EXR? Response message (if no fault): EXR 0 RELATED COM M ANDS ALL_STATUS, * CLS #### ADDITIONAL INFORM ATION | Execution Error Status Register Structure (EXR) | | | | | |---|---|--|--|--| | Value | Description | | | | | 21 | Permission error. The command cannot be executed in local mode. | | | | | 22 | Environment error. The instrument is not configured to correctly process a command. For instance, the oscilloscope cannot be set to RIS at a slow timebase. | | | | | 23 | Option error. The command applies to an option which has not been installed. | | | | | 25 | Parameter error. Too many parameters specified. | | | | | 26 | Non-implemented command. | | | | | 32 | Waveform descriptor error. An invalid waveform descriptor has been detected. | | | | | 36 | Panel setup error. An invalid panel setup data block has been detected. | | | | | 50 | No mass storage present when user attempted to access it. | | | | | 53 | Mass storage was write protected when user attempted to create, or a file, to delete a file, or to format the device. | | | | | 58 | Mass storage file not found. | | | | | 59 | Requested directory not found. | | | | | 61 | Mass storage filename not DOS compatible, or illegal filename. | | | | | 62 | Cannot write on mass storage because filename already exists. | | | | #### **MASS STORAGE** #### FILENAME, FLNM Command /Query **DESCRIPTION** The FILENAM E command is used to change the default filename given to any traces, setups and hard copies when they are being stored to a mass storage device. **COM M AND SYNTAX** FILENaMe TYPE, <type>, FILE, '<filename>' <type>:={ C1,C2,C3, C4, SETUP,TA, TB, TC, TD, HCOPY} <filename> : = an alphanumeric string of up to 8 characters forming a legal DOS filename. Note: the file's extension can be specified automatically by the oscilloscope. QUERY SYNTAX FiLeNaMe? TYPE, <type> <type> :={ ALL, C1, C2, C3, C4, SETUP, TA, TB, TC, TD, HCOPY **RESPONSE FORM AT** FILENaMe TYPE, <type>, FILE, "<filename>" [,TYPE, <type>, FILE, "<filename>"...] **EXAM PLE** The following command designates channel 1 waveform files to be "TESTWF.DAV": Command message: FLNM TYPE, C1, FILE, 'TESTWF' RELATED COM M ANDS DIRECTORY, DELETE FILE #### **ACQUISITION** ## FORCE_TRIGGER, FRTR Command **DESCRIPTION** Causes the instrument to make one
acquisition. COM M AND SYNTAX FoRce_TRigger **EXAM PLE** Either of the following pairs of instruction make one acquisition: Command message1: TRM D SINGLE; ARM; FRTR Command message2: TRMD STOP;ARM;FRTR #### **MASS STORAGE** # ${\bf FORMAT_VDISK,\,FVDISK}$ Query **DESCRIPTION** The FORMAT_VDISK? query reads the capability of the USB memory device. QUERY SYNTAX Format VDISK? RESPONSE FORM AT Format_VDISK <capability> <capability>:= the capability of the USB memory device. **EXAM PLE** The following query reads the capability of the USB device. Command message: Format VDISK? Response message: Format_VDISK 963 MB # FILTER, FILT Command /Query **DESCRIPTION** The FILTER command enables or disables filter of the specified trace. The response to the FILTER? query indicates whether the filter of specified trace is enabled COM M AND SYNTAX <channel>:FILTER <state> <channel> : = {C1,C2,C3,C4} <state> : = {ON,OFF} QUERY SYNTAX <channel>:FILTER? RESPONSE FORM AT <channel>:FILTER <state> **EXAM PLE** The following command enables the filter of channel 1: Command message: C1:FILT ON RELATED COM M ANDS FILTS # FILT_SET, FILTS Command /Query **DESCRIPTION** The FILT_SET command selects the specified type of filter, and sets the limit value of filter. The response to the FILT_SET? query indicates current parameter of the filter **COM M AND SYNTAX** <channel>: FILT SET TYPE,<type>, limit>,<limit_value> <channel> : = {C1,C2,C3,C4} <type> : = {LP,HP,BP,BR} LP is lowpass, HP is highpass, BP is bandpass, BR is bandreject limit> : = {UPPLIMIT.LOWLIMIT} if seted the if seted the imit>,the <type> must be related QUERY SYNTAX <channel>: FILT SET? RESPONSE FORM AT dimit value > <channel>:FILTER TYPE,<type>,<limit>, **EXAM PLE** The following command changes the type of filter to bandpass, and sets the upplimit to 200 KHz and the lowlimit to 100 KHz: Command message: C1:FILTS TYPE, BP, UPPLIM IT.200KHz.LOW LIM IT.100KHz RELATED COM M ANDS FILT # FFT_WINDOW, FFTW Command /Query **DESCRIPTION** The FFT_WINDOW command selects the window of FFT(Fast Fourier Transform algorithm). The response to the FFT_WINDOW? query indicates current window of FFT COM M AND SYNTAX FFT_WINDOW <window> < window > : = {RECT,BLAC,HANN,HAMM} RECT is short for rectangle. BLAC is short for Blackman. HANN is short for hanning. HAM M is short for hamming. QUERY SYNTAX FFT_WINDOW? RESPONSE FORM AT FFT_WINDOW,<window> **EXAM PLE** The following command sets the FFT window to hamming: Command message: FFTW HAM M # FFT_ZOOM, FFTZ Command /Query **DESCRIPTION** The FFT_ZOOM command selects the specified zoom of FFT. The response to the FFT_ZOOM? query indicates current zoom in/out times of FFT COM M AND SYNTAX FFT ZOOM <zoom> $< zoom > : = \{1,2,5,10\}$ QUERY SYNTAX FFT ZOOM? RESPONSE FORM AT FFT ZOOM, < zoom> **EXAM PLE** The following command sets the zoom factor of FFT to 1X: Command message: FFTZ 1 ## FFT_SCALE, FFTS Command /Query **DESCRIPTION** The FFT_SCALE command selects the specified scale of FFT(Fast Fourier Transform algorithm). The response to the FFT_SCALE? query indicates current vertical scale of FFT waveform. COM M AND SYNTAX FFT_SCALE < scale > < scale > : = {VRM S, DBVRM S} QUERY SYNTAX FFT SCALE? RESPONSE FORM AT FFT SCALE, < scale > **EXAM PLE** The following command turns the vertical scale of FFT to dBVrms: Command message: FFTS DBVRM S 55 ## FFT_FULLSCREEN, FFTF Command /Query **DESCRIPTION** The FFT_FULLSCREEN command enables or disables to display the FFT waveform full screen. The response to the FFT_FULLSCREEN? query indicates whither the FFT waveform is full screen displayed. COM M AND SYNTAX FFT_FULLSCREEN <state> < state > : = {ON,OFF} QUERY SYNTAX FFT FULLSCREEN? RESPONSE FORM AT FFT FULLSCREEN < state > **EXAM PLE** The following command enables to display the FFT waveform full screen: Command message: FFTF ON #### DISPLAY ### GRID_DISPLAY, GRDS Command /Query **DESCRIPTION** The GRID DISPLAY command selects the type of the grid which is used to display. The response to the GRID DISPLAY? query indicates current type of the grid COM M AND SYNTAX GRID_DISPLAY < type> < type > : = {FULL,HALF,OFF} QUERY SYNTAX GRID DISPLAY? RESPONSE FORM AT GRID DISPLAY < type > **EXAM PLE** The following command changes the type of grid to full grid: Command message: GRID_DISPLAY FULL #### **WAVEFORMTRANS** GET_CSV, GCSV DESCRIPTION The response to the GET CSV? query indicates current waveform of CSV format. The GET_CSV? query have two options to set. They are the same as the options of CSVS. **QUERY SYNTAX** GET_CSV? DD,<DD>,SAVE,<state> The option DD is the data depth of the CSV format waveform. The option SAVE is that if the waveform data have parameters. <DD>: ={MAX, DIS} the meaning of MAX is that the CSV waveform's depth is maximum. The meaning of DIS is that CSV waveform's depth is the data which is displayed on the screen. <save>: = {OFF,ON} RESPONSE FORM AT the waveform date of CSV format **EXAM PLE** The following command transfers the waveform data of CSV format to the controller. It has the maximum depth of waveform data with parameters information. Command message: GET CSV? DD,MAX,SAVE,ON #### DISPLAY ### HOR_MAGNIFY, HMAG Command /Query DESCRIPTION The HOR_MAGNIFY command horizontally expands the selected expansion trace by a specified factor. Magnification factors not within the range of permissible values will be rounded off to the closest legal value. If the specified factor is too large for any of the expanded traces (depending on their current source), it is reduced to an acceptable value and only then applied to the traces. The VAB bit (bit 2) in the STB register is set when a factor outside the legal range is specified. The HOR_M AGNIFY query returns the current magnification factor for the specified expansion function. COM M AND SYNTAX <exp_trace>: Hor_M AGnify <factor> <exp_trace>: = {TA, TB, TC, TD} <factor> : = 1 to 50,000,000 The range of <factor> it is related to the current timebase and the range of the timebase QUERY SYNTAX <exp_trace> : Hor_M AGnify? RESPONSE FORM AT <exp trace>: Hor MAGnify <factor> EXAM PLE The following instruction horizontally magnifies Trace A (TA) by a factor of 5: Command message: TA: HM AG 5.00 RELATED COM M ANDS **HPOS** #### DISPLAY ### HOR_POSITION, HPOS Command /Query DESCRIPTION The HOR POSITION command horizontally positions the geometric center of the intensified zone on the source trace. Allowed positions range from division -9 to 9. If this would cause the horizontal position of any expanded trace to go outside the left or right screen boundaries, the difference of positions is adapted and then applied to the traces. The VAB bit (bit 2) in the STB register is set if a value outside the legal range is specified. The HOR_POSITION query returns the position of the geometric center of the intensified zone on the source trace. COM M AND SYNTAX <exp_trace>: Hor_POSition <hor_position> <exp_trace>: = {TA, TB, TC, TD} <hor_position>: = -9 to 9 DIV(The range of the value is related to the size of the screen). the range of the <hor_position> is related to the magnification factors of command HMAG. While the range after magnifying beyond the screen could display, it will be adjusted to the proper value. QUERY SYNTAX <exp_trace>: Hor_POSition? RESPONSE FORM AT <exp_trace>: Hor_POSition <hor_position> EXAM PLE The following instruction positions the center of the intensified zone on the trace currently viewed by Trace A (TA) at division 3: Command message: TA: HPOS3 RELATED COM M ANDS HMAG 60 # www.valuetronics.com HARD COPY #### HARDCOPY SETUP, HCSU Command /Query DESCRIPTION The HARDCOPY_SETUP command configures the instrument's hard-copy driver. COM M AND SYNTAX HCSU PSIZE, <page_size>, ISIZE. <image_size>. FORM AT, <format>, BCKG, <bckg>, PRTKEY, <printkey> <page_size> :={ DEFAULT} <printkey>:={SAVE,PRINT} <format> : = {PORTRAIT, LANDSCAPE}
<bckg> : = {BLACK, WHITE} <image_size>:={DEFAULT,A4,LETTER}. **QUERY SYNTAX** HCSU? RESPONSE FORM AT HCSU PSIZE, <page_size>, ISIZE, <image_size>, FORM AT, <format>, BCKG, <bckg>, PRTKEY, <printkey> EXAM PLE The following example selects PORTRAIT format, sets the size of the image to "6*8CM": Command message: HCSU ISIZE, 6*8CM, FORMAT, PORTRAIT RELATED COM M ANDS SCDP #### **MISCELLANEOUS** *IDN? Query **DESCRIPTION** The * IDN? guery is used for identification purposes``. The response consists of four different fields providing information on the manufacturer, the scope model, the serial number and the firmware revision level. QUERY SYNTAX * IDN? **RESPONSE FORM AT** *IDN SIGLENT, <model>, <serial_number>, <firmware_level> <model> : = A eleven characters model identifier <serial_number> : = A 14-digit decimal code <firmware level> : = similar to k.xx.yy.zz **EXAM PLE** This example issues an identification request to the scope: Command message: *IDN? Response message: * IDN B&K Precision, 2190D.SN#. 5.01.01.22 #### DISPLAY #### INTENSITY, INTS Command /Query DESCRIPTION The INTENSITY command sets the intensity level of the grid or the trace. The intensity level is expressed as a percentage (PCT). A level of 100 PCT corresponds to the maximum intensity whilst a level of 0 PCT sets the intensity to its minimum value. (The minimum value of the trace is 30 PCT) The response to the INTENSITY? Query indicates the grid and trace intensity levels. COM M AND SYNTAX INTenSity GRID, <value>, TRACE, <value> <value> : = 0(or 30) to 100 [PCT] Note 1: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and be restricted to those variables to be changed. Note 2: The suffix PCT is optional. QUERY SYNTAX INTenSity? RESPONSE FORM AT INTenSity TRACE, <value>, GRID, <value> **EXAM PLE** The following instruction enables remote control of the intensity, and changes the grid intensity level to 75%: Command message: INTS GRID. 75 #### **ACQUISITION** ####
INTERLEAVED, ILVD Command /Query **DESCRIPTION** The INTERLEAVED command enables or disables random interleaved sampling (RIS) for timebase settings where both single shot and RIS mode are available. The response to the INTERLEAVED? Query indicates whether the oscilloscope is in RIS mode. COM M AND SYNTAX InterLeaVeD < mode> $< mode > : = {ON, OFF}$ QUERY SYNTAX InterLeaVeD? RESPONSE FORM AT InterLeaVeD < mode> **EXAM PLE** The following instructs the oscilloscope to use RISmode: Command message: ILVD ON RELATED COM M ANDS TIME DIV, TRIG MODE STATUS INR? DESCRIPTION The INR? query reads and clears the contents of the INternal state change Register(INR). The INR register (table below) records the completion of various internal operations and state transitions. Note: This command only supports 0 bit and 13 bit. | Internal State Register Structure (INR) | | | | | | |---|-------|-------------|--|--|--| | Bit | Bit | Description | | | | | | Value | · | | | | | 1514 | | 0 | Reserved for future use | | | | 13 | 8192 | 1 | Trigger is ready | | | | 12 | 4096 | 1 | Pass/Fail test detected desired outcome | | | | 11 | 2048 | 1 | Waveform processing has terminated in Trace D | | | | 10 | 1024 | 1 | Waveform processing has terminated in Trace C | | | | 9 | 512 | 1 | Waveform processing has terminated in Trace B | | | | 8 | 256 | 1 | Waveform processing has terminated in Trace A | | | | 7 | 128 | 1 | A memory card, floppy or hard disk exchange has been detected | | | | 6 | 64 | 1 | Memory card, floppy or hard disk has become full in "AutoStore | | | | | | | Fill" mode | | | | 5 | 32 | 0 | Reserved for LeCroy use | | | | 4 | 16 | 1 | A segment of a sequence waveform has been acquired | | | | 3 | 8 | 1 | A time-out has occurred in a data block transfer | | | | 2 | 4 | 1 | A return to the local state is detected | | | | 1 | 2 | 1 | A screen dump has terminated | | | | 0 | 1 | 1 | A new signal has been acquired | | | QUERY SYNTAX INR? RESPONSE FORM AT INR < value > <value> : = 0 to 65535 **EXAM PLE** If we send INR? query after have triggered the INR register: Command message1: INR? Response message1: INR 8913 If we send INR? query while the instrument didn't trigger, the INR register: Command message2: INR? Response message2: INR 8912 If we send INR? query after have sent a INR? query and the mode of the instrument is STOP The INR register: Command message3: INR? Response message3: INR₀ If we send INR? query while there is no and then make the instrument triggered. Finally we send another INR? query the INR register: Command message4: INR? Response message4: INR 1 RELATED COM M ANDS ALL STATUS?,*CLS #### DISPLAY ## INVERTSET, INVS Command /Query **DESCRIPTION** The INVERTSET command inverts the specified traces or the waveform of math. The response to the INVERTSET? query indicates whether the specified waveform is invert. COM M AND SYNTAX <trace>:INVERTSET < state > $< trace > : = \{C1, C2, C3, C4, MATH\}$ < state >:= {ON,OFF} QUERY SYNTAX <trace>:INVERTSET? RESPONSE FORM AT <trace>:INVERTSET < state > **EXAM PLE** The following instruction inverts the trace of channel 1: Command message: C1:INVSON #### **MISCELLANEOUS** #### LOCK, LOCK Command /Query DESCRIPTION The LOCK command enables or disables the panel keyboard of the instrument. When any command or query is executed in either local or remote state, the functions of the panel keys except "FORCE" are not available. When the panel keyboard of the instrument is locked, press "FORCE" key can enable the panel keyboard function. The LOCK? query returns the status of the panel keyboard of the instrument. COM M AND SYNTAX LOCK < status > <status>:= {ON,OFF} QUERY SYNTAX LOCK? RESPONSE FORM AT LOCK < status > **EXAM PLE** The following instruction enables the functions of the panel keys: Command message: LOCK ON #### DISPLAY #### MENU, MENU Command /Query **DESCRIPTION** The M ENU command enables or disables to display the menu. The response to the MENU? query indicates whether the menu is displayed. COM M AND SYNTAX M ENU < status > <status>:= {ON,OFF} QUERY SYNTAX MENU? RESPONSE FORM AT M ENU < status > **EXAM PLE** The following instruction enables the display of the menu: Command message: M ENU ON #### **ACQUISITION** # MATH_VERT_POS, MTVP Command /Query #### DESCRIPTION The MATH_VERT_POS command controls the vertical position of the math waveform with specified source. The FFT waveform isn't included. But we have another command which called VPOSto control its vertical position. The response to the MATH_VERT_POS? query indicates the value of the vertical position of the math waveform. #### COM M AND SYNTAX MATH VERT POS<position> 13 **QUERY SYNTAX** MATH VERT POS? RESPONSE FORM AT MATH_VERT_POS < position > FXAM PI F The following instruction changes the vertical position of the math waveform to 1 grid up to the screen vertical centre: Command message: MTVP 25 #### **ACQUISITION** # MATH_VERT_DIV, MTVD Command /Query DESCRIPTION The MATH_VERT_DIV command controls the vertical sensitivity of the math waveform of specified source. We can only set the value of existing The FFT waveform isn't included The response to the MATH_VERT_DIV? query indicates the specified scale of math waveform of specified source. COM M AND SYNTAX MATH_VERT_DIV < scale > < scale >:= 1PV/div ~ 100V/div. QUERY SYNTAX MATH_VERT_DIV? **RESPONSE FORM AT** MATH_VERT_DIV < scale > **EXAM PLE** The following instruction changes the vertical sensitivity of the math waveform of specified source to 1V/div: Command message: MTVD 1V ### MEASURE_DELY, MEAD Command /Query **DESCRIPTION** The MEASURE_DELY command selects the type of delay measure. The response to the MEASURE_DELY? query indicates the type of delay measure. COM M AND SYNTAX M EASURE_DELY SOURCE,<mode>,TYPE,<type> <mode>:= {C1-C2, C1-C3, C1-C4, C2-C3, C2-C4, C3-C4} <type>:= {PHA,FRR,FRF,FFR,FFF,LRR,LRF,LFR, LFF}, The PHA is phase, the others are the same as the specified type of the instrument's delay measure QUERY SYNTAX MEASURE DELY? **RESPONSE FORM AT**MEASURE DELY SOURCE, <mode>, TYPE, <type> **EXAM PLE** The following instruction sets the type of delay measure to phase between C1 and C2. Command message: M EAD SOURCE, C1-C2, TYPE, PHA ### OFFSET, OFST Command /Query **DESCRIPTION** The OFFSET command allows adjustment of the vertical offset of the specified input channel. The maximum ranges depend on the fixed sensitivity setting. If an out-of-range value is entered, the oscilloscope is set to the closest possible value and the VAB bit (bit 2) in the STB register is set. The OFFSET? query returns the offset value of the specified channel. COM M AND SYNTAX <channel>: OFfSeT <offset> <channel> : = {C1, C2, C3,C4} <offset> : = See specifications. QUERY SYNTAX <channel>: OFfSeT? RESPONSE FORM AT <channel>: OFfSeT <offset> **EXAM PLE** The following command sets the offset of Channel 2 to -3 V: Command message: C2: OFST -3V STATUS *OPC Command /Query DESCRIPTION The *OPC (OPeration Complete) command sets to true the OPC bit (bit 0) in the standard Event Status Register (ESR). This command has no other effect on the operation of the oscilloscope because the instrument starts parsing a command or query only after it has completely processed the previous command or query. The *OPC? query always responds with the ASCII character "1" because the oscilloscope only responds to the query when the previous command has been entirely executed. COM M AND SYNTAX *OPC QUERY SYNTAX * OPC? **RESPONSE FORM AT** * OPC 1 ### **MISCELLANEOUS** * OPT Query **DESCRIPTION** The * OPT? query identifies oscilloscope options: installed software or hardware that is additional to the standard instrument configuration. The response consists of a series of response fields listing all the installed options. QUERY SYNTAX *OPT? **RESPONSE FORM AT** * OPT <option> NOTE: If no option is present, the character $\mathbf{0}$ will be returned. EXAMPLE: The following instruction queries the installed options: * OPT? Return: * OPT RS232,NET,USBTM C ### **CURSOR** ## PARAMETER_CLR, PACL Command **DESCRIPTION** The PARAM ETER_CLR command clears the P/F test counter and starts it again at 0. COM M AND SYNTAX PArameter_CLr RELATED COM M ANDS PARAM ETER_VALUE PFDD **CURSOR** ### PARAMETER_CUSTOM, PACU Command /Query **DESCRIPTION** The PARAMETER_CUSTOM command controls the parameters that have customizable qualifiers. Note: The measured value of a parameter setup with PACU may be read using PAVA? COM M AND SYNTAX PArameter_CUstom <line>, <parameter>,<qualifier><line> : = 1 to 5 FALL, WID, DUTY, NDUTY } <qualifier> : = Measurement qualifier specific to each(source option) QUERY SYNTAX PArameter_CUstom? <line> **EXAM PLE** Command Example PACU 2, PKPK, C1 Query/Response Examples PACU? 2 returns: PACU 2, PKPK, C1 PAVA? CUST2 returns: C2: PAVA CUST2. 160.00mV **RELATED** COMMANDS PARAMETER CLR, PARAMETER VALUE ## PARAMETER_VALUE?, PAVA? Query #### DESCRIPTION The PARAMETER_VALUE query returns the measurement values. | Parameters Available on All Models | | | | | | |------------------------------------|---|-------|--|--|--| | ALL | all parameters | NDUTY | negative duty cycle | | | | AM PL | amplitude | NWID | negative width | | | | BASE | base | OVSN | negative overshoot | | | | CM EAN | mean for cyclic waveform | OVSP | positive overshoot | | | | CRMS | root mean square for cyclic part of waveform | PKPK | peak-to-peak | | | | DUTY | duty cycle | PER | period | | | | FALL | falltime | RPRE | (Vmin-Vbase)/ Vamp
before the waveform
rising transition | | | | FREQ | frequency | PWID | positive width | | | | FPRE | (Vmin-Vbase)/ Vamp
before the waveform
falling transition | RMS | root mean square | | | | MAX | maximum | RISE | risetime | | | | MIN | minimum | TOP | top
 | | | MEAN | mean | WID | width | | | **QUERY SYNTAX** <trace>: PArameter_VAlue? [<parameter>, ... , <parameter>] <trace>: = { C1, C2, C3, C4} <parameter> : = See table of parameter names on previous table. <value>[, ..., <parameter>,<value>] **EXAM PLE** The following query reads the risetime of Channel 2 Command message: C2: PAVA? RISE 78 Response message: C2: PAVA RISE. 3.6E-9S RELATED COM M ANDS CURSOR_M EASURE, CURSOR_SET, PARAMETER CUSTOM ## PEAK_DETECT, PDET Command /Query **DESCRIPTION** The PEAK_DETECT command switches ON or OFF the peak detector built into the acquisition system. The PEAK DETECT? query returns the current status of the peak detector. COM M AND SYNTAX Peak_DETect <state> <state> : = {ON, OFF} QUERY SYNTAX Peak DETect? RESPONSE FORM AT PDET <state> **EXAM PLE** The following instruction turns on the peak detector: Command message: PDET ON ### DISPLAY ## PERSIST, PERS Command /Query **DESCRIPTION** The PERSIST command enables or disables the persistence display mode. COM M AND SYNTAX PERSist <mode> <mode>: = {ON, OFF} QUERY SYNTAX PERSist? RESPONSE FORM AT PERSist <mode> **EXAM PLE** The following code turns the persistence display ON: Command message: PERS ON RELATED COM M ANDS PERSIST SETUP #### DISPLAY ### PERSIST_SETUP, PESU Command /Query **DESCRIPTION** The PERSIST SETUP command selects the persistence duration of the display, in seconds,in persistence mode. The PERSIST_SETUP? query indicates the current status of the persistence. COM M AND SYNTAX PErsist_Set Up <time> <time>: ={1, 2, 5, Infinite} QUERY SYNTAX PErsist SetUp? RESPONSE FORM AT PErsist SetUp <time> **EXAM PLE**The following instruction sets the variable persistence at 5 Seconds: Command message: PESU 5 RELATED COM M ANDS PERSIST ### SAVE/RECALL SETUP ## PANEL_SETUP, PNSU Command /Query **DESCRIPTION** The PANEL_SETUP command complements the * SAV or * RST commands. PANEL_SETUP allows you to archive panel setups in encoded form on external storage media. Only setup data read by the PNSU? query can be recalled into the oscilloscope. COM M AND SYNTAX PaNel_SetUp <setup> <setup> : = A setup previously read by PNSU? QUERY SYNTAX PaNel_SetUp? RESPONSE FORM AT PaNel_SetUp <setup> **EXAM PLE** The following instruction saves the scilloscope's current panel setupin the file PANEL.SET: Command message: PNSU? RELATED COM M ANDS * RCL, * SAV ## PF_DISPLAY, PFDS Command /Query **DESCRIPTION** The PF_DISPLAY command enables or disables to turn the test and display the message in the pass/fail option. The response to the PF_DISPLAY? query indicates whether the test is enabled and the message of pass/fail is displayed **COM M AND SYNTAX** PF DISPLAY TEST, <state>, DISPLAY, <state> <state> : = {ON, OFF} QUERY SYNTAX PF DISPLAY TEST? RESPONSE FORM AT PF DISPLAY TEST <state>.DISPLAY.<state> **EXAM PLE** The following instruction enables to turn on the test and display the message of pass/fail: Command message: PFDS TEST, ON, DISPLAY, ON ### PF_SET, PFST Command /Query **DESCRIPTION** The PF_SET command sets the X mask and the Y mask of the mask setting in the pass/fail option. The response to the PF_ SET? query indicates the value of the ${\sf X}$ mask and the ${\sf Y}$ mask. <div> : = 0.04div~4.0div QUERY SYNTAX PF SET? RESPONSE FORM AT PF SET XM ASK, <div>, YM ASK, <div> **EXAM PLE** The following instruction sets the X mask to 0.4div and the Y mask to 0.5div of the mask setting in the pass/fail option: Command message: PEST XM ASK.0.4.YM ASK.0.5 RELATED COM M ANDS PESL PEST ### SAVE/RECALL ## PF_SAVELOAD, PFSL Command **DESCRIPTION** The PF_SAVELOAD command saves or recalls the created mask setting. COM M AND SYNTAX PF_ SAVELOAD LOCATION, <location>,ACTION, <action> The <location> means to save the created mask setting to the internal memories or the external memories. <location> : = {IN,EX} IN means to save the mask setting to the internal memories while EX means the external memories. <action> := {SAVE,LOAD} SAVE means to save the mask setting while LOAD means recall the stored mask setting. **EXAM PLE** The following instruction saves the mask setting to the internal memories: Command message: PFSL LOCATION, IN, ACTION, SAVE RELATED COM M ANDS PFCM ## PF_CONTROL, PFCT Command /Query DESCRIPTION The PF_CONTROL command controls the pass/fail controlling options: "operate", "output" and the "stop on output". See instrument's Operator Manual for these options The response to the PF_ CONTROL? query indicates the controlling options of the pass/fail. COM M AND SYNTAX PF CONTROL TRACE,<trace>,CONTROL,<control>,OUTPUT,< output>,OUTPUTSTOP,<state> <trace> : = {C1,C2,C3,C4} <control> : = {START,STOP} <output> : = {FAIL,PASS} <state> : = {ON.OFF} QUERY SYNTAX PF CONTROL? RESPONSE FORM AT PF_ CONTROL TRACE, <trace>, CONTROL, <control>, OUTPUT, <output>, OUTPUTSTOP, <state> EXAM PLE The following instruction sets source to channel 1, "operate" to "start", "output" to "pass" and "stop on output" to "off": Command message: PFCT TRACE,C1,CONTROL,START, OUTPUT.PASS.OUTPUTSTOP.OFF ## PF_CREATEM, PFCM Command **DESCRIPTION** The PF_CREATEM command creates the mask of the pass/fail. COM M AND SYNTAX PF CREATEM **EXAM PLE** The following instruction creates the mask of the pass/fail.: Command message: **PFCM** RELATED COM M ANDS PFSL PFST PF_DATADIS, PFDD Query **DESCRIPTION** The PF_DATADIS? query returns the number of the fail ,pass and total number that the screen showing. QUERY SYNTAX PF_ DATADIS? RESPONSE FORM AT PF DATADIS FAIL,<num>,PASS,<num>,total,<num> **EXAM PLE** The following instruction returns the number of the message display of the pass/fail: Command message: PFDD FAIL,0,PASS,0,TOTAL,0 RELATED COM M ANDS PACL ### SAVE/RECALL SETUP * RCL **DESCRIPTION** The * RCL command sets the state of the instrument, using one of the ten non-volatile panel setups, by recalling the complete front-panel setup of the instrument. Panel setup 0 corresponds to the default panel setup. The * RCL command produces the opposite effect of the *SAV command. If the desired panel setup is not acceptable, the EXecution error status Register (EXR) is set and the EXE bit of the standard Event Status Register (ESR) is set. COM M AND SYNTAX * RCL <panel_setup> <panel_setup>:= 0 to 20 **EXAM PLE**The following recalls the instrument setup previously stored in panel setup 3: Command message: * RCL 3 RELATED COM M ANDS PANEL SETUP, * SAV, EXR ### WAVEFORM TRANSFER ## RECALL, REC Command **DESCRIPTION** The RECALL command recalls a waveform file from the current directory on mass storage into any or all of the internal memories M 1 to M 10(or M 20 in the CFL series). COM M AND SYNTAX <memory>: RECall DISK, <device>, FILE, '<filename>' <memory> : = {M1~M10}(or M1~M20 in the CFL series) <device> : = {UDSK} <filename>: = A waveform file under a legal DOS path . A filename-string of up to eight characters, with the extension ".DAV". (This can include the '/' character to define the root directory.) **EXAM PLE** The following recalls a waveform file called "C1WF.DAV" from the memory card into Memory M1: Command message: M1: REC DISK, UDSK FILE, 'C1WF.DAV' RELATED COM M ANDS STORE, INR? ### SAVE/RECALL SETUP ## RECALL_PANEL, RCPN Command **DESCRIPTION** The RECALL_PANEL command recalls a front-panel setup from the current directory on mass storage. COM M AND SYNTAX ReCall_PaNel DISK, <device>, FILE, '<filename>' <device> : = {UDSK} <filename>: = A waveform file under a legal DOS path . A filename-string of up to eight characters, with the extension ".SET". (This can include the '/' character to define the root directory.) **EXAM PLE** The following recalls the front-panel setup from file SEAN. SET in a USB memory device: Command message: RCPN DISK, UDSK, FILE, 'SEAN. SET' RELATED COM M ANDS PANEL SETUP, * SAV, STORE PANEL, * RCL ### SAVE/RECALL SETUP *RST Command **DESCRIPTION** The * RST command initiates a device reset. The * RST sets recalls the default setup. COM M AND SYNTAX * RST **EXAM PLE** This example resets the oscilloscope: Command message: * RST RELATED COM M ANDS * CAL, * RCL ## REF_SET, REFS Command /Query DESCRIPTION The REF_SET command sets the reference waveform and its options. The response to the REF_ SET? query indicates whether the specified reference waveform is turned on **COM M AND SYNTAX** REF SET TRACE, <trace > REF, < ref > , state, <state>,SAVE,DO <trace> : = {C1,C2,C3,C4,C1OFF,C2OFF,C3OFF,C4OFF} If the trace is closed, the specified trace will be CxOFF.(x is 1.2.3.4). the closed trace couldn't be saved or set <ref> := {RA,RB,RC,RD} The Rx(x is A,B,C,D) is that which one can be stored or displayed <state> := {ON,OFF} The state enables or disables to display the specified reference waveform. If the command syntax have the option that SAVE,DO, means that the specified trace will be saved to the specified reference waveform. QUERY SYNTAX REF SET? REF,<ref> **RESPONSE FORM AT**REF SET REF,<ref>,STATE,<state> **EXAM PLE** The following instruction saves the channel 1 waveform to the REFA, and turns on REFA: Command message: REFS TRACE, C1, REF, RA, STATE, ON, SAVE, DO ### SAVE/RECALL SETUP *SAV Command **DESCRIPTION** The * SAV command stores the current state of the instrument in internal memory. The * SAV command stores the complete front-panel setup of the instrument at the time the command is issued. COM M AND SYNTAX * SAV <panel_setup> <panel_setup>: = 1 to 20 **EXAM PLE** The following saves the current instrument setup in Panel Setup 3: Command message: * SAV 3 RELATED COM M ANDS PANEL SETUP, * RCL ### HARD COPY ## SCREEN_DUMP, SCDP Command **DESCRIPTION** The SCREEN_DUMP command is used to obtain the screen information of image format. COM M AND SYNTAX SCreen_DumP **EXAM PLE** The following command transfers the screen information of image format to the controller Command message: SCDP ### DISPLAY ### SCREEN_SAVE, SCSV Command /Query **DESCRIPTION** The SCREEN_SAVE command controls the automatic Screen Saver, which automatically shuts down
the internal color monitor after a preset time. The response to the SCREEN_SAVE? query indicates whether the automatic screen saver feature is on or off. Note: When the screen save is in effect, the oscilloscope is still fully functional. COM M AND SYNTAX Screen Save <enabled> <enabled> : = {YES, NO} QUERY SYNTAX SCreen_SaVe? RESPONSE FORM AT Screen Save <enabled> **EXAM PLE** The following enables the automatic screen saver: Command message: SCSV YES STATUS *SRE Command /Query DESCRIPTION The * SRE command sets the Service Request Enable register (SRE). This command allows the user to specify which summary message bit(s) in the STB register will generate a service request. A summary message bit is enabled by writing a '1' into the corresponding bit location. Conversely, writing a '0' into a given bit location prevents the associated event from generating a service request (SRQ). Clearing the SRE register disables SRQ interrupts. The * SRE? query returns a value that, when converted to a binary number, represents the bit settings of the SRE register. Note: that bit 6 (MSS) cannot be set and its returned value is always zero. COM M AND SYNTAX * SRE < value> <value> : = 0 to 255 QUERY SYNTAX * SRE? RESPONSE FORM AT * SRE < value> **EXAM PLE** The following instruction allows an SRQ to be generated as soon as the MAV summary bit (bit 4, i.e. decimal 16) or the INB summary bit (bit 0, i.e. decimal 1) in the STB register, or both, are set. Summing these two values yields the SRE mask 16+1 = 17. Command message: * SRE 17 STATUS *STB? **DESCRIPTION** The * STB? query reads the contents of the 488.1 defined status register (STB), and the Master Summary Status (MSS). The response represents the values of bits 0 to 5 and 7 of the Status Byte register and the MSS summary message. The response to a * STB? Query is identical to the response of a serial poll except that the MSS summary message appears in bit 6 in place of the RQS message. QUERY SYNTAX *STB? RESPONSE FORM AT * STB <value> <value> : = 0 to 255 **EXAM PLE** The following reads the status byte register: Command message: * STB? Response message: * STB 0 RELATED COM M ANDS ALL STATUS, * CLS, * SRE #### ADDITIONAL INFORM ATION | Status Byte Register (STB) | | | | | |----------------------------|-----------|-----------|--|-----| | Bit | Bit Value | Bit Name | Description | | | 7 | 128 | DIO7 | 0 reserved for future use | | | 6 | 64 | M SS/ RQS | at least 1 bit in STB masked by SRE is 1 (1) | | | | | M SS=1 | service is | (2) | | | | RQS=1 | requested | | | 5 | 32 | ESB | 1 an ESR enabled event has occurred | (3) | | 4 | 16 | MAV | 1 output queue is not empty | (4) | | 3 | 8 | DIO3 | 0 reserved | | | 2 | 4 | VAB | 1 a command data value has been adapted | | | 1 | 2 | DIO1 | 0 reserved | | | 0 | 1 | INB | 1 an enabled INternal state change has | (6) | | | | | occurred | | #### Notes (1) The Master Summary Status (MSS) indicates that the instrument requests service, whilst the Service Request status — when set — specifies that the oscilloscope issued a service request. Bit position 6 depends on the polling method: - Bit 6 = MSS if an *STB? Query is received - = RQS if serial polling is conducted - (2) Example: If SRE=10 and STB=10 then M SS=1. If SRE=010 and STB=100 then M SS=0. - (3) The Event Status Bit (ESB) indicates whether or not one or more of the enabled IEEE 488.2 events have occurred since the last reading or clearing of the Standard Event Status Register (ESB). ESB is set if an enabled event becomes true (1). - (4) The Message AVailable bit (MAV) indicates whether or not the Output queue is empty. The MAV summary bit is set true (1) whenever a data byte resides in the Output queue. - (5) The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been adapted to the nearest legal value. For instance, the VAB bit would be set if the timebase is redefined as 2 μs/div since the adapted value is 2.5 μs/div. - (6) The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are entered. For further information, refer to the INR query. ACQUISITION STOP **DESCRIPTION** The STOP command immediately stops the acquisition of a signal. If the trigger mode is AUTO or NORM. COM M AND SYNTAX STOP **EXAM PLE** The following stops the acquisition process: Command message: STOP RELATED COM M ANDS ARM_ACQUISITION, TRIG_MODE, WAIT ### **WAVEFORM TRANSFER** ## STORE, STO Command **DESCRIPTION** The STORE command stores the contents of the specified trace into one of the internal memories M 1 to M 10(or M 20 in the CFL series) or to the current directory in a USB memory device. COM M AND SYNTAX STOre [<trace>, <dest>] <trace>: = {TA, TB, TC, TD, C1, C2, C3, C4.ALL DISPLAYED <dest>: ={M1~M10(or M20 in the CFL series), UDSK} Note: If the STORE command is sent without any argument, and the current trace isn't enabled, the current trace will be enabled and stored in the Store Satur. This setup and stored in the Store Setup. This setup can be modified using the STORE_SETUP command. **EXAM PLE** The following command stores the contents of Channel 1(C1) into Memory 1 (M1): Command message: STO C1. M1 The following command stores all currently displayed waveforms onto the USB memory device: Command message: STO ALL DISPLAYED, UDSK RELATED COM M ANDS STORE SETUP, RECALL ### SAVE/RECALL SETUP ## STORE_PANEL, STPN Command **DESCRIPTION** The STORE PANEL command stores the complete front-panel setup of the instrument, at the time the command is issued, into a file on the specified-DOS path directory in a USB memory device. COM M AND SYNTAX STore PaNel DISK, <device>, FILE, '<filename>' <device>: ={UDSK} < directory >: = A legal DOS path or filename. A filename -string of up to 8 characters, with the extension ".SET". (This can include the '/' character to define the root directory.) **EXAM PLE** The following code saves the current instrument setup to root directory of the USB memory $\,$ device in a file called "SEAN.SET": Command message: STore PaNel DISK, UDSK, FILE, 'SEAN. SET' The following code saves the current instrument setup to specified-directory of the USB memory device in a file called "SEAN.SET": Command message: STore PaNel DISK, UDSK, FILE, '/ AAA/ SEAN' RELATED COM M ANDS * SAV. RECALL PANEL. * RCL ### **WAVEFORM TRANSFER** ### STORE SETUP, STST Command /Query **DESCRIPTION** The STORE_SETUP command controls the way in which traces will be stored. A single trace or all displayed traces may be enabled for storage. COM M AND SYNTAX STore_SeTup [<trace>, <dest>] <trace> : = {C1,C2,C3,C4,ALL_DISPLAYED} <dest>: ={M1~M10(or M20 in the CFL series),UDSK} QUERY SYNTAX STore SeTup? **RESPONSE FORM AT**STore_SeTup <trace>, <dest> **EXAM PLE** The following command selects Channel 1 to be stored. Command message: STST C1, UDSK RELATED COM M ANDS STORE. INR ## SAMPLE_STATUS, SAST Query **DESCRIPTION** The SAST? query the acquisition status of the scope. QUERY SYNTAX SAST? RESPONSE FORM AT SAST < status > **EXAM PLE** The following command reads the acquisition status of the scope. Command message: SAST? Response message: SAST trig'd ## SAMPLE_RATE, SARA Query **DESCRIPTION** The SARA? query returns the sample rate of the scope. QUERY SYNTAX SARA? RESPONSE FORM AT SARA <value> **EXAM PLE** The following command reads the sample rate of the scope. Command message: SARA? Response message: SARA 500.0kSa ### SAMPLE_NUM, SANU Querv **DESCRIPTION** The SANU? query returns the number of sampled points available from last acquisition and the trigger position. QUERY SYNTAX SANU? <channel> RESPONSE FORM AT SANU <value> **EXAM PLE** The following command reads the number of sampled points available from last acquisition from the Channel 2. Command message: SANU? C2 Response message: SANU 6000 # SKEW, SKEW **DESCRIPTION** The SKEW command sets the skew value of the specified trace. The response to the SKEW? query indicates the skew value of the specified trace. COM M AND SYNTAX <trace>:SKEW <skew> <trace> : = {C1,C2,C3,C4} <skew>: = it is a value about time. QUERY SYNTAX <trace>:SKEW? RESPONSE FORM AT <trace>:SKEW <skew> **EXAM PLE** The following command sets channel 1 skew value to 3ns Command message: C1:SKEW 3NS ### **FUNCTION** SET50, SET50 Command **DESCRIPTION** The SET50 command sets the trigger level of the specified trigger source to the centre of the signal amplitude. COM M AND SYNTAX SET50 **EXAM PLE** The following command sets the trigger level of the specified trigger source to the centre of the signal amplitude Command message: SET50 # SINXX_SAMPLE, SXSA Command /Query **DESCRIPTION** The SINXX_SAM PLE command sets the way of interpolation. The response to the SINXX SAM PLE? query indicates the way of interpolation. COM M AND SYNTAX SINXX SAMPLE, <state> <state> : = {ON,OFF} ON means sine interpolation, and OFF means linear interpolation QUERY SYNTAX SAM PLE? RESPONSE FORM AT SINXX SAMPLE < state > **EXAM PLE** The following instruction sets the way of the interpolation to sine interpolation: Command message: SXSA ON # TIME_DIV, TDIV Command /Query **DESCRIPTION** The TIME_DIV command modifies the timebase setting. The new timebase setting may be specified with suffixes: NS for nanoseconds, US for microseconds, MS for milliseconds, S for seconds, or KS for kiloseconds. An out-of-range value causes the VAB bit (bit 2) in the STB register to be set. The TIME DIV? query returns the current timebase setting. COM M AND SYNTAX Time DIV <value> <value>:={1NS(not every type has this value),2.5NS5NS10NS25NS50NS100NS250N S500NS1US2.5US5US10US25US50US100U S250US500US1MS2.5MS5MS10MS25MS5 0MS100MS250MS500MS1S2.5S5S10S25S 50S} QUERY SYNTAX Time DIV? RESPONSE FORM AT Time DIV <value> **EXAM PLE** The following sets the time base to 500 μs /div: Command message: TDIV 500US RELATED COM M ANDS TRIG DELAY, TRIG MODE ### **WAVEFORM TRANSFER** # TEMPLATE, TMPL Query **DESCRIPTION** The TEMPLATE? query produces
a copy of the template that describes the various logical entities making up a complete waveform. In particular, the template describes in full detail the variables contained in the descriptor part of a waveform. QUERY SYNTAX TeM PLate? **RESPONSE FORM AT**TeM PLate "<template>" <template> : = A variable length string detailing the structure of a waveform. RELATED COMMANDS WF DISPLAY TRACE, TRA **DESCRIPTION** The TRACE command enables or disables the display of a trace. An environment error is set if an attempt is made to display more than four waveforms. The TRACE? query indicates whether the specified trace is displayed or not. COM M AND SYNTAX <trace>: TRAce <mode> <trace> : = {C1, C2, C3, C4, TA, TB, TC, TD} <mode>: = {ON, OFF} QUERY SYNTAX <trace>: TRAce? **EXAM PLE** The following command displays Channel 1 (C1): Command message: C1: TRA ON # ACQUISITION *TRG Command **DESCRIPTION** The *TRG command executes an ARM command. COM M AND SYNTAX *TRG **EXAM PLE** The following command enables signal acquisition: Command message: * TRG **RELATED COM M ANDS** ARM_ACQUISITION, STOP, WAIT # TRIG_COUPLING, TRCP Command /Query **DESCRIPTION** The TRIG_COUPLING command sets the coupling mode of the specified trigger source. The TRIG_COUPLING? query returns the trigger coupling of the selected source. COM M AND SYNTAX <a href="mailto:coupling-strig_cou <trig_source>: = {C1, C2, C3, C4, EX, EX5, LINE} <trig coupling>: = {AC,DC,HFREJ,LFREJ} QUERY SYNTAX <trig source>: TRig CouPling? RESPONSE FORM AT <a href="mail **EXAM PLE** The following command sets the coupling mode of the trigger source Channel 2 to AC: Command message: C2: TRCP AC RELATED COM M ANDS TRIG COUPLING, TRIG DELAY, TRIG LEVEL, TRIG MODE, TRIG SELECT, TRIG SLOPE # TRIG_DELAY, TRDL Command /Query DESCRIPTION The TRIG_DELAY command sets the time at which the trigger is to occur with respect to the first acquired data point. This mode is called pre-trigger acquisition, as data are acquired before the trigger occurs. Negative trigger delays must be given in seconds. This mode is called post-trigger acquisition, as the data are acquired after the trigger has occurred. If a value outside the range, the trigger time will be set to the nearest limit and the VAB bit (bit 2) will be set in the STB register. The response to the TRIG_DELAY? query indicates the trigger time with respect to the first acquired data point. COM M AND SYNTAX TRig_DeLay <value> <value>: = the range of value is related to the timebase. Note: The suffix Sis optional and assumed. **QUERY SYNTAX** TRig DeLay? RESPONSE FORM AT TRig DeLay <value> EXAM PLE The following command sets the trigger delay to -2ms $\,$ (posttrigger): Command message: TRDL -2M.S **RELATED COM M ANDS** TIME_DIV, TRIG_COUPLING, TRIG_LEVEL, TRIG MODE, TRIG SELECT, TRIG SLOPE 116 # www.valuetronics.com ## TRIG_LEVEL, TRLV Command /Query **DESCRIPTION** The TRIG_LEVEL command adjusts the trigger level of the specified trigger source. An out-ofrange value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the STB register to be set. The TRIG LEVEL? query returns the current trigger level. COM M AND SYNTAX <a href="mailto:crig_source" <trig_source>: = {C1, C2, C3, C4, EX, EX5} <trig_level>: = -6DIV* volt/div to 6DIV * volt/div Note: The suffix V is optional and assumed. **QUERY SYNTAX** <trig_source>: TRig_LeVel? RESPONSE FORM AT <a href="mail **EXAM PLE** The following code adjusts the trigger level of Channel 3 to 52.00mv: Command message: C3:TRig LeVel 52.00mv RELATED COM M ANDS TRIG COUPLING, TRIG DELAY, TRIG MODE, TRIG SELECT, TRIG SLOPE # TRIG_MODE, TRMD Command /Query **DESCRIPTION** The TRIG_MODE command specifies the trigger mode. The TRIG_MODE? query returns the current trigger mode. NOTE: STOP is a part of the option of this command, but is not a trigger mode of the instrument COM M AND SYNTAX TRig MoDe < mode> <mode>: = {AUTO, NORM, SINGLE,STOP} QUERY SYNTAX TRig_MoDe? **RESPONSE FORM AT**TRig_MoDe <mode> **EXAM PLE** The following selects the normal mode: Command message: TRM D NORM RELATED COM M ANDS ARM ACQUISITION, STOP, TRIG SELECT, TRIG COUPLING, TRIG LEVEL, TRIG SLOP # TRIG_SELECT, TRSE Command /Query #### DESCRIPTION The TRIG_SELECT command is used to set the trigger type and the type's option HT which is an option of the TRIG_SELECT command is related to the TRSL command. The TRSL command could set the <trig_slope>. The HT's polarity will also be changed. The TRIG_SELECT? query returns the current trigger type. #### COM M AND SYNTAX > TRig_SelEct<trig_type>,SR,<source>,CHAR, <characteristicse>,POL,<polarity>,SYNC,<sync_ty pe>,LINE, e> TRig SelEct INTV.SR.<source>.VERT.<vertical> ### OPTION <trig_type>: = {EDGE, GLIT,INTV,TV,} GLIT means pulse trigger, INTV means slope trigger and TV means video trigger. Options: SR HT HV POL CHAR SYNC LINE VERT HT,<hold_type>:is used to set pulse type. <hold_type>:= {TI, PS, PL,PE, IS, IL,IE} TI means holdoff, PS means that the pulse width is smaller than the set value. PL means that the pulse width is larger than the set value. PE means that the pulse width is equal with the set value. If you want to set the Px(x is S,L,E), the <trig_type> must be set to GLIT. IS means that the interval is smaller than the set value. IL means that the interval is larger than the set value is interval larger. IE means that the interval is equal with the set value. If you want to set the Ix(x is S,L,E),the <trig_type> must be set to INTV. HV,<hold_value>:is used to set trigger time <hold_value> := See instrument Operator's Manual for valid values SR, < source > :is used to set the trigger's channel.If you want to set the other option. You must set it. <source>: = {C1, C2, C3,C4,EX, EX5} CHAR, <characteristicse>:is used to set the standard .if you want to set it, the <trig_type> must be set to TV. <characteristicse>:={NTSC, PALSEC} SYNC,<sync_type>:is used to set sync. If you Want to set it. You must set <trig_type> to TV <sync_type> := {AL,LN,OF,EF} AL means all lines; LN means line num; OF means odd field: FE means even field LINE, line>: is used to set the line num. if you want to set it. The SYNC must be set to LINENUM POL, <polarity>: is used to set polarity. If you want to set it. You must set <trig_type> to TV <polarity>: = {PO,NE} PO means positive. NE means negative. VERT,<vertical>:is used to set vertical. If you Want to set it. You must set <trig_type> INTV <vertical>: = {UP,DOWN,BOTH} **QUERY SYNTAX** TRig SelEct? RESPONSE FORM AT TRig SelEct < mode>, the other options EXAM PLE The following sets the trigger type to video, the trigger source to C1,the standard to NTSC, the polarity to positive, the sync to line num and the line num to 5: TRSE TV,SR,C1,CHAR,NTSC,POL, PO.SYNC.LN.LINE.5 RELATED COM M ANDS TRSL VTCL 120 # www.valuetronics.com # TRIG_SLOPE, TRSL Command /Query **DESCRIPTION** The TRIG_SLOPE command sets the trigger slope of the specified trigger source. The TRIG_SLOPE? query returns the trigger slope of the selected source. COMMAND SYNTAX <trig_source>: TRig_SLope <trig_slope> <trig source>: = {C1, C2, C3, C4, EX, EX5, LINE} <trig_slope>: = {NEG, POS, WINDOW} QUERY SYNTAX <trig_source>: TRig_Slope? **RESPONSE FORM AT** <trig_source>: TRig_SLope <trig_slope> **EXAM PLE** The following sets the trigger slope of Channel 2 to negative: Command message: C2: TRSL NEG **RELATED COM M ANDS** TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE, TRIG_SELECT, TRIG_SLOPE UNIT, UNIT Command /Query **DESCRIPTION** The UNIT command sets the unit of the specified trace. The UNIT query returns the unit of the specified trace. COM M AND SYNTAX <channel>: UNIT <type> <channel>: = {C1, C2, C3, C4} $<type>: = {V,A}$ QUERY SYNTAX <channel>: UNIT? **RESPONSE FORM AT** <channel>: UNIT <type> **EXAM PLE** The following command sets the unit of the channel 1 to V: Command message: C1: UNIT V ### DISPLAY # **VERT_POSITION,
VPOS** Command /Query DESCRIPTION The VERT_POSITION command adjusts the vertical position of the specified FFT trace on the screen. It does not affect the original offset value obtained at acquisition time. The VERT_POSITION? query returns the current vertical position of the specified FFT trace. <trace>: = {TA, TB, TC, TD} <display_offset>: =-40 DIV to 40 DIV Note: The suffix DIV is optional. QUERY SYNTAX <trace>: Vert_POSition? RESPONSE FORM AT <a href="https://example.com/response-position-left-spin-supersc **EXAM PLE** The following shifts FFT Trace A (TA) upwards by +3 divisions relative to the position at the time of acquisition: Command message: TA: VPOS3DIV # VOLT_DIV, VDIV Command /Query **DESCRIPTION** The VOLT_DIV command sets the vertical sensitivity in Volts/div. The VAB bit (bit 2) in the STB register is set if an out-of-range value is entered. The VOLT_DIV query returns the vertical sensitivity of the specified channel. COM M AND SYNTAX <channel>: Volt DIV <v gain> <channel>: = {C1, C2, C3, C4} <v gain>: = 2mV to 10V(or 5V in the CFL series) Note: The suffix V is optional. QUERY SYNTAX <channel>: Volt_DIV? RESPONSE FORM AT <channel>: Volt_DIV <v_gain> **EXAM PLE** The following command sets the vertical sensitivity of channel 1 to 50 mV/div: Command message: C1: VDIV 50M V # **VERTICAL, VTCL** Command /Query DESCRIPTION The VERTICAL command controls the vertical position of the slope trigger line. It is related to the TRSE command. The VERT option of the TRSE command changes the controlling type of the slopes trigger line. When the slope trigger lines are both controlled, the vertical position of the slope trigger line is the up one's position. The VERTICAL query returns the vertical position of the slope trigger line. COM M AND SYNTAX <channel>: VERTICAL <pos> <channel>: = {C1, C2, C3, C4} = the position is related to the screen vertical center. For example, if we set the vertical position of the slope trigger line to 25, it will be displayed 1 grid up to the screen vertical center. Namely one grid is 25. QUERY SYNTAX <channel>: VERTICAL? RESPONSE FORM AT <channel>: VERTICAL <pos> **EXAM PLE** The following command sets the vertical position of the slope trigger line to 25 that what is the distance from the up of centre about 1 grid: Command message: C1: VTCL 25 RELATED COM M ANDS TRSE #### WAVEFORM TRANSFER # WAVEFORM, WF DESCRIPTION A WAVEFORM? Query transfers a waveform from the oscilloscope to the controller. A waveform consists of several distinct entities: - 1. the descriptor (DESC) - 2. the user text (TEXT) - 3. the time (TIME) descriptor - 4. the data (DAT1) block, and, optionally - 5. a second block of data (DAT2) The WAVEFORM? Query instructs the oscilloscope to transmit a waveform to the controller. The entities may be queried independently. If the "ALL" parameter is specified, all four or five entities are transmitted in one block in the order enumerated above. Note: The format of the waveform data depends on the current settings specified by the last WAVEFORM_SETUP command. **QUERY SYNTAX** <trace>: WaveForm? ALL <trace> : = { C1.C2.C3.C4} RESPONSE FORM AT <trace>: WaveForm <waveform data block> **EXAMPLE** The following command reads waveform data block of Channel 2: Command message: 126 #### RELATED COM M ANDS #### WAVEFORM SETUP #### Note: Offset data factor is a 4 byte floating point number starting at address 0xA0. Amplitude scale factor data is a 4 byte floating point number starting at address 0x9C. Waveform descriptor block starts off from "WAVEDESC" in the return data. The size of the descriptor is 0x16e - 0x15 + 1. All waveform data are represented in two's complement binary. It must be converted to decimal and apply to the linear equation formula y = mx + b, where x is the data in decimal value, m is the amplitude scale factor, and b is the offset data factor. For detailed description, see the end of the document. ### **WAVEFORM TRANSFER** ## WAVEFORM_SETUP, WFSU Command /Query #### DESCRIPTION The WAVEFORM_SETUP command specifies the amount of data in a waveform to be transmitted to the controller. The command controls the settings of the parameters listed below. Note: This command currently only support NP | Notation | | | | |----------|-------------|----|------------------| | FP | first point | NP | number of points | | SP | sparsing | | | Sparsing (SP): The sparsing parameter defines the interval between data points. For example: SP = 0 sends all data points SP = 1 sends all data points SP = 4 sends every 4th data point Number of points (NP): The number of points parameter indicates how many points should be transmitted. For example: NP = 0 sends all data points NP = 1 sends 1 data point NP = 50 sends a maximum of 50 data points NP = 1001 sends a maximum of 1001 data points First point (FP): The first point parameter specifies the address of the first data point to be sent. For waveforms acquired in sequence mode, this refers to the relative address in the given segment. For example: FP = 0 corresponds to the first data point FP = 1 corresponds to the second data point FP = 5000 corresponds to data point 5001 The WAVEFORM_SETUP? query returns the transfer parameters currently in use. COM M AND SYNTAX WaveForm SetUp SP, <sparsing>, NP, <number>, FP, 128 #### <point> #### QUERY SYNTAX WaveForm SetUp? Note 1: After power-on, SP is set to 4, NP is set to 1000, and FP is set to 0. Note 2: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and may be restricted to those variables to be changed. **RESPONSE FORM AT** WaveForm_Set Up SP, <sparsing>, NP, <number>, FP, <point> **EXAM PLE** The following command specifies that every 3rd data point (SP=3) starting at address 200 should be transferred: Command message: WFSU SP, 3, FP, 200 RELATED COM M ANDS WAVEFORM # WAIT, WAIT #### DESCRIPTION The WAIT command prevents the instrument from analyzing new commands until the oscilloscope has completed the current acquisition. The instrument will be waiting for trigger or the limit time over (if we set it) or the device time out when we sent this command #### COM M AND SYNTAX #### WAIT <time> Note: This command have two ways to use. One sets the limited time, another one doesn't set the limited time. ### **EXAM PLE** If we move the trigger level of the source to the position where the trace isn't triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The instrument will be waiting for triggering until the time over (if we set it) or time out. If we move the trigger level of the source, and the instrument is triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The WAIT command will be finished if we send a FRTR for triggering. Command message: WAIT ### DISPLAY # XY DISPLAY, XYDS Command /Query DESCRIPTION The XY DISPLAY command enables or disables to display the XY format The response to the XY DISPLAY? query indicates whether the XY format display is enabled. COM M AND SYNTAX XY DISPLAY < state > <state>: = {ON, OFF} **QUERY SYNTAX** XY DISPLAY? RESPONSE FORM AT XY DISPLAY < state> EXAM PLE The following command enables to display the XY format: Command message: XYDS # Index #### Α ALL_STATUS?, ALST?, Query, ARM_ACQUISITION, ARM, Command, ATTENUATION, ATTN, Command/Query, AUTO_CALIBRATE, ACAL, Command/Query, AUTO_SETUP, ASET, Command, AUTO_TYPESET, AUTTS, Command/Query, AVERAGE_ACQUIRE, AVGA, Command/Query, #### В BANDWIDTH_LIMIT, BWL,Command/Query, BUZZER, BUZZ, Command, #### С CAL?, Query, CLS, Command, CM R?, Query, COMM_NET, CONET, Command/Query, COUPLING, CPL, Command/Query, CURSOR_SET, CRST, Command/Query, CURSOR_VALLUE?, CRVA?, Query, CURSOR_AUTO, CRAU, Command, CSV_SAVE, CSVS, Command/Query, COUNTER, COUN, Command/Query, CYMOMETER, CYMT, Query, #### D DATE, Command/Query, DDR?, Query, DEFINE, DEF, Command/Query, DELETE_FILE, DELF,Command, DIRECTORY, DIR,Command/Query, DOT_JOIN, DTJN,Command/Query, #### Ε ESE, Command/Query, ESR?, Query, EXR?, Query, ## 132 # www.valuetronics.com ``` F FILENAME, FLNM, Command/Query, FORMAT VDISK, FVDISK, Query, FILTER, FILT, Command/Query, FILT SET, FILTS, Command/Query, FFT WINDOW, FFTW, Command/Query, FFT ZOOM, FFTZ, Command/Query, FFT SCALE, FFTS, Command/Query, FFT FULLSCREEN, FFTF, Command/Query, G GRID DISPLAY, GRDS, Command/Query, GCSV, GET CSV, Query, Н HARDCOPY SETUP, HCSU, HOR MAGNIFY, HMAG, Command/Query, HOR POSITION, HPOS, Command/Query, Ī IDN?, Query, INTENSITY, INTS.Command/Querv. INTERLEAVED, ILVD, Command/Query, INR, INR, Query, INVERT SET, INVS, Command/Query, LOCK, Command/Query, M MENU, MENU, Command/Query, MATH VERT POS, MTVP, Command/Query, MATH VERT DIV, MTVD, Command/Query, MEASURE DELY, MEAD, Command/Query, ``` OFFSET, OFST, Command/Query, OPC, Command/Query, \cap #### Ρ PARAM ETER_CLR, PACL,Command, PARAM ETER_CUSTOM, PACU,Command/Query, PARAM ETER_VALUE?, PAVA?,Query, PEAK_DETECT, PDET,Command/Query, PERSIST, PERS,Command/Query, PERSIST_SETUP, PESU,Command/Query, PANEL_SETUP,PNSU, Command/Query, PF_DISPLAY, PFDS, Command/Query, PF_SET, PFST, Command/Query, PF_SET, PFST, Command/Query, PF_SAVELOAD, PFSL, Command, PF_CONTROL, PFCT, Command/Query, PF_CREATEM, PFCM, Command, PF_DATEDIS, PFDD, Query, #### R RCL, Command, RECALL, REC, Command, RECALL_PANEL, RCPN, Command, RST, Command, REF SET, REFS, Command/Query, #### S SAV, Command, SCREEN_DUMP, SCDP, Command/Query, SRE, Command/Query, STB? Query, STOP, Command, STORE, STO, Command, STORE_PANEL, STPN, Command, STORE_SETUP, STST, Command/Query, SAM PLE_STATUS, SAST/ Query, SAM PLE_RATE, SARA/ Query, SAM PLE_NUM, SANU/ Query, SAM PLE_NUM, SANU/ Query, SKEW, SKEW, Command, SETTO%50, SET50, Command,
SINXX_SAM PLE, SXSA, Command/Query, #### Т TIME_DIV, TDIV, Command/Query, TRACE, TRA, Command/Query, ## 134 # www.valuetronics.com TRG, Command, TRIG_COUPLING, TRCP, Command/Query, TRIG_DELAY, TRDL, Command/Query, TRIG_LEVEL, TRLV, Command/Query, TRIG_MODE, TRM D, Command/Query, TRIG_SELECT, TRSE, Command/Query, TRIG_SLOPE, TRSL, Command/Query, ### U UNIT, UNIT, Command/Query, #### ٧ VOLT_DIV, VDIV,Command/Query, VERTICAL, VTCL, Command/Query, ### W WAIT, Command, WAVEFORM, WF, Command/Query, WAVEFORM SETUP, WFSU, Command/Query, ## Χ XY_DISPLAY, XYDS, Command/Query,