Programming Guide

Agilent Technologies
PSG Family Signal Generators

This guide applies to the signal generator models and associated serial number prefixes
listed below. Depending on your firmware revision, signal generator operation may vary
from descriptions in this guide.

E8241A: US4124
E8244A: US4124

E8251A: US4124
E8254A: US4124

Agilent Technologies

Part Number: E8251-90025
Printed in USA
February 2002

© Copyright 2001, 2002 Agilent Technologies Inc.

www.valuetronics.com

https://www.valuetronics.com/

www.valuetronics.com

Contents

1. Getting Startedcoiiiiiiiiiiiiereeeeooososssocessssssssscassss 1
Introduction to Remote Operation 2
Interfaces. e 3
TO Libraries. . ..ot e 3
Programming Language. i e 4
Using GPIB 5
1. Installing the GPIB Interface Card..............., 5
2. Selecting IO Libraries for GPIB. 7
3. Setting Up the GPIB Interface. 7
4. Verifying GPIB Functionality 8
GPIB Interface Terms.ttt e et e 8
GPIB Function Statements i 9
Using LAN . .. e e e 14
1. Selecting IO Libraries for LAN et 14
2. Setting Up the LAN Interface 15
3. Verifying LAN Functionality i, 15
Using VXI-1L ..o 17
Using Sockets LAN 19
Using TELNET LAN ... e e e e e e 20
Using FTP .. 24
Using RS-282 . . . e 26
1. Selecting IO Libraries for RS-232 26
2. Setting Up the RS-232 Interface 27
3. Verifying RS-232 Functionality 28
Character Format Parameters. 29
2. Programming Examples. oiiiitiieeeeeescssoeeesossssssceasas 31
Using the Programming Examples i, 32
Programming Examples Development Environment. 33
Running C/C++ Programming Examples 33
GPIB Programming Examples 34
Before Using the Examples e 34
Interface Check using Agilent BASIC 35
Interface Check Using NI-488.2and C++. ...t 36
Interface Check using VISAand C 37
Local Lockout Using Agilent BASIC 38
Local Lockout Using NI-488.2 and C++, 39
Queries Using Agilent BASIC e 41
iii

www.valuetronics.com

Contents

Queries Using NI-488.2 and C++.ot i i e 43
Queries Using VISA and C. i e e e 45
Generating a CW Signal Using VISAand C............. i, 47
Generating an Externally Applied AC-Coupled FM Signal Using VISAand C 49
Generating an Internal AC-Coupled FM Signal Using VISAand C............. 51
Generating a Step-Swept Signal Using VISAand C 53
Saving and Recalling States Using VISAand C............................. 55
Reading the Data Questionable Status Register Using VISAand C............. 57
Reading the Service Request Interrupt (SRQ) Using VISAand C 60
LAN Programming Examples.t 64
Before Using the Examples i, 64
VXI-11 Programingttt et 65
Sockets LAN Programming using Ct iiiiinnennnnnn. 69
Sockets LAN Programming Using PERL 89
Sockets LAN Programming UsingdJava0iiiiinnnonn. 91
RS-232 Programming Examples. 93
Before Using the Examples e, 93
Interface Check Using Agilent BASIC 94
Interface Check Using VISAand C........ 95
Queries Using Agilent BASIC e 97
Queries Using VISA and C. i e e e 98
3. Programming the Status Register System..........cciiiiiiinnennns 101
OV VIBW . .« o ettt e e e e e e e e e 102
Status Register Bit Values. e 104
Accessing Status Register Information. 105
Determining What to Monitor 105
Deciding How to Monitor e e 106
Status Register SCPI Commandsttt 108
Status Byte Group e 110
Status Byte Register. e 111
Service Request Enable Register. 112
StatUS GroUPS. . . oottt e 113
Standard Event Status Group e 114
Standard Operation Status Group. i 117
Data Questionable Status Group. i 120

www.valuetronics.com

Contents

Data Questionable Power Status Group 124
Data Questionable Frequency Status Group 127
Data Questionable Modulation Status Group. 130
Data Questionable Calibration Status Group. 133
4. Command Reference.coiiiiiiiiininnnnnnnnssossssesanans 137
Command Reference Information............ 138
SCPI Command Listingst 138
Softkey and Hardkey Cross Reference 138
Supported Signal Generator Series.c.tiitt i 138
SCPI BasiCs . vttt 139
Common Terms. e e e 139
Command Syntaxt e e 140
Command Typesottt 142
Command Treet e e e e 143
Command Parameters and Responses, 144
Program MesSSages oov ittt 149
File Name Variables i e e e e 150
MSUS (Mass Storage Unit Specifier) Variable 151
Quote Usage with SCPI Commands iiireeeunnnn. 152
Binary, Decimal, Hexadecimal, and Octal Formats 153
IEEE 488.2 Common Commandstiiiiinitee ... 154
O et 154
S . 154
RS . o o 155

Kl P 155
DN . o e 156
O P C . 156
FOP O oo 157
PO C 157

Sl 0 T PP 158
R L oot e 158
RS .o e 158
S AV 159
O RE . e e 159
ORI . o o 160

B 1 = P 160
TR G .« ot 160

v

www.valuetronics.com

Contents

St 8 1 P 161
WAL L e 161
Calibration subsystem (:CALibration) i, 162
DOE M . . o 162
Communication Subsystem (:SYSTem:COMMunicate). 163
IGPIB:ADDRESS . . oot e 163
LAN:HOSTRAmeE e e e 163
LANIP . . . 164
PMETer:ADDRESSo oo 164
PMETer:CHANDEL e e e e 165
PMETer:IDN e 165
:PMETer:TIMEout e 166
SERial:BAUD. 166
SERIaLECHO. 167
:SERial:RECeive:PACE 167
SSERial:RESet. 168
SERIALTOU T . ..o e 168
:SERial: TRANsmit:PACE. e 169
Diagnostic Subsystem (:DIAGnostic) i 170
[:CPULINFOrmation:BOARdS. e 170
[:CPULINFOrmation:CCOunt:ATTenuator 170
[:CPULINFOrmation:CCOunt:PON 171
[:CPULINFOrmation:DISPlay:OTIMec.iiiniiiienennn.. 171
[:CPULINFOrmation:OPTions.o e e 171
[:CPULINFOrmation:OPTions:DETail 172
[:CPULINFOrmation:OTIMe.t 172
[:CPULINFOrmation:REVision 172
[:CPULINFOrmation:SDATettt e e e e e 173
Display Subsystem (:DISPlay) e i 174
BRIGRENESSo e 174
CAP UrE . ..o e e 174
CONT At . . .ttt e e 175
N Ve S, .« .ttt e e 175
REMote. . ..o 176
[WINDOWILSTATE] . .o e e e e e e 176
Memory Subsystem CMEMOry).t e 177

Vi

www.valuetronics.com

Contents

(CATalog:BINGArY. . ..ttt 177
(CATalog:LIST 178
(CATaAlog:STATE . . ot 178
(CATalog:UF LT e e 179
(CATalogl:ALL] . . .o 179
COPYINAME] . . . 180
DA A . 180
DELete:ALL 181
DELete:BINAry e 181
DELete:LIST 182
DELete:STAT e e e 182
DELete:UFLT. e 182
DELete[:NAME] 183
FREELALL] 183
LOAD LIS . .. e 183
MOV E . . 184
STATe:COMMENL.t e e e et et e 184
STORE:LIST 184
Mass Memory Subsystem CMMEMory)0t .. 185
CATAlog . .. e e 185
COPY .. 186
DA A 186
DELete[:NAME] 187
LOAD LIS . .. e 187
MOV E . . 188
STORe: LIS T ... 188
Output Subsystem(C:OUTPut) e 189
:MODulation[:STATe] e e e e e e e 189
ST ATl . .o 189
Status Subsystem (GSTATUS).o oo e 190
:OPERation:CONDiItion i e e et e 190
:OPERation:ENABIe. e e e 190
OPERation:NTRansition. e 191
OPERation:PTRansitiont 191
OPERation:EVENt] e 192
PRE St . . . 192
:QUEStionable:CALibration:CONDition. 193
:QUEStionable:CALibration:ENABle 193
vii

www.valuetronics.com

Contents

:QUEStionable:CALibration:NTRansition 194
:QUEStionable:CALibration:PTRansition.00oi.... 194
:QUEStionable:CALibration[:EVENt]. 195
:QUEStionable:CONDiItion.t e e e 195
:QUEStionable:ENABle 196
:QUEStionable:FREQuency:CONDition i, 196
:QUEStionable:FREQuency:ENABIe., 197
:QUEStionable:FREQuency:NTRansition. 197
:QUEStionable:FREQuency:PTRansition................... 198
:QUEStionable:FREQuency[:EVENt] 199
:QUEStionable:MODulation:CONDition., 199
:QUEStionable:MODulation:ENABIe 200
:QUEStionable:MODulation:NTRansition00iin... 200
:QUEStionable:MODulation:PTRansition. 0.... 201
:QUEStionable:MODulation[:EVENt]. 202
:QUEStionable:NTRansition 203
:QUEStionable:POWer:CONDitiont 203
:QUEStionable:POWer:ENABIe. e 204
:QUEStionable:POWer:NTRansition. iinnnn.. 204
:QUEStionable:POWer:PTRansition iiiiinnn.. 205
:QUEStionable:POWer(EVENt] i 206
:QUEStionable:PTRansition 207
:QUEStionable:EVENL]. 207
System Subsystem (:SYSTem). e 208
CAPADbIlItY e 208
ERROrNEX T . .. 208
HELP:MODKE e 209
PON:TY PE . . 210
PRE St . . .o 210
PRESet:ALL.o 211
:PRESet:PERSistent. e 211
PRESet:TYPE 212
PRESet[:USERL:SAVE. e e e e 212
SSAVer: DELay. . ..o e e 213
SSAVer:-MODKE 213
SSAVEr:STATE . .o 214

viii

www.valuetronics.com

Contents

VERSION e 214
Trigger Subsystem e e 215
ABO R .. 215
:INITiate:CONTinuous[:ALL] e e 215
:INITiate[:IMMediate][:ALL]. e e 216
‘TRIGger:OUTPut:POLarity, 216
‘TRIGger[:SEQuencel:SLOPe. e 217
‘TRIGger[:SEQuencel:SOURceciiiiiii .. 217
‘TRIGger[:SEQuencel:IMMediate]............. 218
Unit Subsystem CUNIT) e e e 219
POWer .. 219
Amplitude Modulation Subsystem ([:SOURcel). 220
AMIL L 2 e e 220
:AM:INTernal:FREQuency:STEP[.INCRement]. 221
AMEMODE . .o e 222
:AM[1]12:EXTernal[1]12:COUPlNgGt 223
:AM[1]12:EXTernal[1]12:IMPedance., 223
:AM[1]12:INTernal[1]:FREQuency:ALTernate 224
:AM[1]12:INTernal[1.:FREQuency:ALTernate:AMPLitude:PERCent 224
:AM[1]12:INTernal[11:SWEep:RATE. 225
:AM[1]12:INTernal[1]1:SWEep:TRIGgerot 225
:AM[1]12:INTernal[1] 1 2:FREQuencyt 226
:AM[1]12:INTernal[1]I 2.FUNCtion:NOISeo, .. 226
:AM[1]12:INTernal[1] | 2.2FUNCtion:RAMP. 227
:AM[1]12:INTernal[1]12:FUNCtion:SHAPe, 227
AMII]12:SOURCE. .« . oottt e e e e e 228
AMIIII2:STATe . . . e 228
AMII 2 TY PE . . o 229
:AM[1]12[:DEPThl:EXPonential i, 229
:AM[1]12[:DEPThI:LINear] e e e 230
:AM[1]12[:DEPThI[:LINear:TRACK. 231
:AM[:DEPTh]:STEP[:INCRement]. e 232
Correction Subsystem ([:SOURce]:.CORRection) 233
L AT eSS o e 233
FLATness:LOADo 233
:FLATness:PAIR 234
FLATness:POINtS?o e e e 234
:FLATness:PRESet 235
iX

www.valuetronics.com

Contents

FLATNess:STOREot e e e e et 235
LS ATl .t 236
Frequency Subsystem ([:SOURce]). i 237
:FREQuency:FIXed. e e e e 237
:FREQuency:MODE e 237
:FREQuency:MULTIplier e et e 238
:FREQuency:OFFSet e 238
:FREQuency:OFFSet:STATeo e 239
:FREQuency:REFerence 239
:FREQuency:REFerence:STATe 239
FREQuency:STARL e 240
FREQuency:STOP e e 240
FREQuUency[:CW ... e 241
:PHASe:REFerence. e 241
PHASe[:ADJust] e 242
:ROSCillator:SOURce.o 242
:ROSCillator:SOURCce:AUTO i e 243
Frequency Modulation Subsystem ([:SOURcel). 244
B8 L 0 P 244
:FM:INTernal:FREQuency:STEP[:INCRement]. 245
FM[1]12:EXTernal[1]1 2:COUPLINgottt 245
:FM[1]12:EXTernal[1] 1 2:IMPedance. 246
:FM[1]12:INTernal[1.:FREQuency:ALTernate 246
:FM[1]12:INTernal[1.:FREQuency:ALTernate:AMPLitude:PERCent 247
:FM[1]12:INTernal[1]:SWEep:RATE. 247
:FM[1]12:INTernal[1]:SWEep:TRIGger 248
:FM[1]12:INTernal[1] | 2.2FREQUeNCyot 249
:FM[1]12:INTernal[1] | 2.FUNCtion:NOISe i, 249
:FM[1]12:INTernal[1] | 2.FUNCtion:RAMP. 250
:FM[1]12:INTernal[1] | 2.FUNCtion:SHAPe, 250
FMIITT2:SOURCE. . v oottt e e e e e e e 251
ML 2:STAT e .« ot e e 251
FMI11I2E:DEViation].o 252
FM[1]12[:DEViation:TRACKot e e e e 253
List/Sweep subsystem ([:SOURce]).ot e e 254
LIST:DIRECHIONttt e e e e 254

www.valuetronics.com

Contents

LIST:DWELL . ..o e e e 255
LIST:DWELLPOINES. . ..ottt 255
LIST:DWELLTYPE e e e e 256
LIST:FREQUENCY . .« .ot e e e e e e et 256
:LIST:FREQuency:POINts. e e e 257
LIST:MANuUAL. . .o e 257
LIST:MODE . . .o e 258
LIS T POWert 258
LIST:POWer: POINtS . . .ottt e e 259
:LIST:TRIGger:SOURCEo e e e e e 259
LIS T Y PE . .. e 260
:LIST:-TYPE:LIST:INITialize:FSTepo e 260
:LIST:-TYPE:LIST:INITialize:PRESet 261
SSWEep: DWELL e 262
SWEep: POINtS ... e 262
Low Frequency Output Subsystem ([:SOURce]:LFOutput) 263
AMPLItude. . ..o e e 263
:FUNCtion[1]:FREQuency:ALTernateuiiiiiiirennnn.. 263
:FUNCtion[1]:FREQuency:ALTernate:AMPLitude:PERCent 264
:FUNCtion[1:SWEep:RATE e 264
:FUNCtion[1]1:SWEep:TRIGgero e e 265
:FUNCtion[1] 1 2:FREQUENCYottt e e 266
FUNCtion[1]12:SHAPe e e e 266
FUNCHon:NOISe.o e e e e e 267
:FUNCtion[1]12:SHAPe:RAMP e e 267
SOURCE . oo 268
ST AT . . .ttt e e 268
Phase Modulation subsystem ([:SOURcel). i, 269
Pl 2. e 269
:PM:INTernal:FREQuency:STEP[.INCRement]............................ 270
:PM[1]12:BANDwidth IBWIDth 270
:PM[1]12:EXTernal[1]12:COUPLNGoiii e e 271
:PM[1]12:EXTernal[1] 1 2:IMPedance., 271
:PM[1]12:INTernal[1]:FREQuency:ALTernate 272
:PM[1]12:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent 272
:PM[1]12:INTernal[1]:SWEep:RATE. 273
:PM[1]12:INTernal[1:SWEep:TRIGgerc.uiiiiinnnnnnn.. 273
:PM[1]12:INTernal[1] I 2:FREQuency 0., 274
Xi

www.valuetronics.com

Contents

:PM[1]12:INTernal[1] 1 2:FUNCtion:NOISe 274
:PM[1]12:INTernal[1] | 2.FUNCtion:RAMP. 275
:PM[1]12:INTernal[1]1 2:FUNCtion:SHAPe 275
PMI1]12:SOURCE. . . . e e e 276
PMIIII2:STATe . . . e 276
PMI1]12[:DEViation].o e 277
:PM[1]12[:DEViation:TRACK e e 278
:PM[:DEViation]:STEP[.INCRement] 278
Power Subsystem ([:SOURce]) i e 279
:POWer:ALC:BANDwidth IBWIDth 0. 279
:POWer:ALC:BANDwidth I BWIDth:AUTO. 279
POWer:ALC:LEVel. e 280
:POWer:ALC:SEARcCh. 280
POWer:ALC:SOURCE.t e e e e et e s 281
:POWer:ALC:SOURce:EXTernal:COUPling 281
POWer:ALCL:STAT] e e e e 282
POWer:ATTenuation e e e e e e 282
:POWer:ATTenuation:AUTO e 283
:POWer:MODKE 283
POWer:REFerence. e e s e e e e 284
:POWer:REFerence:STATe e e i 284
POWer:STARL ... 285
POWer:STOP . . .o 285
:POWer[:LEVell[:IMMediate]l:OFFSet. 286
:POWer[:LEVell[:IMMediate][:AMPLitude] 287
Pulse Modulation Subsystem ([:SOURcel) i, 288
:PULM:INTernal[1l:DELayot et 288
:PULM:INTernal[1]:DELay:STEP. 289
:PULM:INTernal[11:FREQuency 289
:PULM:INTernal[1]:PERiod. e 290
:PULM:INTernal[1]:PERiod:STEP[:INCRement]. 290
:PULM:INTernal[11:PWIDth i 291
:PULM:INTernal[1:PWIDth:STEP. 291
PULM:SOURCE . ..ttt e e e e e 292
:PULM:SOURce:INTernal i, 292
PULM:STATe. . .o e e e e 293

Xii

www.valuetronics.com

Contents

SCPI Command Compatibility 294
SSYSTem:IDN . ..o 294
8340B/41B Compatible Commands (firmware >C.01.21) 295
836xxB/L Compatible SCPI Commandso, 309
8373xB and 8371xB Compatible SCPI Commands 327

Xiii

www.valuetronics.com

Contents

Xiv

www.valuetronics.com

1 Getting Started

www.valuetronics.com

Getting Started
Introduction to Remote Operation

Introduction to Remote Operation

PSG family signal generators support the following interfaces:

* General Purpose Interface Bus (GPIB)
¢ Local Area Network (LAN)
e ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an IO library and programming language, can
be used to remotely control the signal generator. Figure 1-1 uses the GPIB as an example of
the relationships between the interface, 10 libraries, programming language, and signal
generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA

National Instruments

Agilent VISA VISA

National Instruments

Agilent SICL NI-488.2 Library

Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

ce910a

2 Chapter 1
www.valuetronics.com

Getting Started
Introduction to Remote Operation

Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote
control of each instrument or system. Data transfer is fast because the GPIB
handles information in 8-bit bytes. GPIB is physically restricted by the
location and distance between the instrument/system and the computer;
cables are limited to an average length of two meters per device with a total
length of 20 meters.

LAN LAN based communication is supported by the signal generator. Data
transfer is fast as the LAN handles packets of data. The distance between a
computer and the signal generator is limited to 100 meters (10BASE-T). The
following protocols can be used to communicate with the signal generator
over the LAN:

* VMEDbus Extensions for Instrumentation (VXI) as defined in VXI-11
¢ Sockets LAN

* Telephone Network (TELNET)

¢ File Transfer Protocol (FTP)

RS-232 RS-232 is a common method used to communicate with a single instrument;
its primary use is to control printers and external disk drives, and connect to
a modem. Communication over RS-232 is much slower than with GPIB or
LAN because data is sent and received one bit at a time. It also requires that
certain parameters, such as baud rate, be matched on both the computer
and signal generator.

I0 Libraries

An 10 library is a collection of functions used by a programming language to send instrument
commands. An IO library must be installed on your computer before writing any programs to
control the signal generator.

NOTE Agilent 10 libraries support the VXI-11 standard.

Chapter 1 3
www.valuetronics.com

Getting Started
Introduction to Remote Operation

Programming Language

The programming language is used along with Standard Commands for Programming
Instructions (SCPI) and IO library functions to remotely control the signal generator.
Common programming languages include:

e C/C++
e Agilent BASIC
e LabView

e Javall

Java is a U.S. trademark of Sun Microsystems, Inc.

4 Chapter 1
www.valuetronics.com

Getting Started
Using GPIB

Using GPIB

The GPIB allows instruments to be connected together and controlled by a computer. The
GPIB and its associated interface operations are defined in the ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992. See the IEEE website, www.ieee.org, for
details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards
are the National Instruments (NI) PCI-GPIB and the Agilent GPIB interface cards. Follow
the GPIB interface card instructions for installing and configuring the card in your computer.

The following tables provide information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems
Interface Operating 10 Languages Backplane | Max IO | Buffering
Card System Library /BUS (kB/sec)
Agilent Windows VISA/ C/C++, Visual | ISA/EISA, 750 Built-in
82341C for | 95/98/NT/ SICL Basic, Agilent | 16 bit
ISA bus 2000® VEE, Agilent
computers Basic for
Windows
Agilent Windows VISA/ C/C++, Visual | ISA/EISA, 750 Built-in
82341D 95 SICL Basic, Agilent | 16 bit
Plug&Play VEE, Agilent
for PC Basic for
Windows
Agilent Windows VISA/ C/C++, Visual | PCI 32 bit 750 Built-in
82350A for 95/98/N'T/ SICL Basic, Agilent
PCI bus 2000 VEE, Agilent
computers Basic for
Windows

Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

Chapter 1

www.valuetronics.com

Getting Started

Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems
Interface Operating 10 Languages Backplane | Max IO
Card System Library /BUS

National Windows VISA C/C++, PCI 32 bit 1.5
Instrument’s | 95/98/2000/ | NI-488.20] Visual BASIC, Mbytes/s
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5
Instrument’s | NT NI-488.2 Visual BASIC, Mbytes/s
PCI-GPIB+ LabView

NI-488.2 is a trademark of National Instruments Corporation

Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations
Interface Operating 10 Languages Backplane | Max IO | Buffering
Card System Library /BUS (kB/sec)
Agilent HP-UX9.x, | VISA/SICL | ANSIC, EISA 750 Built-in
E2071C HP-UX Agilent VEE,
10.01 Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL | ANSIC, EISA 750 Built-in
E2071D 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL | ANSIC, PCI 750 Built-in
E2078A 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
6 Chapter 1

www.valuetronics.com

Getting Started
Using GPIB

2. Selecting 10 Libraries for GPIB

The IO libraries are included with your GPIB interface card. These libraries can also be
downloaded from the National Instruments website or the Agilent website. The following is a
discussion on these libraries.

VISA VISA is an IO library used to develop IO applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISALO
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level 10 libraries; NI-488.2 and SICL respectively. It is best to use the
Agilent VISA library with the Agilent GPIB interface card or NI-VISA with
the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using SICL functions will not run on a computer with NI libraries
(PCI-GPIB interface card).

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI1-488.2 functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using NI-488.2 functions will not run on a computer with Agilent
SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. Press Utility > GPIB/RS-232 > GPIB Address.

2. Use the numeric keypad, the arrow keys, or rotate the front panel knob to set the desired
address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of
addresses is 0 through 30. Once initialized, the state of the GPIB address is not affected by
a signal generator preset or by a power cycle. Other instruments on the GPIB cannot use
the same address as the signal generator.

3. Press Enter.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to
Table 1-4 for cable part numbers.)

NI-VISA is a registered trademark of National Instruments Corporation

Chapter 1 7
www.valuetronics.com

Getting Started
Using GPIB

Table 1-4 Agilent GPIB Cables

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length | 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

4. Verifying GPIB Functionality

Use the VISA Assistant, available with the Agilent IO Library or the Getting Started Wizard
available with the National Instrument IO Library, to verify GPIB functionality. These utility
programs allow you to communicate with the signal generator and verify its operation over
the GPIB. Refer to the Help menu available in each utility for information and instructions on
running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example
programs in Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number
configured for your PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB

system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners
(including itself) for an information transfer. Only one device at a time can
be an active controller.

8 Chapter 1
www.valuetronics.com

Getting Started
Using GPIB

GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These
function statements combined with SCPI provide management and data communication for the
GPIB interface and the signal generator.

This section describes functions used by different IO libraries. Refer to the N1-488.2 Function
Reference Manual for Windows, Agilent Standard Instrument Control Library reference
manual, and Microsoft® Visual C++ 6.0 documentation for more information.

Abort Function

The Agilent BASIC function ABORT and the other listed IO library functions terminate
listener/talker activity on the GPIB and prepare the signal generator to receive a new command
from the computer. Typically, this is an initialization command used to place the GPIB in a
known starting condition.

Table 1-5
Agilent BASIC VISA NI-488.2 Agilent SICL
10 ABORT 7 viTerminate (parameter ibstop (int ud) | iabort (id)
list)

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate
normal execution of an asynchronous operation. The parameter list describes
the session and job id.

NI-488.2

Library The NI-488.2 library function aborts any asynchronous read, write, or
command operation that is in progress. The parameter ud is the interface or
device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the
session id. This function is supported with C/C++ on Windows 3.1 and Series
700 HP-UX.

Microsoft is a registered trademark of Microsoft Corporation.

Chapter 1 9
www.valuetronics.com

Getting Started
Using GPIB

Remote Function

The Agilent BASIC function REMOTE and the other listed 10 library functions cause the signal
generator to change from local operation to remote operation. In remote operation, the front
panel keys are disabled except for the Local key and the line power switch. Pressing the Local
key on the signal generator front panel restores manual operation.

Table 1-6
Agilent BASIC VISA NI-488.2 Agilent SICL
10 REMOTE 719 N/A EnableRemote (parameter | iremote (id)
list)

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with
the exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2

Library This NI1-488.2 library function asserts the Remote Enable (REN) GPIB line.
All devices listed in the parameter list are put into a listen-active state
although no indication is generated by the signal generator. The parameter
list describes the interface or device descriptor.

SICL The Agilent SICL function puts an instrument, identified by the id

parameter, into remote mode and disables the front panel keys. Pressing the
Local key on the signal generator front panel restores manual operation.
The parameter id is the session identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKOUT and the other listed 10 library functions can be
used to disable the front panel keys including the Local key. With the Local key disabled, only
the controller (or a hard reset of the line power switch) can restore local control.

Table 1-7
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL LOCKOUT 719 | N/A SetRWLS (parameter igpibllo (id)
list)

Agilent BASIC The LOCAL LOCKOUT function disables all front-panel signal generator keys.
Return to local control can occur only with a hard on/off, when the 1L.OCAL
command is sent or if the Preset key is pressed.

10 Chapter 1
www.valuetronics.com

VISA Library

NI-488.2
Library

SICL

Local Function

Getting Started
Using GPIB

The VISA library, at this time, does not have a similar command.

The NI-488.2 library function places the instrument described in the
parameter list in remote mode by asserting the Remote Enable (REN) GPIB
line. The lockout state is then set using the Local Lockout (LLO) GPIB
message. Local control can be restored only with the EnableLocal NI-488.2
routine or hard reset. The parameter list describes the interface or device
descriptor.

The Agilent SICL igpibllo function prevents user access to front panel keys
operation. The function puts an instrument, identified by the id parameter,
into remote mode with local lockout. The parameter id is the session
identifier and instrument address list.

The Agilent BASIC function 1.OCAL and the other listed functions cause the signal generator
to return to local control with a fully enabled front panel.

Table 1-8
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL 719 N/A ibloc (int ud) iloc (id)

Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation,
allowing access to the signal generator’s front panel keys.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2

Library The NI-488.2 library function places the interface in local mode and allows
operation of the signal generator’s front panel keys. The ud parameter in the
parameter list is the interface or device descriptor.

SICL The Agilent SICL function puts the signal generator into Local operation;
enabling front panel key operation. The id parameter identifies the session.

Chapter 1 11

www.valuetronics.com

Getting Started
Using GPIB

Clear Function

The Agilent BASIC function CLEAR and the other listed 10 library functions cause the signal
generator to assume a cleared condition.

Table 1-9
Agilent BASIC | VISA NI-488.2 Agilent SICL
10 CLEAR 719 viClear (ViSession ibclr (int ud) iclear (id)

vi)

Agilent BASIC

VISA Library

NI-488.2
Library

SICL

Output Functio

The CLEAR 719 function causes all pending output-parameter operations to
be halted, the parser (interpreter of programming codes) to reset and
prepare for a new programming code, stops any sweep in progress, and
continuous sweep to be turned off.

The VISA library uses the viClear function. This function performs an IEEE
488.1 clear of the signal generator.

The NI-488.2 library function sends the GPIB Selected Device Clear (SDC)
message to the device described by ud.

The Agilent SICL function clears a device or interface. The function also
discards data in both the read and write formatted 10 buffers. The id
parameter identifies the session.

n

The Agilent BASIC IO function OUTPUT and the other listed IO library functions put the signal
generator into a listen mode and prepare it to receive ASCII data, typically SCPI commands.
Table 1-10
Agilent BASIC | VISA NI-488.2 Agilent SICL
10 OUTPUT 719 viPrintf (parameter ibwrt (parameter | iprintf (parameter
list) list) list)

Agilent BASIC The function OUTPUT 719 puts the signal generator into remote mode,
makes it a listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to
output data. This function formats according to the format string and sends
data to the device. The parameter list describes the session id and data to
send.

12 Chapter 1

www.valuetronics.com

NI-488.2
Library

SICL

Enter Function

Getting Started
Using GPIB

The NI-488.2 library function addresses the GPIB and writes data to the
signal generator. The parameter list includes the instrument address,
session id, and the data to send.

The Agilent SICL function converts data using the format string. The format
string specifies how the argument is converted before it is output. The
function sends the characters in the format string directly to the
instrument. The parameter list includes the instrument address, data buffer
to write, and so forth.

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other 10
libraries use similar functions to read data from the signal generator.

Table 1-11
Agilent BASIC | VISA NI-488.2 Agilent SICL
10 ENTER 719; | viScanf (parameter ibrd (parameter list) | iscanf (parameter list)
list)

Agilent BASIC The function ENTER 719 puts the signal generator into remote mode, makes
it a talker, and assigns data or status information to a designated variable.

VISA Library The VISA library uses the viScanf function and an associated parameter list
to receive data. This function receives data from the instrument, formats it
using the format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

NI-488.2

Library The NI-488.2 library function addresses the GPIB, reads data bytes from
the signal generator, and stores the data into a specified buffer. The
parameter list includes the instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, and stores the
results into the argument list. The conversion is done using conversion rules
for the format string. The parameter list includes the instrument address,
formatted data to read, and so forth.

Chapter 1 13

www.valuetronics.com

Getting Started
Using LAN

Using LAN

The signal generator can be remotely programmed via a LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be
connected together and controlled by a LAN-based computer. LAN and its associated interface
operations are defined in the IEEE 802.2 standard. See the IEEE website for more details.

The signal generator supports the following LAN interface protocols:
¢ VXI-11

¢ Sockets LAN

¢ Telephone Network (TELNET)

¢ File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface,
TELNET is used for interactive, one command at a time instrument control, and FTP is for
file transfer.

1. Selecting 10 Libraries for LAN

The TELNET and FTP protocols do not require IO libraries to be installed on your computer.
However, to write programs to control your signal generator, an I/O library must be installed
on your computer and the computer configured for instrument control using the LAN
interface.

The IO libraries can be downloaded from the Agilent website. The following is a discussion on
these libraries.

Agilent VISA VISA is an IO library used to develop IO applications and instrument
drivers that comply with industry standards. Use the Agilent VISA library
for programming the signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent
VISA.

14 Chapter 1
www.valuetronics.com

Getting Started
Using LAN

2. Setting Up the LAN Interface

For LAN operation, an IP address must be assigned to the signal generator and the signal
generator connected to the LAN. Your IT administrator can issue a hostname and IP address
for the signal generator.

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. Press Hostname.

Use the alphanumeric softkeys to enter a hostname. The name is not case sensitive.

3. Press Enter.
4. Press IP Address.

Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, the
front panel knob or the numeric keypad to enter an IP address. You can press the Clear Text
softkey to erase the current address.

5. Press Enter and then cycle the signal generator’s power, using the LINE switch.

This assigns a hostname and IP address to the signal generator. The hostname and IP
address are not affected by an instrument preset or by a power cycle.

6. Connect the signal generator to the LAN using a 10BASE-T LAN cable.

3. Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file
server using the ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:
ping hostname 64 10

where hostname is your instruments name and 64 is the packet size, and 10 is the number of
packets transmitted. Type man ping at the UNIX prompt for details on the ping command.

From the MS-DOS® Command Prompt or Windows environment, type:
ping —n 10 hostname

where hostname is your instruments name and 10 is the number of echo requests. Type ping
at the command prompt for details on the ping command.

UNIX is a registered trademark of the Open Group
MS-DOS is a registered trademark of Microsoft Corporation

Chapter 1 15
www.valuetronics.com

Getting Started

Using LAN
Table 1-12 Ping Responses
Normal Response A normal response to the ping command will be a total of 9 or 10
for UNIX packets received with a minimal average round-trip time. The
minimal average will be different from network to network. LAN
traffic will cause the round-trip time to vary widely.
Normal Response A normal response to the ping command will be a total of 9 or 10

for DOS or Windows | packets received if 10 echo requests were specified.

Error Messages If error messages appear, then check the command syntax before
continuing with troubleshooting. If the syntax is correct, resolve the
error messages using your network documentation or by consulting
your network administrator.

If an unknown host error message appears, try using the IP address
instead of the hostname. Also, verify that the host name and IP
address for the signal generator have been registered by your IT
administrator.

Check that the hostname and IP address are correctly entered in
the node names database. To do this, enter the nslookup
<hostname> command from the command prompt.

No Response If there is no response from a ping, no packets were received. Check
that the typed address or hostname matches the IP address or
hostname assigned to the signal generator in the System Utility >
GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the
signal generator, starting with your workstation. If a node doesn’t
respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should
suspect a hardware problem.

Intermittent If you received 1 to 8 packets back, there maybe a problem with the
Response network. In networks with switches and bridges, the first few pings
may be lost until the these devices ‘learn’ the location of hosts. Also,
because the number of packets received depends on your network
traffic and integrity, the number might be different for your
network. Problems of this nature are best resolved by your IT
department.

16 Chapter 1
www.valuetronics.com

Getting Started
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard.
VXI-11 is an instrument control protocol based on Open Network Computing/Remote
Procedure Call (ONC/RPC) interfaces running over TCP/IP. It is intended to provide GBIB
capabilities such as SRQ (Service Request), status byte reading, and DCAS (Device Clear
State) over a LAN interface. This protocol is a good choice for migrating from GPIB to LAN as
it has full Agilent VISA/SICL support. See the VXI website, www.vsi.org, for more information
and details on the specification.

Configuring for VXI-11

The Agilent IO library has a program, IO Config, that is used to setup the computer/signal
generator interface for the VXI-11 protocol. Download the latest version of the Agilent 10
library from the Agilent website. Refer to the Agilent IO library user manual, documentation,
and Help menu for information on running the IO Config program and configuring the VXI-11
interface.

Use the I0 Config program to configure the LAN client. Once the computer is configured for a
LAN client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to
the signal generator over the LAN interface. Example programs for this protocol are included
in “LAN Programming Examples” on page 64 of this programming guide.

NOTE For Agilent IO library version J.01.0100, the “identify devices at run-time”
check box must be unchecked. Refer to Figure 1-2.

Chapter 1 17
www.valuetronics.com

Getting Started

Using LAN
Figure 1-2 Show Devices Form
Show Devices |
_ (]
[ddentify devices at run-time
Cancel
Devices prezent on interface GPIET:
Add device
Bemove device
Auto Add devices
ce921a
18 Chapter 1

www.valuetronics.com

Getting Started
Using LAN

Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN
interface using the Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a
fundamental technology used for computer networking and allows applications to
communicate using standard mechanisms built into network hardware and operating
systems. The method accesses a port on the signal generator from which bidirectional
communication with a network computer can be established.

Sockets LAN can be described as an internet address that combines the Internet Protocol (IP)
with a device port number and represents a single connection between two pieces of software.
The socket can be accessed using code libraries packaged with the computer operating system.
Two common versions of socket libraries are the Berkeley Sockets Library for UNIX systems
and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The
signal generator is also compatible with other standard sockets APIs. The signal generator
can be controlled using SCPI commands that are output to a socket connection established in
your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to
use:

¢ Standard mode. Available on port 7777. Use this port for simple programming.
e TELNET mode. Available on port 7778.
An example using sockets LAN is given in Chapter 2 of this programming guide.

Chapter 1 19

www.valuetronics.com

Getting Started
Using LAN

Using TELNET LAN

TELNET provides a means of communicating with the signal generator over the LAN. The
TELNET client, run on a LAN connected computer, will create a login session on the signal
generator. A connection, established between computer and signal generator, generates a user
interface display screen with SCPI> prompts on the command line.

Using the TELNET protocol to send commands to the signal generator is similar
communicating with the signal generator over GPIB. You establish a connection with the
signal generator and then send or receive information using SCPI commands. Communication
is interactive: one command at a time.

Using TELNET and MS-DOS Command Prompt

1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt, type in telnet.

3.
4

Press enter. The TELNET display screen will be displayed.

. Click on the Connect menu then select Remote System. A connection form will be displayed.

Refer to Figure 1-3.

Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.
¢ Host Name - IP address or hostname

* Port- 7778

* Term Type - vt100

At the scp1> prompt, enter SCPI commands. Refer to Figure 1-4 on page 22.

7. To signal device clear, press Ctrl-C on your keyboard.

Select Exit from the Connect menu and type exit at the command prompt to end the
TELNET session.

20

Chapter 1

www.valuetronics.com

Getting Started
Using LAN

Figure 1-3 Connect Form

Connect |

Host Name: |Instrument Name |«

Port: Frig i

TermType: Im v

Connect Cancel

ce923a

Using TELNET On a PC With a Host/Port Setting Menu GUI

1. On your PC click Start > Run.
2. Type telnet then click the Ok button. The TELNET connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form will be displayed.
Refer to Figure 1-3.

4. Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.

¢ Host Name - signal generator’s IP address or hostname

¢ Port-7778

* Term Type - vt100
5. At the sCcPI> prompt, enter SCPI commands. Refer to Figure 1-4.
6. To signal device clear, press Ctrl-C.

7. Select Exit from the Connect menu to end the TELNET session.

Chapter 1 21
www.valuetronics.com

Getting Started
Using LAN

Figure 1-4 TELNET Window

% Telnet - fpvipl

Connect Edit Teminal Help

Agilent Technologies, E8254An SH-USOGO6808Y4
Firmware: Har 28 2881 11:23:18

Hostname: B861p1

IP : 006 .00 .06 .080

SCPI> =IDNH?

Agilent Technologies, E8254A, USOO000664, C.01.00
SCPI> =RST

SCPI> POW:AMPL -18 dbm

SCPI> POW?

-1.0008A806E + 881

scri>]

= E3

The Standard UNIX TELNET Command

Synopsis telnet [host [portl]]

ce918a

Description This command is used to communicate with another host using the TELNET
protocol. When the command telnet is invoked with host or port arguments, a connection is

opened to the host, and input is sent from the user to the host.

Options and Parameters The command telnet operates in character-at-a-time or
line-by-line mode. In line-by-line mode, typed text is echoed to the screen. When the line is
completed (by pressing the Enter key), the text line is sent to host. In character-at-a-time
mode, text is echoed to the screen and sent to host as it is typed. At the UNIX prompt, type
man telnet to view the options and parameters available with the telnet command.

22
www.valuetronics.com

Chapter 1

Getting Started
Using LAN

NOTE If your TELNET connection is in line-by-line mode, there is no local echo. This
means you cannot see the characters you are typing until you press the Enter
key. To remedy this, change your TELNET connection to character-by-character
mode. Escape out of TELNET and, at the telnet> prompt, type mode char. If
this does not work, consult your TELNET program’s documentation.

Unix TELNET Example

To connect to the instrument with host name myInstrument and port number 7778, enter the
following command on the command line:

telnet myInstrument 7778

When you connect to the signal generator, the UNIX window will display a welcome message
and a SCPI command prompt. The instrument is now ready to accept your SCPI commands.
As you type SCPI commands, query results appear on the next line. When you are done, break
the TELNET connection using an escape character. For example, Ctrl -],where the control key
and the] are pressed at the same time.

The following example shows TELNET commands:
$ telnet myinstrument 7778

Trying....

Connected to signal generator

Escape character is ‘"]’.

Agilent Technologies, E8254A SN-US00000001
Firmware:

Hostname: your instrument

IP :XXX.XX.XXX.XXX

SCPI>

Chapter 1 23
www.valuetronics.com

Getting Started
Using LAN

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected
to the LAN. For example, you can use FTP to download instrument screen images to a
computer. When logged onto the signal generator with the FTP command, the signal
generator’s file structure can be accessed. Figure 1-5 shows the FTP interface and lists the
directories in the signal generator’s user level directory.

NOTE File access is limited to the signal generator’s /user directory.

Figure 1-5 FTP Screen

7% Command Prompt - ftp 000.000.00.000
<C> Copyrights 1985-1996 Microsoft Corp.

C:\>ftp 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-US00000004
220- Firmware: Mar.28.2001 11:23:18
220- Hostname: 000lp1

220- 1P : 000.000.00.000

220- FTP server <Version 1.0> ready.
User <000.000.00.000:<none> >:

331 Password required

Password:

230 Successful login

ftp> 1s

200 Port command successful.

150 Opening data connection.
BACKUP

BIN

CAL

HTML

SYS

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

ce917a

24 Chapter 1
www.valuetronics.com

Getting Started
Using LAN

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp < IP address > or < hostname >
3. At the user name prompt, press enter.
4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt
will show you the FTP commands that are available on your system.

5. Type quit or bye to end your FTP session.

Chapter 1 25
www.valuetronics.com

Getting Started
Using RS-232

Using RS-232

The RS-232 serial interface can be used to communicate with the signal generator. The
RS-232 connection is standard on most PCs and can be connected to the signal generator’s
rear-panel AUXILIARY INTERFACE connector using the cable described in Table 1-13 on
page 27. Many functions provided by GPIB, with the exception of indefinite blocks, serial
polling, GET, non-SCPI remote languages, and remote mode are available using the RS-232
interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is
slow. The data transmitted and received is usually in ASCII format with SCPI commands
being sent to the signal generator and ASCII data returned. The interface uses three-line
communication: Transmit, Receive, and Ground.

1. Selecting 10 Libraries for RS-232

The IO libraries can be downloaded from the National Instrument website, www.ni.com, or
Agilent’s website, www.agilent.com. The following is a discussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive 10 library that can be used to
control the signal generator over the RS-232 interface. This library has
many low level functions that can be used in BASIC applications to control
the signal generator over the RS-232 interface.

VISA VISA is an IO library used to develop IO applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISA
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level IO libraries used to communicate over the RS-232; NI-488.2 and SICL

respectively.
NI-488.2 NI-488.2 10 libraries can be used to develop applications for the RS-232
interface. See National Instrument’s website for information on NI-488.2.
SICL Agilent SICL can be used to develop applications for the RS-232 interface.

See Agilent’s website for information on SICL.

26 Chapter 1
www.valuetronics.com

Getting Started
Using RS-232

2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the
baud rate of your computer or UNIX workstation or adjust the baud rate settings on your
computer to match the baud rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with
the “VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 > RS-232 Setup > Trans/Recv Pace None Xon until None is
highlighted.

The signal generator does not support hardware handshake. Software flow control is
enabled with the Xon selection in the above key menu.

3. Press Utility > GPIB/RS-232 > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to
the signal generator and prints them to the display.

4. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s
AXILLARY INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

Table 1-13 RS-232 Serial Interface Cable
Quantity | Description Agilent Part Number
1 Serial RS-232 cable 9-pin (male) to 8120-6188
9-pin (female)

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires
pins 2,3, and 5 may be used.

Chapter 1 27
www.valuetronics.com

Getting Started
Using RS-232

3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232
interface functionality.

To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator, set the signal generator’s baud rate to 9600, and perform the following steps:

1. On the PC click Start >Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.

3. Enter a name for the session in the text box and select an icon.

4. Select COM1 (COM2 can be used if COM1 is unavailable).

5. In the COM1(or COM2, if selected) properties, set the following parameters:
* Bits per second: 9600 must match computer’s baud rate
¢ Data bits: 8
¢ Parity: None

¢ Flow Control: None

NOTE With software flow control the user cannot transmit binary data (file 10).

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. Go to Settings > ASCII Setup.

9. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *IDN? in the HyperTerminal
window.

The signal generator should return a string similar to the following, depending on model:

<instrument model name and number>, US37040098 B.03.00

28 Chapter 1
www.valuetronics.com

Getting Started
Using RS-232

If You Have Problems

1. Verify that the baud rate, parity, stop bits, and flow control are the same for the computer
and signal generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232
cable is properly connected to that port.

Character Format Parameters

The signal generator uses the following character format parameters when communicating
via RS-232:

¢ Character Length: Eight data bits are used for each character, excluding start, stop, and
parity bits.

¢ Parity Enable: Parity is disabled (absent) for each character.
* Stop Bits: One stop bit is included with each character.

e Software flow control or no Software flow control.

Chapter 1 29
www.valuetronics.com

Getting Started
Using RS-232

30 Chapter 1
www.valuetronics.com

2 Programming Examples

www.valuetronics.com

31

Programming Examples
Using the Programming Examples

Using the Programming Examples

The programming examples for remote control of the signal generator use the GPIB, LAN,
and RS-232 interfaces and demonstrate instrument control using different I/O libraries and
programming languages. Many of the example programs in this chapter are interactive; the
user will be prompted to perform certain actions or verify signal generator operation or
functionality. Example programs are written in the following languages:

¢ Agilent BASIC
e C/C++

e Java

* PERL

See Chapter 1 of this programming guide for information on interfaces, I/O libraries, and
programming languages.

The example programs are also available on the PSG Family Documentation CD-ROM,
allowing you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel
keys, except the Local key, are disabled. Press the Local key to revert to manual
operation.

NOTE To update the signal generator’s front panel display so that it reflects remote

command setups, enable the remote display: press Utility > Display > Update in
Remote Off On softkey until On is highlighted or send the SCPI command
:DISPlay:REMote ON. For faster test execution, disable front panel updates.

32 Chapter 2
www.valuetronics.com

Programming Examples
Using the Programming Examples

Programming Examples Development Environment

The C/C++ examples in this guide were written using an IBM-compatible personal computer
(PC) with the following configuration:

e Pentium® processor

¢ Windows NT 4.0 operating system

¢ (C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

¢ National Instruments PCI- GPIB interface card or Agilent GPIB interface card
¢ National Instruments VISA Library or Agilent VISA library

¢ COM1 or COM2 serial port available

¢ LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the
Microsoft Visual C++ 6.0 project.

If you are using the VISA library do the following:

¢ add the visa32.1ib file to the Resource Files

¢ add the visa.h file to the Header Files

If you are using the NI1-488.2 library do the following:
¢ add the GPIB-32.0BJ file to the Resource Files

¢ add the windows.h file to the Header Files

¢ add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file
requirements. For information on the VISA library see the Agilent website or National
Instrument’s website.

Pentium is a U.S. registered trademark of Intel Corporation

Chapter 2 33
www.valuetronics.com

Programming Examples
GPIB Programming Examples

GPIB Programming Examples

¢ “Interface Check using Agilent BASIC” on page 35

¢ “Interface Check Using NI-488.2 and C++” on page 36

¢ “Interface Check using VISA and C” on page 37

* “Local Lockout Using Agilent BASIC” on page 38

* “Local Lockout Using NI-488.2 and C++” on page 39

* “Queries Using Agilent BASIC” on page 41

* “Queries Using NI-488.2 and C++” on page 43

* “Queries Using VISA and C” on page 45

* “Generating a CW Signal Using VISA and C” on page 47

¢ “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 49
¢ “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 51
* “Generating a Step-Swept Signal Using VISA and C” on page 53

¢ “Saving and Recalling States Using VISA and C” on page 55

¢ “Reading the Data Questionable Status Register Using VISA and C” on page 57
¢ “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 60

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed
along with Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the
NI-VISA library along with the NI-488.2 library should be installed. Refer to “2. Selecting 10
Libraries for GPIB” on page 7 and the documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is
addressed at 7 and the signal generator at 19. The GPIB address designator for
other libraries is typically GPIBO or GPIB1.

34 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Interface Check using Agilent BASIC

This simple program causes the signal generator to perform an instrument reset. The SCPI
command *RST places the signal generator into a pre-defined state and the remote
annunciator (R) appears on the front panel display.

The following program example is available on the PSG Family Documentation CD-ROM as
basicex1.txt.

10 !**
20 !

30 ! PROGRAM NAME: basicexl.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the following commands and then
120 ! RUN the program:

130 !

140 !*****************~k~k~k**
150 !

160 Sig_gen=719 ! Declares a variable to hold the signal generator’s address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into remote mode

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig_gen; "*RST" ! Places the signal generator into a defined state

230 PRINT "The signal generator should now be in REMOTE."

240 PRINT

250 PRINT "Verify that the remote [R] annunciator is on. Press the ‘Local’ key, "
260 PRINT "on the front panel to return the signal generator to local control."

270 PRINT

280 PRINT "Press RUN to start again."

290 END ! Program ends

Chapter 2 35

www.valuetronics.com

Programming Examples
GPIB Programming Examples

Interface Check Using NI-488.2 and C++

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as

niex1.cpp.

// hhkhkhkhkhkhkhkhhhhkhkhhhkhhkkhkkhkhkhkhbkhhkhhkhhkhkkhkhkhkhhkhhhkhkhkhkkhkhkhkhbkhkhkhhhkhhkkhkhkhkhkhbkhhkhdhhkhkhkhrrdrhkhhhkdhhhkhdkhrhrhhhkhkhkkkdxx
//

// PROGRAM NAME: niexl.cpp

//

// PROGRAM DESCRIPTION: This program verifies that the GPIB connections and
// interface are functional.

//

// Connect a GPIB cable from the PC GPIB card to the signal generator

// Enter the following code into the source .cpp file and execute the program

//

// LR EEEEEEE R EEE SRR R RS R I

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;

int GPIBO= 0; // Board handle
Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main (void)

int sig; // Declares a device descriptor variable

sig = ibdev (0, 19, 0, 13, 1, 0); // Aquires a device descriptor

ibclr (sig); // Sends device clear message to signal generator
ibwrt (sig, "*RST", 4); // Places the signal generator into a defined state

// Print data to the output window
cout << "The signal generator should now be in REMOTE. The remote indicator"<<endl;
cout <<"annunciator R should appear on the signal generator display"<<endl;

return 0;

36 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaexl.cpp.

YVARRAEEEEEE SRR RS EEEE e EE R

// PROGRAM NAME:visaexl.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and
// and interface are functional.

// Turn signal generator power off then on and then run the progam

//

//**

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

void main ()
{
ViSession defaultRM, vi; // Declares a variable of type ViSession
// for instrument communication
ViStatus viStatus = 0;
// Opens a session to the GPIB device
// at address 19
viStatus=viOpenDefaultRM (&defaultRM) ;
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) {
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

printf ("\n");
exit (0);}
viPrintf (vi, "*RST\n"); // initializes signal generator

// prints to the output window
printf ("The signal generator should now be in REMOTE. The remote
indicator\n");
printf ("annunciator R should appear on the signal generator display\n");
printf ("\n");

viClose (vi); // closes session
viClose (defaultRM) ; // closes default session

Chapter 2 37
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front
panel signal generator keys.

The following program example is available on the PSG Family Documentation CD-ROM as

basicex2.txt.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

I % %k ok sk ok ok ok ok ke ok ok ok sk ke ok ok ok ok ok sk ke ok ke ok ok ok ok ok sk ok ok ok ok ok ok ok ke ok ok ok ok sk sk ke ok ok ok ok ok sk ok ok ok ok ok ok k ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok

! PROGRAM NAME: basicex2.txt

! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators

functional front panel keys are disabled except for

the Local and Contrast keys. The LOCAL LOCKOUT

command will disable the Local key.

The LOCAL command, executed from the controller, is then
the only way to return the signal generator to front panel,
Local, control.

I % %k ok sk ok ok ok ok ok ok ok ok sk ke sk ok ok ok ok sk ke ok ke ok ok ok ok ke sk ke ok ok ok ok ok sk ke ok ok ok ok ok sk ke ok ok ok ok ok sk ok ok bk ok kb ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

effect."

290
300
310
320
330
340
350
360
370
380
390
400

Sig_gen=719 ! Declares a variable to hold signal generator address
CLEAR Sig_gen ! Resets signal generator parser and clears any output
LOCAL Sig_gen ! Places the signal generator in local mode

REMOTE Sig_gen ! Places the signal generator in remote mode

CLEAR SCREEN ! Clears the controllers display

OUTPUT Sig_gen; "*RST" ! Places the signal generator in a defined state
! The following print statements are user prompts

PRINT "The signal generator should now be in remote."

PRINT "Verify that the 'R’ and 'L’ annunciators are visable"

PRINT ".......... Press Continue"

PAUSE

LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode

PRINT ! Prints user prompt messages

PRINT "Signal generator should now be in LOCAL LOCKOUT mode."

PRINT

PRINT "Verify that all keys including ‘Local’ (except Contrast keys) have no
PRINT

PRINT ".......... Press Continue"

PAUSE

PRINT

LOCAL 7 ! Returns signal generator to Local control

! The following print statements are user prompts

PRINT "Signal generator should now be in Local mode."

PRINT

PRINT "Verify that the signal generator’s front-panel keyboard is functional."
PRINT

PRINT "To re-start this program press RUN."

END

38

Chapter 2

www.valuetronics.com

Programming Examples
GPIB Programming Examples

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the PSG Family Documentation CD-ROM as
niex2.cpp.

VAR R EEEEEE AR EE AR AR R AR R R

// PROGRAM NAME: niex2.cpp

//

// PROGRAM DESCRIPTION: This program will place the signal generator into

// LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.
// The local command, ’ibloc(sig)’ executed via program code, is the only way to

// return the signal generator to front panel, Local, control.
// AR EEE SRR EE TR R R RS

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIBO= 0; // Board handle

Addr4882_t Address|[31]; // Declares a variable of type Addr4882_t

int main ()

int sig; // Declares variable to hold interface descriptor
sig = ibdev (0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor
ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message
ibwrt (sig, "*RST", 4); // Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;
cout <<"annunciator should appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore (10000, "\n’");

SendIFC (GPIBO) ; // Resets the GPIB interface

Address[0]=19; // Signal generator’s address

Address [1]=NOADDR; // Signifies end element in array. Defined in
// DECL-32.H

SetRWLS (GPIB0O, Address); // Places device in Remote with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys"<<endl;

cout<< "including the ’Local’ key are disabled (Contrast keys are not
affected) "<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore (10000, "\n’);

ibloc (siqg); // Returns signal generator to local control

Chapter 2 39
www.valuetronics.com

Programming Examples
GPIB Programming Examples

cout<<endl;
cout<<"The signal generator should now be in local mode\n";
return 0;}

}

40 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be
queried for conditions and setup parameters. Query commands are identified by the question
mark as in the identify command *IDN?

The following program example is available on the PSG Family Documentation CD-ROM as
basicex3.txt.

10 !**
20 !

30 ! PROGRAM NAME: basicex3.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response
60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the following program:

90 !

100 !**
110 !

120 DIM AS$[10],C$[100],DS$[10] ! Declares variables to hold string response data
130 INTEGER B ! Declares variable to hold integer response data
140 Sig_gen=719 ! Declares variable to hold signal generator address
150 LOCAL Sig_gen ! Puts signal generator in Local mode

160 CLEAR Sig_gen ! Resets parser and clears any pending output

170 CLEAR SCREEN ! Clears the controller’s display

180 OUTPUT Sig_gen; "*RST" ! Puts signal generator into a defined state

190 OUTPUT Sig_gen; "FREQ:CwW?" ! Querys the signal generator CW frequency setting
200 ENTER Sig_gen;F ! Enter the CW frequency setting

210 ! Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen; "POW:AMPL?" ! Querys the signal generator power level

250 ENTER Sig_gen; W ! Enter the power level

260 ! Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"

280 PRINT

290 OUTPUT Sig_gen; "FREQ:MODE?" ! Querys the signal generator for frequency mode

300 ENTER Sig_gen;AS$! Enter in the mode: CW, Fixed or List

310 ! Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";AS

330 PRINT

340 OUTPUT Sig_gen; "OUTP OFF" ! Turns signal generator RF state off

350 OUTPUT Sig_gen; "OUTP?" ! Querys the operating state of the signal generator
360 ENTER Sig_gen;B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

380 IF B>0 THEN

390 PRINT "Signal Generator output is: on"

400 ELSE

410 PRINT "Signal Generator output is: off"

Chapter 2 41

www.valuetronics.com

Programming Examples
GPIB Programming Examples

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580

END IF
OUTPUT Sig_gen; "*IDN?" ! Querys for signal generator ID
ENTER Sig_gen;C$! Enter in the signal generator ID

! Print the signal generator ID to the controller display

PRINT

PRINT "This signal generator is a ";CS$

PRINT

! The next command is a query for the signal generator’s GPIB address
OUTPUT Sig_gen; "SYST:COMM:GPIB:ADDR?"

ENTER Sig_gen;D$! Enter in the signal generator’s address
! Print the signal generator’s GPIB address to the controllers display
PRINT "The GPIB address is ";D$

PRINT

! Print user prompts to the controller’s display

PRINT "The signal generator is now under local control"

PRINT "or Press RUN to start again."

END

42

www.valuetronics.com

Chapter 2

Programming Examples
GPIB Programming Examples

Queries Using NI-488.2 and C++

This example uses the NI-488.2 library to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as

niex3.cpp.
//***
// PROGRAM NAME: niex3.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.

//

// The signal generator can be queried for conditions and instrument states.

// These commands are of the type "*IDN?" where the question mark indicates

// a query.

//
//***

#include "stdafx.h"
#include <iostream>

#include "windows.h"
#include "Decl-32.h"

using namespace std;
int GPIBO= 0; // Board handle
Addr4882_t Address|[31]; // Declare a variable of type Addr4882_t

int main ()

int sig; // Declares variable to hold interface descriptor
int num;

char rdval[100]; // Declares variable to read instrument responses
sig = ibdev (0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

ibloc (sig); // Places the signal generator in local mode
ibclr (sig); // Sends Selected Device Clear (SDC) message

ibwrt (sig, "*RST", 4); // Places signal generator in a defined state
ibwrt (sig, ":FREQuency:CW?",14); // Querys the CW frequency

ibrd(sig, rdval,100); // Reads in the response into rdval

rdval [ibcntl] = "\0’; // Null character indicating end of array
cout<<"Source CW frequency is "<<rdval; // Print frequency of signal generator

cout<<"Press any key to continue"<<endl;
cin.ignore (10000, "\n");

ibwrt (sig, "POW:AMPL?",10); // Querys the signal generator
ibrd(sig, rdval,100); // Reads the signal generator power level
rdval [ibcntl] = "\0’; // Null character indicating end of array

// Prints signal generator power level
cout<<"Source power (dBm) is : "<<rdval;
cout<<"Press any key to continue"<<endl;

Chapter 2 43
www.valuetronics.com

Programming Examples
GPIB Programming Examples

cin.ignore (10000, '\n");

ibwrt (sig, ":FREQ:MODE?",11); // Querys source frequency mode
ibrd(sig, rdval,100); // Enters in the source frequency mode
rdval[ibcntl] = ’"\0’; // Null character indicating end of array

cout<<"Source frequency mode is "<<rdval; // Print source frequency mode
cout<<"Press any key to continue"<<endl;
cin.ignore (10000, '\n");

ibwrt (sig, "OUTP OFF",12); // Turns off RF source
ibwrt (sig, "OUTP?",5); // Querys the on/off state of the instrument
ibrd(sig, rdval,2); // Enter in the source state
rdval[ibcntl] = ’"\0’;
num = (int (rdvall0]) —-('07));
if (num > 0){
cout<<"Source RF state is : On"<<endl;
}else({
cout<<"Source RF state is : Off"<<endl;}
cout<<endl;
ibwrt (sig, "*IDN2",5); // Querys the instrument ID
ibrd(sig, rdval,100); // Reads the source ID
rdval [ibcntl] = "\0’; // Null character indicating end of array
cout<<"Source ID is : "<<rdval; // Prints the source ID

cout<<"Press any key to continue"<<endl;
cin.ignore (10000, "\n’");
ibwrt (sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

ibrd(sig, rdval,100); // Reads the source address
rdval [ibcntl] = "\0’; // Null character indicates end of array
// Prints the signal generator address
cout<<"Source GPIB address is : "<<rdval;
cout<<endl;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl;
cout<<endl;
return 0;
}
44 Chapter 2

www.valuetronics.com

Programming Examples
GPIB Programming Examples

Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as

visaex3.cpp.

YVARAAEEEEEE SRR RSt EEEE AR EE R

// PROGRAM FILE NAME:visaex3.cpp

//

// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal
// generator can be queried for conditions and instrument states. These commands are of
// the type "*IDN?"; the question mark indicates a query.

//

//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <conio.h>
#include <stdlib.h>
using namespace std;

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer [256]; // Declares variable to hold string data

int num; // Declares variable to hold integer data

// Initialize the VISA system
viStatus=viOpenDefaultRM (&defaultRM) ;
// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");

exit (0);}
viPrintf (vi, "*RST\n"); // Resets signal generator
viPrintf (vi, "FREQ:CW?\n"); // Querys the CW frequency
viScanf (vi, "%t", rdBuffer); // Reads response into rdBuffer

// Prints the source frequency

printf ("Source CW frequency is : %$s\n", rdBuffer);
printf ("Press any key to continue\n");
printf ("\n"); // Prints new line character to the display

Chapter 2

45

www.valuetronics.com

Programming Examples
GPIB Programming Examples

getch();
viPrintf (vi, "POW:AMPL?\n"); // Querys the power level
viScanf (vi, "$t", rdBuffer); // Reads the response into rdBuffer
// Prints the source power level
printf ("Source power (dBm) is : %s\n", rdBuffer);
printf ("Press any key to continue\n");
printf ("\n"); // Prints new line character to the display
getch();
viPrintf (vi, "FREQ:MODE?\n"); // Querys the frequency mode
viScanf (vi, "%t", rdBuffer); // Reads the response into rdBuffer
// Prints the source freq mode
printf ("Source frequency mode is : %s\n", rdBuffer);
printf ("Press any key to continue\n");
printf ("\n"); // Prints new line character to the display
getch();
viPrintf (vi, "OUTP OFF\n"); // Turns source RF state off
viPrintf(vi, "OUTP?\n"); // Querys the signal generator’s RF state
viScanf (vi, "%1i", &num); // Reads the response (integer value)
// Prints the on/off RF state
if (num > 0) {
printf ("Source RF state is : on\n");
telse{
printf ("Source RF state is : off\n");
}
// Close the sessions
viClose (vi);
viClose (defaultRM) ;
}
46 Chapter 2

www.valuetronics.com

Programming Examples
GPIB Programming Examples

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal
generator is set for a CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex4.cpp.

YA AR EEEEEE SRR EEE ARt AR EEEE AR R

//
//
//
//
//
//
//
//
//

PROGRAM FILE NAME: visaex4.cpp

PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator
frequency and power level.

The RF state of the signal generator is turn on and then the state is queried. The
response will indicate that the RF state is on. The RF state is then turned off and
queried. The response should indicate that the RF state is off. The query results are
printed to the to the display window.

//**

#include "StdAfx.h"
#include <visa.h>

#include <iostream>
#include <stdlib.h>
#include <conio.h>

void main ()

{

ViSession defaultRM, vij; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer [256]; // Declare variable to hold string data

int num; // Declare variable to hold integer data

viStatus=viOpenDefaultRM (&defaultRM) ; // Initialize VISA system

// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

viPrintf (vi, "*RST\n"); // Reset the signal generator

viPrintf (vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz

viPrintf (vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf (vi, "%t", rdBuffer); // Read signal generator response

printf ("Source CW frequency is : %$s\n", rdBuffer); // Print the frequency
Chapter 2 47

www.valuetronics.com

Programming Examples
GPIB Programming Examples

viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm

viPrintf (vi, "POW:AMPL?\n"); // Query the power level

viScanf (vi, "$t", rdBuffer); // Read the response into rdBuffer

printf ("Source power (dBm) is : %s\n", rdBuffer); // Print the power level
viPrintf (vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf (vi, "OUTP?2\n"); // Query the signal generator’s RF state
viScanf (vi, "%1i", &num); // Read the response (integer value)

// Print the on/off RF state

if (num > 0) {

printf ("Source RF state is : on\n");
}else({

printf ("Source RF state is : off\n");
}
printf ("\n");
printf ("Verify RF state then press continue\n");
printf ("\n");
getch();

viClear (vi);

viPrintf (vi, "OUTP:STAT OFF\n"); // Turn source RF state off

viPrintf (vi, "OUTP2\n"); // Query the signal generator’s RF state
viScanf (vi, "%11i", &num); // Read the response

// Print the on/off RF state

if (num > 0) {
printf ("Source RF state is now: on\n");
}else({
printf ("Source RF state is now: off\n");
}
// Close the sessions
printf ("\n");

viClear (vi);
viClose (vi);
viClose (defaultRM) ;

48 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Generating an Externally Applied AC-Coupled FM Signal Using VISA
and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier
frequency of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running
the program:

¢ Connect the output of a modulating signal source to the signal generator’s EXT 2 input
connector.

¢ Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp
source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaexb.cpp.

//****‘k‘k**‘k*************************************‘k‘k‘k‘k‘k~k~k~k~k~k***‘k‘k‘k**************************
// PROGRAM FILE NAME:visaex5.cpp

//

// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,

// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level
// to -2.5 dBm. The RF state is set to on.

//

//**

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <stdlib.h>
#include <conio.h>

void main ()

{

ViSession defaultRM, vij; // Declares variables of type ViSession
// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications
// Initialize VISA session
viStatus=viOpenDefaultRM(&defaultRM) ;
// open session to gpib device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}

printf ("Example program to set up the signal generator\n");

Chapter 2 49
www.valuetronics.com

Programming Examples
GPIB Programming Examples

printf ("for an AC-coupled FM signal\n");
printf ("Press any key to continue\n");
printf ("\n");
getch();
printf ("\n");
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM
viPrintf (vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC
viPrintf (vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz
viPrintf (vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz
viPrintf (vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm
viPrintf (vi, "FM:STAT ON\n"); // Turns on frequency modulation
viPrintf (vi, "OUTP:STAT ON\n"); // Turns on RF output
// Print user information

printf ("Power level : -2.5 dBm\n");
printf ("FM state : on\n");
printf ("RF output : on\n");

(

printf ("Carrier Frequency : 700 MHzZ\n");

printf ("Deviation : 20 kHZ\n");

printf ("EXT2 and AC coupling are selected\n");

printf ("\n"); // Prints a carrage return
// Close the sessions

viClose (vi);

viClose (defaultRM) ;

50 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a

carrier frequency of 900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and
the peak deviation will be 100 kHz. Launch Microsoft Visual C++ 6.0, add the required files,
and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as

visaex6.cpp.

YVARAAEEEEEE RS EEEE e ARt EEEE AR EE R

// PROGRAM FILE NAME:visaex6.cpp

//

// PROGRAM DESCRIPION:This example generates an AC-coupled internal FM signal at a 900

// MHz carrier frequency and a power level of -15 dBm.

// deviation 100 kHz

//

The FM rate is 5 kHz and the peak

//**

#include
#include
#include
#include
#include

void main ()

{

<visa.h>
"StdAfx.h"
<iostream>
<stdlib.h>
<conio.h>

ViSession defaultRM, vi; //
//
ViStatus viStatus = 0; //

//

viStatus=viOpenDefaultRM (&defaultRM) ;

// open
viStatus=viOpen (defaultRM, "GPIB::19::
if (viStatus) {

Declares variables of type ViSession
for instrument communication
Declares a variable of type ViStatus
for GPIB verifications

// Initialize VISA session

session to gpib device at address 19
INSTR", VI_NULL, VI_NULL,
// 1f problems,

&vi);
then prompt user

printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

printf ("\n");
exit (0);}

printf ("Example program to set up the

(
printf ("for an AC-coupled FM signal\n");
(

printf ("\n");

printf ("Press any key to continue\n");
getch();
viClear (vi);
viPrintf (vi, "*RST\n");

"FM2:INT:FREQ 5 kHz\n");
"FM2:DEV 100 kHz\n");

viPrintf (vi,
viPrintf (vi,

signal generator\n");

// Clears the signal generator
// Resets the signal generator
// Sets EXT 2 source for FM

// Sets FM path 2 coupling to AC

Chapter 2

www.valuetronics.com

51

Programming Examples
GPIB Programming Examples

viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
printf ("\n");

printf ("Power level
printf ("FM state
printf ("RF output

printf ("Deviation

printf ("Internal modulation

printf ("\n");

viClose (vi);
viClose (defaultRM) ;

(
(
(
printf ("Carrier Frequency
(
(
(

"FREQ 900 MHz\n");
"POW -15 dBm\n");
"FM2:STAT ON\n");
"OQUTP:STAT ON\n");

-15 dBm\n");

on\n") ;
on\n") ;

100 kHz\n");
5 kHz\n");
// Print a carrage return

// Close the sessions

//
//
/7
//
//
/7

900 MHZ\n");

Sets carrier frequency to 700 MHz
Sets the power level to -2.3 dBm
Turns on frequency modulation
Turns on RF output

Prints a carriage return

Print user information

52
www.valuetronics.com

Chapter 2

Programming Examples
GPIB Programming Examples

Generating a Step-Swept Signal Using VISA and C

In this example the VISA library is used to set the signal generator for a continuous step
sweep on a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10
and the dwell time at each step is set to 500 ms. The signal generator will then be set to local
mode which allows the user to make adjustments from the front panel. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex7.cpp.

//**‘k‘k***‘k‘k‘k‘k‘k********************
// PROGRAM FILE NAME:visaex7.cpp

//

// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

//

YVARAREEEEEE SRR EEEE AR EEEE R EEEE LR AR E R

#include <visa.h>
#include "StdAfx.h"
#include <iostream>

void main ()

{

ViSession defaultRM, vij; // Declares variables of type ViSession
// vi establishes instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications

viStatus=viOpenDefaultRM (&defaultRM); // Initialize VISA session
// Open session to GPIB device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}
viClear (vi); // Clears the signal generator
viPrintf (vi, "*RST\n"); // Resets the signal generator
viPrintf (vi, "*CLS\n"); // Clears the status byte register
viPrintf (vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list
viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step

(

(

(
viPrintf (vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency
viPrintf (vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency
(
(
(
(

viPrintf (vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)
viPrintf (vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step
viPrintf (vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm
viPrintf (vi, "OUTP:STAT ON\n"); // Turns RF output on

Chapter 2 53

www.valuetronics.com

Programming Examples
GPIB Programming Examples

viPrintf (vi, "INIT:CONT ON\n"); // Begins the step sweep operation
// Print user information
printf ("The signal generator is in step sweep mode. The frequency range

is\n");
printf ("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz
step.\n");
printf ("\n"); // Prints a carriage return/line feed
viPrintf (vi, "OUTP:STAT OFF\n"); // Turns the RF output off

printf ("Press the front panel Local key to return the\n");
printf ("signal generocator to manual operation.\n");

// Closes the sessions
printf ("\n");
viClose (vi);
viClose (defaultRM) ;

54 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These
settings can then be recalled separately; either from the keyboard or from the signal
generator’s front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the
following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex8.cpp.

YVARRAEEEEEE SRR RS EEEE e EE R

//
//
//
//
//
//
//
//
//
//
1/

PROGRAM FILE NAME:visaex8.cpp

PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal
generator’s registers and then recalled.

Instrument settings can be recalled from the keyboard or, when the signal generator
is put into Local control, from the front panel.

This program will initialize the signal generator for an instrument state, store the
state to register #1. An *RST command will reset the signal generator and a *RCL
command will return it to the stored state. Following this remote operation the user
will be instructed to place the signal generator in Local mode.

YVARAAEEEEEE SRR EEEE R EEEE AR EEE Rt EE Rt

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <conio.h>

void main ()

{

ViSession defaultRM, vij; // Declares variables of type ViSession
// for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications

long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaultRM (&defaultRM) ; // Initialize VISA session

// Open session to gpib device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");

exit (0);}
printf ("\n");
viClear (vi); // Clears the signal generator
viPrintf (vi, "*CLS\n"); // Resets the status byte register

// Print user information
printf ("Programming example using the *SAV, *RCL SCPI commands\n");

Chapter 2 55
www.valuetronics.com

Programming Examples
GPIB Programming Examples

printf ("used to save and recall an instrument’s state\n");

printf ("\n");
viPrintf (vi, "*RST\n"); //
viPrintf (vi, "FREQ 5 MHz\n"); !/
viPrintf (vi, "POW:ALC OFF\n"); /7
viPrintf (vi, "POW:AMPL -3.2 dBm\n"); //
viPrintf (vi, "OUTP:STAT ON\n"); !/
viPrintf (vi, "*OPC?\n"); //
while (!1lngDone)

viScanf (vi ,"%d",&lngDone); //
viPrintf (vi, "*SAV 1\n"); !/

/7

Resets the signal generator
Sets sig gen frequency

Turns ALC Off

Sets power for -3.2 dBm

Turns RF output On

Checks for operation complete

Waits for setup to complete
Saves sig gen state to register #1
Print user information

printf ("The current signal generator operating state will be saved\n");
printf ("to Register #1. Observe the state then press Enter\n");

printf ("\n"); //
getch () ; /7
1ngDone=0; //
viPrintf (vi, "*RST\n"); //
viPrintf(vi, "*OPC?\n"); //
while (!1lngDone)

viScanf (vi ,"%d", &lngDone); //

//

Prints new line character

Wait for user input

Resets the operation complete flag
Resets the signal generator

Checks for operation complete

Waits for setup to complete
Print user infromation

printf ("The instrument is now in it’s Reset operating state. Press the\n");

printf ("Enter key to return the signal generator to the Register #1

state\n");

printf ("\n"); /1
getch(); //
1ngDone=0; /7
viPrintf (vi, "*RCL 1\n"); /7
viPrintf (vi, "*OPC?2\n"); //
while (!1lngDone)

viScanf (vi ,"%d", &lngDone); //

/7

Prints new line character

Waits for user input

Reset the operation complete flag
Recalls stored register #1 state
Checks for operation complete

Waits for setup to complete
Print user information

printf ("The signal generator has been returned to it’s Register #1

state\n");
printf ("Press Enter to continue\n");

printf ("\n"); //
getch () ; //
lngDone=0; //
viPrintf (vi, "*RST\n"); /7
viPrintf (vi, "*OPC?\n"); //
while (!1lngDone)

viScanf (vi ,"%d", &lngDone); //

//

Prints new line character

Waits for user input

Reset the operation complete flag
Resets the signal generator
Checks for operation complete

Waits for setup to complete
Print user information

printf ("Press Local on instrument front panel to return to manual mode\n");

printf ("\n"); /7
//

viClose (vi);

viClose (defaultRM) ;

Prints new line character
Close the sessions

56
www.valuetronics.com

Chapter 2

Programming Examples
GPIB Programming Examples

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be
asked to set up the signal generator for error generating conditions. The data questionable
status register will be read and the program will notify the user of the error condition that the
setup caused. Follow the user prompts presented when the program runs. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex9.cpp.

YVARREEEEEEEE SRR EEE AR R R AR EE R

//
//
//
//
//
//
//
//
//
//
1/

PROGRAM NAME : visaex9.cpp

PROGRAM DESCRIPTION:In this example, the data questionable status register is read.

The data questionable status register is enabled to read an unleveled condition.

The signal generator is then set up for an unleveled condition and the data
questionable status register read. The results are then displayed to the user.

The status questionable register is then setup to monitor a modulation error condition.
The signal generator is set up for a modulation error condition and the data
questionable status register is read.

The results are displayed to the active window.

YVARREEEEEE RS EEEEE AR EEEE R R R EEE R

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <conio.h>

void main ()

{

ViSession defaultRM, vij; // Declares a variables of type ViSession

// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications
int num=0; // Declares a variable for switch statements
char rdBuffer[256]={0}; // Declare a variable for response data
viStatus=viOpenDefaultRM (&defaultRM) ; // Initialize VISA session

// Open session to GPIB device at address 19

viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}
printf ("\n");

Chapter 2 57
www.valuetronics.com

Programming Examples
GPIB Programming Examples

viClear (vi); // Clears the signal generator
// Prints user information
printf ("Programming example to demonstrate reading the signal generator’s
Status Byte\n");
printf ("\n");
printf ("Manually set up the sig gen for an unleveled output condition:\n");

(
(
printf ("* Set signal generator output amplitude to +20 dBm\n");
printf ("* Set frequency to maximum value\n");
printf ("* Turn On signal generator’s RF Output\n");
printf ("* Check signal generator’s display for the UNLEVEL annuniator\n");
printf ("\n");
printf ("Press Enter when ready\n");
printf ("\n");
getch () ; // Waits for keyboard user input
viPrintf (vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable
// Power Condition Register Bits
// Bits 70’ and "1’
viPrintf (vi, "STAT:QUES:POW:COND?\n"); // Querys the register for any
// set bits
viScanf (vi, "%s", rdBuffer); // Reads the decimal sum of the
// set bits
num= (int (rdBuffer[1l]) —-('0")); // Converts string data to
// numeric
switch (num) // Based on the decimal value
{
case 1:
printf ("Signal Generator Reverse Power Protection
Tripped\n");
printf ("/n");
break;
case 2:
printf ("Signal Generator Power is Unleveled\n");
printf ("\n");
break;
default:
printf ("No Power Unleveled condition detected\n");
printf ("\n");
}
viClear (vi); // Clears the signal generator
// Prints user information
printf("-—-------- \n");
printf ("\n");
printf ("Manually set up the sig gen for an unleveled output condition:\n");
printf ("\n");
printf ("* Select AM modulation\n");

printf ("* Do not connect any source to the input\n");
printf ("* Check signal generator’s display for the EXT1 LO annunciator\n");
printf ("\n");

(
(
(
(

(*
printf ("* Select AM Source Ext 1 and Ext Coupling AC\n");
printf ("* Turn On the modulation.\n");

(*

(*

(

58 Chapter 2
www.valuetronics.com

printf ("Press Enter when ready\n");
printf ("\n");
getch () ;
viPrintf (vi,

viPrintf (vi, "STAT:QUES:MOD:COND?\n");

viScanf (vi, "%s", rdBuffer);
num= (int (rdBuffer([1]) —-("0"));

switch (num)
{

case 1:
printf ("Signal Generator
printf ("\n");
break;

case 2:
printf ("Signal Generator
printf ("\n");
break;

case 4:
printf ("Signal Generator
printf ("\n");
break;

case 8:
printf ("Signal Generator
printf ("\n");
break;

case 16:
printf ("Signal Generator
printf ("\n");
break;

default:

printf ("No Problems with
printf ("\n");

"STAT:QUES:MOD:ENAB 16\n");

// bits

Programming Examples
GPIB Programming Examples

// Waits for keyboard user input
// Enables the Data Questionable
// Modulation Condition Register
rQ7,717,727,73" and '4’

// Querys the register for any

// set bits

// Reads the decimal sum of the

// set bits
// Converts string

data to numeric

// Based on the decimal value

Modulation 1 Undermod\n");

Modulation 1

Overmod\n") ;

Modulation 2

Undermod\n") ;

Modulation 2

Overmod\n") ;

Modulation Uncalibrated\n");

Modulation\n") ;

// Close the sessions

viClose (vi);
viClose (defaultRM) ;

Chapter 2
www.valuetronics.com

59

Programming Examples
GPIB Programming Examples

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ,
the computer can attend to other tasks while the signal generator is busy performing a
function or operation. When the signal generator finishes it’s operation, or detects a failure,
then a Service Request can be generated. The computer will respond to the SRQ and,
depending on the code, can perform some other operation or notify the user of failures or other
conditions.

This program sets up a step sweep function for the signal generator and, while the operation
is in progress, prints out a series of asterisks. When the step sweep operation is complete, an
SRQ is generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
visaex10.cpp.

VAR EEEEEEEEE R LR EEEE ARt EEE R

//

// PROGRAM FILE NAME:visaexl0.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request (SRQ)

// interupt. The program sets up conditions to enable the SRQ and then sets the signal
// generator for a step mode sweep. The program will enter a printing loop which prints
// an * character and ends when the sweep has completed and an SRQ received.

//

VAR AR EEEEEE R AR EEEE AR R EEE R R

#include "visa.h"
#include <stdio.h>
#include "StdAfx.h"
#include "windows.h"
#include <conio.h>

#define MAX_CNT 1024
int sweep=1; // End of sweeep flag
/* Prototypes */

ViStatus _VI_FUNCH interupt (ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr) ;

int main ()
{
ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication

60 Chapter 2
www.valuetronics.com

Programming Examples
GPIB Programming Examples

ViStatus viStatus = 0; // Declares a variable of type ViStatus
// for GPIB verifications
char rdBuffer[MAX_ CNT]; // Declare a block of memory data

viStatus=viOpenDefaultRM (&defaultRM);// Initialize VISA session

if (viStatus < VI_SUCCESS) { // I1f problems, then prompt user
printf ("ERROR initializing VISA... exiting\n");
printf ("\n");

return -1; }
// Open session to gpib device at address 19
viStatus=viOpen (defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if (viStatus) { // If problems then prompt user
printf ("ERROR: Could not open communication with
instrument\n") ;

printf ("\n");
return -1; }
viClear (vi); // Clears the signal generator
viPrintf (vi, "*RST\n"); // Resets signal generator

// Print program header and information

printf ("** End of Sweep Service Request **\n");

printf ("\n");

printf ("The signal generator will be set up for a step sweep mode
operation.\n");

printf ("An ’*’ will be printed while the instrument is sweeping. The end of
\n");

printf ("sweep will be indicated by an SRQ on the GPIB and the program will
end.\n");

printf ("\n");

printf ("Press Enter to continue\n");

printf ("\n");

getch () ;

viPrintf (vi, "*CLS\n"); // Clears signal generator status byte

viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group
// Negative Transition Filter to indicate a
// negative transition in Bit 3 (Sweeping)
// which will set a corresponding event in
// the Operation Event Register. This occurs
// the end of a sweep.
viPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group
// Positive Transition Filter so that no
// positive transition on Bit 3 affects the
// Operation Event Register. The positive
// transition occurs at the start of a sweep.
viPrintf (vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3
// to report the event to Status Byte
// Register Summary Bit 7.
viPrintf (vi, "*SRE 128\n"); // Enables Status Byte Register Summary Bit 7
// The next line of code indicates the
// function to call on an event

Chapter 2 61
www.valuetronics.com

Programming Examples
GPIB Programming Examples

viStatus

viStatus =
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,
viPrintf (vi,

viInstallHandler (vi,

viEnableEvent (vi,

VI_EVENT_SERVICE_REQ, interupt, rdBuffer);
// The next line of code enables the
// detection of an event
VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

"FREQ:
"LIST:
"LIST:
"LIST:

MODE
TYPE
TRIG:
MODE

LIST\n");// Sets frequency mode to list
STEP\n");// Sets sweep to step

SOUR IMM\n");// Immediately trigger the sweep
AUTO\n");// Sets mode for the list sweep
"FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz
"FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz
"SWE:POIN 25\n");// Set number of points for the step sweep
"SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

viPrintf (vi,
viPrintf (vi,

(
(
(
(
(
(
(
(
(
(

"INIT:CONT OFF\n");//
"TRIG:SOUR IMM\n");//

Set up for single sweep
Triggers the sweep

viPrintf (vi, "INIT\n"); // Takes a single sweep
printf ("\n");
// While the instrument is sweeping have the
// program busy with printing to the display.
// The Sleep function, defined in the header
// file windows.h, will pause the program
// operation for .5 seconds
while (sweep==1) {
printf ("*");
Sleep (500);}
printf ("\n");
// The following lines of code will stop the
// events and close down the session
viStatus = viDisableEvent (vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH);
viStatus = viUninstallHandler (vi, VI_EVENT_SERVICE_REQ, interupt,
rdBuffer);
viStatus = viClose (vi);
viStatus = viClose (defaultRM) ;
return 0;

// The following function is called when an SRQ event occurs.

Code specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt (ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr)
{
ViStatus status;
ViUIntlé stb;
status = viReadSTB(vi, &stb); // Reads the Status Byte
sweep=0; // Sets the flag to stop the ’'*’ printing
printf ("\n"); // Print user information
printf ("An SRQ, indicating end of sweep has occurred\n");
62 Chapter 2

www.valuetronics.com

Programming Examples
GPIB Programming Examples

viClose (event) ; // Closes the event
return VI_SUCCESS;

Chapter 2 63
www.valuetronics.com

Programming Examples
LAN Programming Examples

LAN Programming Examples

¢ “VXI-11 Programming Using SICL in C” on page 65

e “VXI-11 Programming Using VISA in C” on page 66

* “Setting Parameters and Sending Queries Using Sockets and C” on page 72
e “Setting the Power Level and Sending Queries Using PERL” on page 89

* “Generating a CW Signal Using Java” on page 91

The LAN programming examples in this section demonstrate the use of VXI-11 and Sockets
LAN to control the signal generator. For details on using FTP and TELNET refer to “Using
FTP” on page 24 and “Using TELNET LAN” on page 20 of this guide.

Before Using the Examples

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

64 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

VXI-11 Programing

The signal generator supports the VXI-11 standard for instrument communication over the
LAN interface. Agilent IO Libraries support the VXI-11 standard and must be installed on

your computer before using the VXI-11 protocol. Refer to “Using VXI-11” on page 17 of this

Programming Guide for information on configuring and using the VXI-11 protocol.

The VXI-11 examples use TCPIPO as the board address.

VXI-11 Programming Using SICL in C

The following program uses the VXI-11 protocol and SICL to control the signal generator. The
signal generator is set to a 1 GHz CW frequency and then queried for its ID string. Before
running this code, you must set up the interface using the Agilent IO Libraries IO Config
utility.

The following program example is available on the PSG Family Documentation CD-ROM as
vxisicl.cpp.

//***k*****k‘k‘kk***‘k‘k‘k‘k‘k*‘k‘k************************
//

// PROGRAM NAME : vxisicl.cpp

//

// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11 protocol

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the VXI-11 protocol to set the signal generator for a 1 gHz CW

// frequency. The signal generator is queried for operation complete and then queried

// for its ID string. The frequency and ID string are then printed to the display.

//

// IMPORTANT: Enter in your signal generators hostname in the instrumentName declaration
// where the "xxxxx" appears.

//

YVARAAEEEEEE SRR EEEE AR EE R EEEE Rt EEE Rt

#include "stdafx.h"
#include <sicl.h>

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argvl])

{

INST id; // Device session id
int opcResponse; // Variable for response flag
char instrumentName[] = "xxxxx"; // Put your instrument’s hostname here
char instNameBuf [256]; // Variable to hold instrument name

Chapter 2 65

www.valuetronics.com

Programming Examples
LAN Programming Examples

char buf[256]; // Variable for id string
ionerror (I_ERROR_EXIT) ; // Register SICL error handler

// Open SICL instrument handle using VXI-11 protocol

sprintf (instNameBuf, "lan[%s]:inst0", instrumentName) ;

id = iopen (instNameBuf) ; // Open instrument session

itimeout (id, 1000); // Set 1 second timeout for operations
printf ("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n"); // Set frequency to 1 GHz

printf ("Waiting for source to settle...\n");
iprintf (id, "*opc?\n"); // Query for operation complete
iscanf (id, "%d", &opcResponse); // Operation complete flag
if (opcResponse != 1) // 1f operation fails, prompt user
{
printf ("Bad response to "OPC?’\n");
iclose (id);

exit (1);
}
iprintf(id, "FREQ?\n"); // Query the frequency
iscanf (id, "%t", &buf); // Read the signal generator frequency
printf ("\n"); // Print the frequency to the display

printf ("Frequency of signal generator is %s\n", buf);

ipromptf (id, "*IDN?\n", "%t", buf);// Query for id string

printf ("Instrument ID: %$s\n", buf);// Print id string to display
iclose (id); // Close the session

return 0;

VXI-11 Programming Using VISA in C

The following program uses the VXI-11 protocol and the VISA library to control the signal
generator. The signal generator is set to a 1 GHz CW frequency and queried for its ID string.
Before running this code, you must set up the interface using the Agilent IO Libraries 10
Config utility.

The following program example is available on the PSG Family Documentation CD-ROM as
vxivisa.cpp.

//**
// PROGRAM FILE NAME:vxivisa.cpp

// Sample test program using the VISA libraries and the VXI-11 protocol

//

// NOTE: You must have the Agilent Libraries installed on your computer to run

// this program

//

// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and VISA to query

// the signal generator for its ID string. The ID string is then printed to the

66 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

// screen. Next the signal generator is set for a -5 dBm power level and then
// queried for the power level. The power level is printed to the screen.

//

// IMPORTANT: Set up the LAN Client using the IO Config utility

//

//**

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

#define MAX_COUNT 200

int main (void)

ViStatus status; // Declares a type ViStatus variable
ViSession defaultRM, instr; // Declares a type ViSession variable
ViUInt32 retCount; // Return count for string I/O
ViChar buffer [MAX_COUNT]; // Buffer for string I/O
status = viOpenDefaultRM (&defaultRM) ; // Initialize the system
// Open communication with Serial
// Port 2

status = viOpen (defaultRM, "TPCIPO::19::INSTR", VI_NULL, VI_NULL, &instr);

if (status) { // If problems then prompt user

printf ("Could not open ViSession!\n");

printf ("Check instruments and connections\n");

printf ("\n");

exit (0);}

// Set timeout for 5 seconds
viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);
// Ask for sig gen ID string

status = viWrite (instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Read the sig gen response
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0’; // Indicate the end of the string
printf ("Signal Generator ID = "); // Print header for ID

printf (buffer); // Print the ID string

printf ("\n"); // Print carriage return

// Flush the read buffer

// Set sig gen power to -5dbm
status = viWrite (instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);

// Query the power level
status = viWrite (instr, (ViBuf)"POW?2\n",5, &retCount);

// Read the power level

Chapter 2 67
www.valuetronics.com

Programming Examples
LAN Programming Examples

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= ’"\0’; // Indicate the end of the string
printf ("Power level = "); // Print header to the screen
printf (buffer); // Print the queried power level
printf ("\n");
status = viClose (instr); // Close down the system
status = viClose (defaultRM) ;
return 0;

}

68 Chapter 2

www.valuetronics.com

Programming Examples
LAN Programming Examples

Sockets LAN Programming using C

The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C”
on page 72 consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions;
int main() and an int mainl ().

The int main() function allows communication with the signal generator interactively from
the command line. The program reads the signal generator's hostname from the command
line, followed by the SCPI command. It then opens a socket to the signal generator, using port
7777, and sends the command. If the command appears to be a query, the program queries the
signal generator for a response, and prints the response.

The int mainl(), after renaming to int main(), will output a sequence of commands to the
signal generator. You can use the format as a template and then add your own code.

This program is available on the PSG Family Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only
difference is the openSocket() routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example,
/users/mydir/.

2. At the UNIX prompt in your home directory type: cc -2a -0 -o lanio lanio.c

3. At the UNIX prompt in your home directory type: . /lanio xxxxx “*IDN?” where
xxxxx 18 the hostname for the signal generator. Use this same format to output SCPI
commands to the signal generator.

Chapter 2 69
www.valuetronics.com

Programming Examples
LAN Programming Examples

The int mainl () function will output a sequence of commands in a program format. If you
want to run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int mainl () to int main () and the original int main() to int
mainl () .

2. Inthe main (), openSocket () function, change the “your hostname here” string to the
hostname of the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt type: cc -Aa -0 -o lanio lanio.c

5. At the UNIX prompt type: ./lanio

The program will run and output a sequence of SCPI commands to the signal generator. The

UNIX display will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E8254A, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not
work on sockets. The following steps outline the process for running the interactive program
in the Microsoft Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source
folder of the Visual C++ project.

2. Select Rebuild All from Build menu. Then select Execute Lanio.exe.
3. Click start, click Programs, then click Command Prompt.

4. At the command prompt, cd to the directory containing the lanio.cpp file and then to the
Debug folder. For example C:\SocketIO\Lanio\Debug

5. Typein lanio xxxxx “*IDN?” at the command prompt. For example:
C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of
your signal generator. Use this format to output SCPI commands to the signal generator in
a line by line format from the command prompt.

6. Type exit at the command prompt to quit the program.

70 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

The int mainl () function will output a sequence of commands in a program format. If you
want to run a program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the maini ()
function of the lanio.c program

2. Rename the lanio.cpp int mainl () function to int main() and the original int main ()
function to int mainl ().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen

‘s "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E82542, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

ce914a

Chapter 2 71
www.valuetronics.com

Programming Examples
LAN Programming Examples

Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the PSG Family Documentation
CD-ROM as lanio.c and getopt.c.

/************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k**
* SHeader: lanio.c 04/24/01

* SRevision: 1.1 $

* S$Date: 04/24/01

* PROGRAM NAME : lanio.c

*

* S$SDescription: Functions to talk to an Agilent signal generator
* via TCP/IP. Uses command-line arguments.

*

* A TCP/IP connection to port 7777 is established and
* the resultant file descriptor is used to "talk" to the
* instrument using regular socket I/0O mechanisms. $
*

*

*

* Examples:

*

* Query the signal generator frequency:

* lanio xx.xxxX.xx.x "FREQ?’

*

* Query the signal generator power level:

* lanio xx.xXX.xx.x 'POW?’

*

* Check for errors (gets one error):

* lanio xx.xxx.xXx.x 'syst:err?’

*

* Send a list of commands from a file, and number them:

*

cat scpi_cmds | lanio -n XX.XXX.XX.X

*

EEEEEEEEEEEEESEEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR S S S

* This program compiles and runs under

* - HP-UX 10.20 (UNIX), using HP cc or gcc:

* + cc -Aa -0 -o lanio lanio.c

* + gcc -Wall -O -o lanio lanio.c

*

* - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

* - Windows NT 3.51, using Microsoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
*

+ Compile both lanio.c and getopt.c
+ Consider re-naming the files to lanio.cpp and getopt.cpp

*

* Considerations:

* - On UNIX systems, file I/O can be used on network sockets.

* This makes programming very convenient, since routines like

* getc (), fgets(), fscanf() and fprintf() can be used. These

72 Chapter 2

www.valuetronics.com

Programming Examples
LAN Programming Examples

* routines typically use the lower level read() and write() calls.

*

* - In the Windows environment, file operations such as read(), write(),
* and close () cannot be assumed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MUST be used.

***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */
define WINSOCK
fendif

#ifndef WINSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */
#include <string.h> /* for memcpy and memset */
#include <stdlib.h> /* for malloc(), atol() */
#include <errno.h> /* for strerror */

#ifdef WINSOCK
#include <windows.h>

ifndef _WINSOCKAPI_
include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
1include <netinet/in.h> /* for sockaddr_in */
include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)
define INVALID_SOCKET (-1)

typedef int SOCKET;
#endif /* WINSOCK */

#ifdef WINSOCK

/* Declared in getopt.c. See example programs disk. */

extern char *optarg;

extern int optind;

extern int getopt (int argc, char * const argv[], const char* optstring);
#else

Chapter 2 73
www.valuetronics.com

Programming Examples
LAN Programming Examples

include <unistd.h> /* for getopt (3C) */
#endif

#define COMMAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI_PORT 7777
#define INPUT_BUF_SIZE (64*1024)

/**

* Display usage

LR AR EEEEEE AR EEEEE R EEE AR R Rty

static void usage (char *basename)

{

fprintf (stderr, "Usage: %s [-nqu] <hostname> [<command>]\n",
fprintf (stderr, " %s [-nqu] <hostname> < stdin\n",

fprintf (stderr," -n, number output lines\n");

fprintf (stderr," -qg, quiet; do NOT echo lines\n");

fprintf (stderr," -e, show messages in error queue when done\n");

#ifdef WINSOCK
int init_winsock (void)
{
WORD wVersionRequested;
WSADATA wsaData;
int err;
wVersionRequested = MAKEWORD (1, 1);
wVersionRequested = MAKEWORD (2, 0);

err = WSAStartup (wVersionRequested, &wsaData);

if (err !'= 0) {
/* Tell the user that we couldn’t find a useable */
/* winsock.dll. */

fprintf (stderr, "Cannot initialize Winsock 1.1.\n");
return -1;
}

return 0;

int close_winsock (void)

WSACleanup () ;
return 0;

}
#endif /* WINSOCK */

74
www.valuetronics.com

Chapter 2

Programming Examples
LAN Programming Examples

VARRREEEEEEEEE R R AR RS R R R R

*

> SFunction: openSocket$
*

* $Description: open a TCP/IP socket connection to the instrument $

* SParameters: $

* (const char *) hostname Network name of instrument.

* This can be in dotted decimal notation.
* (int) portNumber The TCP/IP port to talk to.

* Use 7777 for the SCPI port.

*

* SReturn: (int) A file descriptor similar to open(l).$
*

* SErrors: returns -1 if anything goes wrong $

*
****************~k~k~k~k~k~k~k~k~k~k~k~k***/
SOCKET openSocket (const char *hostname, int portNumber)
{
struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;
SOCKET s;

memset (&peeraddr_in, 0, sizeof (struct sockaddr_in));

/***/

/* map the desired host name to internal form. */
/*******************~k~k~k*************************/
hostPtr = gethostbyname (hostname) ;
if (hostPtr == NULL)
{
fprintf (stderr, "unable to resolve hostname ’%s’\n", hostname);
return INVALID_SOCKET;

VAR AR EEEEEE RSy

/* create a socket */
/*******************/
s = socket (AF_INET, SOCK_STREAM, O0);
if (s == INVALID_SOCKET)
{
fprintf (stderr, "unable to create socket to ’"%s’: %s\n",
hostname, strerror(errno));
return INVALID_SOCKET;

memcpy (&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);

Chapter 2 75
www.valuetronics.com

Programming Examples
LAN Programming Examples

peeraddr_in.sin_family = AF_INET;
peeraddr_in.sin_port = htons((unsigned short)portNumber);

if (connect (s, (const struct sockaddr*)&peeraddr_in,
sizeof (struct sockaddr_in)) == SOCKET_ERROR)

fprintf (stderr, "unable to create socket to ’%s’: %$s\n",
hostname, strerror (errno));
return INVALID_SOCKET;

return s;

VARR AR EEEEEEEE SRR EEE Rt EEEE e EREEEEE Rt
*

> $Function: commandInstrument$
*

* $SDescription: send a SCPI command to the instrument.$

*

* SParameters: $

* (FILE *) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* SReturn: (char *) a pointer to the result string.

*

* $Errors: returns 0 if send fails $

*
***/

int commandInstrument (SOCKET sock,
const char *command)

int count;

/* fprintf (stderr, "Sending \"%$s\".\n", command); */

if (strchr(command, ’\n’) == NULL) {
fprintf (stderr, "Warning: missing newline on command %$s.\n", command);
}
count = send(sock, command, strlen (command), O0);
if (count == SOCKET_ERROR) {

return COMMAND_ERROR;

return NO_CMD_ERROR;

VAR AR AR EEEE RSttt EEEEE RSttt EEE Rt EEEE Lt

* recv_line(): similar to fgets (), but uses recv()

76 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

LA AR EEEEEE R EEEE LR R R Rty

char * recv_line (SOCKET sock, char * result, int maxLength)
{
#ifdef WINSOCK

int cur_length = 0;

int count;

char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/* Get a byte into ptr */
count = recv(sock, ptr, 1, 0);

/* If no chars to read, stop. */
if (count < 1) {
break;

}

cur_length += count;

/* If we hit a newline, stop. */

if (*ptr == ’'\n’) {
ptr++;
err = 0;
break;

}

ptr++;

*ptr = '\0’;

if (err) {
return NULL;
} else {
return result;
}
#else
/**********~k~k***~k~k~k~k~k~k~k~k~k~k**
* Simpler UNIX version, using file I/O. recv() version works too.
* This demonstrates how to use file I/O on sockets, in UNIX.

LA AR EEEEEE RS e RAEEEE SRR EEE RSt EEEE LRt

FILE * instFile;

instFile = fdopen(sock, "r+");
if (instFile == NULL)
{
fprintf (stderr, "Unable to create FILE * structure : %s\n",

strerror (errno));
exit (2);
}
return fgets(result, maxLength, instFile);
fendif

Chapter 2 77
www.valuetronics.com

Programming Examples
LAN Programming Examples

VARRREEEEEEEEE SRR EEE e EEE LR EE R R

*

> $Function: queryInstruments$
*

* $Description: send a SCPI command to the instrument, return a response.$
*

* SParameters: $

* (FILE *) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maximum size of result array in bytes.

*

* $Return: (long) The number of bytes in result buffer.

*

* $Errors: returns 0 if anything goes wrong. $

*

***/

long queryInstrument (SOCKET sock,
const char *command, char *result, size_t maxLength)

long ch;

char tmp_buf[8];

long resultBytes = 0;
int command_err;

int count;

/KKK KK KKK KKK KA KK K Kk ko ok ok ok ok ok ok kR K A K K K Kk ks kR ok ok ok ok kR A A K K Kk ko

* Send command to signal generator
*****************************~k~k~k~k************************/

command_err = commandInstrument (sock, command);
if (command_err) return COMMAND_ERROR;

[KKK KKK KK KK K KA KK K Kk ko ok ok ok ok ok ok kR KA A K K Kk ks kR ok ok ok ok kR A A K K Kk Kk ko

* Read response from signal generator
*********~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k*******************************/
count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
ch = tmp_buf[0];

if ((count < 1) || (ch == EOF) |l (ch == "\n"))

{
result = "\0’; / null terminate result for ascii */
return 0;

/* use a do-while so we can break out */
do

78 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

/* binary data encountered - figure out what it is */
long numDigits;

long numBytes = 0;

/* char length[10]; */

count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

ch = tmp_buf[0];

if ((count < 1) || (ch == EOF)) break; /* End of file */
if (ch < 70" || ch > "9") break; /* unexpected char */
numDigits = ch - 70’;

if (numDigits)
{

/* read numDigits bytes into result string. */

count = recv(sock, result, (int)numDigits, 0);
result [count] = 0; /* null terminate */
numBytes = atol (result);

if (numBytes)
{
resultBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */

do {
int rcount;
rcount = recv(sock, result, (int)numBytes, 0);
resultBytes += rcount;
result += rcount; /* Advance pointer */

} while (resultBytes < numBytes);

/**

* For LAN dumps, there is always an extra trailing newline
* Since there is no EOI line. For ASCII dumps this is
* great but for binary dumps, it is not needed.
***/
if (resultBytes == numBytes)
{
char junk;
count = recv(sock, &junk, 1, 0);

}

else

{
/* indefinite block ... dump til we can an extra line feed */
do
{

Chapter 2 79
www.valuetronics.com

Programming Examples
LAN Programming Examples

if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 && *result == '\n’) break;
resultBytes += strlen(result);
result += strlen(result);

} while (1);

else

/* ASCII response (not a binary block) */
*result = (char)ch;
if (recv_line(sock, result+l, maxLength-1) == NULL) return 0;

/* REMOVE trailing newline, if present. And terminate string. */
resultBytes = strlen(result);

if (result[resultBytes-1] ==
result [resultBytes] = "\0’;

’\n’) resultBytes -= 1;

}
} while (0);

return resultBytes;

/***
*

> S$Function: showErrorss$
*

* $Description: Query the SCPI error queue, until empty. Print results. $
*

* SReturn: (void)
*

LA R AR EEE S LRt AR EEEE RS EEE Rt EEEREEEE ety

void showErrors (SOCKET sock)

{
const char * command = "SYST:ERR?\n";
char result_str[256];

do {
queryInstrument (sock, command, result_str, sizeof (result_str)-1);

/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0, "No error"
* Don’t bother decoding.
**/
if (strncmp(result_str, "+0,", 3) == 0) {

/* Matched +0,"No error" */

80 Chapter 2
www.valuetronics.com

Programming Examples

LAN Programming Examples

break;
}
puts (result_str);
} while (1);

/***

*

> $Function: isQuery$
*

* $Description:
*

Test current SCPI command to see if it a query. $

* SReturn:
*

(unsigned char) non-zero if command is a query.

0 if not.

AR R AR EEEE R R AR EEE Rt EEEE AR EEEEE Lt

unsigned char isQuery(char* cmd)
{

unsigned char g = 0 ;

char *query ;

VAR A AR EEEEEEE Rt EEEE RS Ry

/* if the command has a ’?’ in it, use queryInstrument. */
/* otherwise, simply send the command. */
/* Actually, we must be a more specific so that */
/* marker value querys are treated as commands. */
/* Example: SENS:FREQ:CENT (CALCI:MARKI1:X?) */
/*********~k~k~k~k~k~k~k~k~k~k~k~k~k~k**********************************/
if ((query = strchr(cmd,’?’)) != NULL)
{
/* Make sure we don’t have a marker value query, or
* any command with a ’?’ followed by a ’)’ character.
* This kind of command is not a query from our point of view.
* The signal generator does the query internally, and uses the result.
*/
query++ ; /* bump past "2’ */
while (*query)
{
if (*query == ' ') /* attempt to ignore white spc */
query++ ;
else break ;
}
if (*query != ")’)
{
aqa=1;
}
}
return gq ;
}
Chapter 2 81

www.valuetronics.com

Programming Examples
LAN Programming Examples

VARRRAEEEEEEEE SRR EEE e EEEE AR EEEEEEEE R

*

> S$Function: main$
*

* $Description: Read command line arguments, and talk to signal generator.

Send query results to stdout. $

*

* SReturn: (int) . . . non-zero if an error occurs
*

LR AR R EEEEE R AR EEE e EEEE LR EEEEE Lt

int main(int argc, char *argv[])

{

SOCKET instSock;

char *charBuf = (char *) malloc (INPUT_BUF_SIZE);
char *basename;

int chr;

char command[1024];

char *destination;

unsigned char quiet = 0;

unsigned char show_errs = 0;

int number = 0;

basename = strrchr(argvI[0], '/");

if (basename != NULL)
basename++ ;

else
basename = argv[0];

while ((chr = getopt (argc,argv,"qune")) != EOF)
switch (chr)

{

case 'g’: quiet = 1; break;

case 'n’: number = 1; break ;

case ’e’: show_errs = 1; break ;
case 'u’:

case ’"?’: usage (basename); exit (l) ;

/* now look for hostname and optional <command>*/
if (optind < argc)
{

destination = argv[optind++] ;

strcpy (command, "");

if (optind < argc)

{

while (optind < argc) {

/* <hostname> <command> provided; only one command string */

strcat (command, argv[optind++]);

82
www.valuetronics.com

Chapter 2

Programming Examples
LAN Programming Examples

if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");

/*0Only <hostname> provided; input on <stdin> */
strcpy (command, "");

if (optind > argc)

{
usage (basename) ;
exit (1);

}

else

{
/* no hostname! */
usage (basename) ;
exit (1);

/**

/* open a socket connection to the instrument
/**********~k~k~k~k~k~k**************************************/

#ifdef WINSOCK
if (init_winsock () != 0) {
exit (1);
}
#endif /* WINSOCK */

instSock = openSocket (destination, SCPI_PORT) ;
if (instSock == INVALID_SOCKET) {
fprintf (stderr, "Unable to open socket.\n");
return 1;

}
/* fprintf (stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

/***

/* 1f the command has a ’?’ in it, use queryInstrument. */

/* otherwise, simply send the command. */

/***/
if (isQuery (command))

{

Chapter 2 83
www.valuetronics.com

Programming Examples
LAN Programming Examples

long bufBytes;
bufBytes = queryInstrument (instSock, command,
charBuf, INPUT_BUF_SIZE);
if (!quiet)
{
fwrite (charBuf, bufBytes, 1, stdout);
fwrite("\n", 1, 1, stdout) ;
fflush (stdout) ;

}

else

{

commandInstrument (instSock, command) ;

}

else

{
/* read a line from <stdin> */
while (gets(charBuf) != NULL)
{

if (!strlen(charBuf))
continue ;

if (*charBuf == '#’ || *charBuf == "!’)
continue ;

strcat (charBuf, "\n");

if (!quiet)
{
if (number)
{
char num[10];
sprintf (num, "%d: ",number) ;
fwrite (num, strlen(num), 1, stdout);
}
fwrite (charBuf, strlen(charBuf), 1, stdout) ;
fflush (stdout) ;

if (isQuery (charBuf))
{
long bufBytes;

/* Put the query response into the same buffer as the*/
/* command string appended after the null terminator.*/

bufBytes = queryInstrument (instSock, charBuf,
charBuf + strlen(charBuf) + 1,
INPUT_BUF_SIZE -strlen (charBuf));
if (!quiet)

84 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

fwrite(" ", 2, 1, stdout) ;

fwrite (charBuf + strlen(charBuf)+1l, bufBytes, 1, stdout);
fwrite("\n", 1, 1, stdout) ;

fflush (stdout) ;

}

else

{

commandInstrument (instSock, charBuf);

}

if (number) number++;

if (show_errs) {
showErrors (instSock) ;

#ifdef WINSOCK
closesocket (instSock) ;
close_winsock () ;
#else
close (instSock) ;
#endif /* WINSOCK */

return 0;

/* End of lanio.cpp *

VAR AR EEEEEEEE SRR EEEE Rt EEEE AR EEEE Lt

/* $Function: mainl$ */
/* S$Description: Output a series of SCPI commands to the signal generator */
/* Send query results to stdout. $ */
/* */
/* SReturn: (int) . . . non-zero if an error occurs */
/* */
/***************~k****~k****~k**/
/* Rename this int mainl () function to int main(). Re-compile and the */
/* execute the program */

VARRRAEEEEEEEE SRR EEE RSt EEEE R EEEE Lt

int mainl ()

{

SOCKET instSock;
long bufBytes;
char *charBuf = (char *) malloc (INPUT_BUF_SIZE);

Chapter 2 85
www.valuetronics.com

Programming Examples
LAN Programming Examples

/***/

/* open a socket connection to the instrument*/
/*********************~k~k~k*********************/

#ifdef WINSOCK
if (init_winsock () != 0) {
exit (1);
}
#endif /* WINSOCK */

instSock = openSocket ("xxxxxx", SCPI_PORT); /* Put your hostname here */

if (instSock == INVALID_SOCKET) {
fprintf (stderr, "Unable to open socket.\n");
return 1;

}

/* fprintf (stderr, "Socket opened.\n"); */

bufBytes = queryInstrument (instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE);

printf ("ID: %$s\n", charBuf);
commandInstrument (instSock, "FREQ 2.5 GHz\n");
printf ("\n");

bufBytes = queryInstrument (instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE);

printf ("Frequency: %s\n",charBuf);
commandInstrument (instSock, "POW:AMPL -5 dBm\n");

bufBytes = queryInstrument (instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);

printf ("Power Level: %$s\n",charBuf);
printf ("\n");

#ifdef WINSOCK
closesocket (instSock) ;
close_winsock () ;
#else
close (instSock) ;
#endif /* WINSOCK */

return 0;

}

VARRRAEEEEEEEE SRR EEE RSt AR EEEE R EEEEE Rt

getopt (3C) getopt (3C)

PROGRAM FILE NAME: getopt.c
getopt - get option letter from argument vector

SYNOPSIS
int getopt (int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

86
www.valuetronics.com

Chapter 2

PRORGAM DESCRIPTION:
getopt returns the next option letter in argv
that matches a letter in optstring.
recognized option letters;

Programming Examples
LAN Programming Examples

(starting from argv[1l])
optstring is a string of
if a letter is followed by a colon,

the

option is expected to have an argument that may or may not be

separated from it by white space.
of the option argument on return from getopt.

optarg is set to point to the start

getopt places in optind the argv index of the next argument to be

processed.
the first call to the function getopt.

When all options have been processed (i.e.,
argument), getopt returns EOF.

delimit the end of the options; EOF is returned,

The external variable optind is initialized to 1 before

up to the first non-option
The special option -- can be used to
and -- 1is skipped.

***/

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */
int optind = 0; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt (
{

int argc, char * const argv([], const char* optstring)
char c;

char *posn;

optarg = NULL;
if (scan == NULL || *scan == "\0’) {
if (optind == 0)
optind++;
if (optind >= argc || argv[optind][0] != ’=’ || argv[optind][1l] ==
return (EOF) ;
if (strcmp(argv[optind], "--")==0) {

optind++;
return (EOF) ;

"\0")

scan = argv[optind]+1;
optind++;
}
Cc = *scan+t+;
Chapter 2 87

www.valuetronics.com

Programming Examples
LAN Programming Examples

posn = strchr (optstring, c); /* DDP */

if (posn == NULL || ¢c == ":") {
fprintf (stderr, "%s: unknown option -%c\n", argv[0], c);
return(’?’);

posn+t+;
if (*posn == ":") {
if (*scan != "\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
optind++;
}
}
return(c);
}
88 Chapter 2

www.valuetronics.com

Programming Examples
LAN Programming Examples

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface.
The signal generator power level is set to —5 dBm, queried for operation complete and then
queried for it’s identify string. This example was developed using PERL version 5.6.0 and
requires a PERL version with the 10::Socket library.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code
line: my $instrumentName= “xxxxx”; .

2. Save the code using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the PSG Family Documentation CD-ROM as
perl.txt.

#!/usr/bin/perl

PROGRAM NAME: perl.txt

Example of talking to the signal generator via SCPI-over-sockets
#

use IO::Socket;

Change to your instrument’s name

my $instrumentName = "xxxxx";

Get socket

Ssock = new IO0::Socket::INET (PeerAddr => $instrumentName,
PeerPort => 7777,
Proto => "tcp’,
)i

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freqg
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for completion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

my S$response = <$sock>;

chomp $response; # Removes newline from response

if (Sresponse ne "1"

{

die "Bad response to /*OPC?’ from instrument!\n";

}

Send identification query
print $sock "*IDN?\n";

Chapter 2 89
www.valuetronics.com

Programming Examples
LAN Programming Examples

Sresponse = <S$sock>;
chomp $response;
print "Instrument ID: S$response\n";

90 Chapter 2
www.valuetronics.com

Programming Examples
LAN Programming Examples

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator via sockets LAN. This
program requires Java version 1.1 or later be installed on your PC. To run the program
perform the following steps:

1. Inthe code example below, type in the hostname or IP address of your signal generator. For
example, String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

3. Launch the Command Prompt program on your computer. Click Start > Programs >
Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>7Jdk1.3.0_2\bin\javac ScpiSockTest. java

Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the PSG Family Documentation CD-ROM as
javaex.txt.

//***************************‘k‘k‘k**

// PROGRAM NAME: javaex.txt

// Sample Jjava program to talk to the signal generator via SCPI-over-sockets
// This program requires Java version 1.1 or later.

// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id string
//**

import java.io.*;
import java.net.*;
class ScpiSockTest
{
public static void main(String[] args)

{

String instrumentName = "xxxxx"; // Put your hostname here
try
{
Socket t = new Socket (instrumentName, 7777); // Connect to instrument
Chapter 2 91

www.valuetronics.com

Programming Examples
LAN Programming Examples

// Setup read/write mechanism

BufferedWriter out =

new BufferedWriter (

new OutputStreamWriter (t.getOutputStream()));
BufferedReader in =

new BufferedReader (

new InputStreamReader (t.getInputStream()));
System.out.println ("Setting frequency to 1 GHz...");
out.write("freq 1GHz\n"); // Sets frequency

out.flush();
System.out.println ("Waiting for source to settle...");

out.write ("*opc?\n"); // Waits for completion
out.flush();
String opcResponse = in.readLine();

if (!opcResponse.equals("1")
{
System.err.println("Invalid response to ’*OPC?’!");
System.exit (1);
}

System.out.println ("Retrieving instrument ID...");

out.write ("*idn?\n"); // Querys the id string

out.flush();

String idnResponse = in.readLine () ; // Reads the id string
// Prints the id string

System.out.println ("Instrument ID: " + idnResponse);

}
catch (IOException e)

{

System.out.println ("Error" + e);

92 Chapter 2
www.valuetronics.com

Programming Examples
RS-232 Programming Examples

RS-232 Programming Examples

“Interface Check Using Agilent BASIC” on page 94
“Interface Check Using VISA and C” on page 95
“Queries Using Agilent BASIC” on page 97
“Queries Using VISA and C” on page 98

Before Using the Examples

On the signal generator select the following settings:

Baud Rate - 9600 must match computer’s baud rate
Transmit Pace - None
Receive Pace - None

RTS/CTS - None
RS-232 Echo - Off

Chapter 2
www.valuetronics.com

93

Programming Examples
RS-232 Programming Examples

Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command *RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used
is COM1 (Serial A on some computers). Refer to “Using RS-232” on page 26 for more
information.

Watch for the signal generator’s Listen annunciator (1.) and the ‘remote preset...’ message on
the front panel display. If there is no indication, check that the RS-232 cable is properly
connected to the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the
program was typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run
the program. Refer to “If You Have Problems” on page 8 for more help.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex1.txt.

10 !*******************~k~k~k~k*‘k‘k‘k‘k‘k********‘k‘k‘k‘k‘k‘k*****‘k*‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k***‘k‘k‘k‘k******
20 !

30 ! PROGRAM NAME : rs232exl.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the RS-232 connections and
60 ! interface are functional.

70 !

80 ! Connect the UNIX workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run Agilent BASIC, type in the following commands and then RUN the program
120 !

130 !

140 !**
150 !

160 INTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9, 3;9600 ! Sets the baud rate to match the sig gen

190 STATUS 9, 4;Stat ! Reads the value of register 4

200 Num=BINAND (Stat, 7) ! Gets the AND value

210 CONTROL 9, 4; Num ! Sets parity to NONE

220 OUTPUT 9; "*RST" ! Outputs reset to the sig gen

230 END ! End the program

94 Chapter 2

www.valuetronics.com

Programming Examples
RS-232 Programming Examples

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. In this example
the COM2 port is used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’
depending on the computer serial port you are using. Launch Microsoft Visual C++, add the
required files, and enter the following code into the .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex1.cpp.

YVARRAEEEEEE SRR ARt EEEE AR AR EEE R

// PROGRAM NAME : rs232exl.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to
// control the signal generator.

//

// Connect the computer to the signal generator using an RS-232 serial cable.
// The user is asked to set the signal generator for a 0 dBm power level

// A reset command *RST is sent to the signal generator via the RS-232

// interface and the power level will reset to the -135 dBm level.The default
// attributes e.g. 9600 baud, no parity, 8 data bits,l stop bit are used.

// These attributes can be changed using VISA functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

YVARAAEEEEEE SRR R EEEE AR EE AR EEEE AR EEE R

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

void main ()

{

int baud=9600; // Set baud rate to 9600

printf ("Manually set the signal generator power level to 0 dBm\n");
printf ("\n");

printf ("Press any key to continue\n");

getch () ;
printf ("\n");
ViSession defaultRM, vij; // Declares a variable of type ViSession

// for instrument communication on COM 2 port
ViStatus viStatus = 0;
// Opens session to RS-232 device at serial port 2
viStatus=viOpenDefaultRM(&defaultRM) ;
viStatus=viOpen (defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);

Chapter 2 95
www.valuetronics.com

Programming Examples
RS-232 Programming Examples

if (visStatus) { // 1f operation fails, prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");
printf ("\n");
exit (0);}
// initialize device
viStatus=viEnableEvent (vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL);

viClear (vi); // Sends device clear command

// Set attributes for the session
viSetAttribute (vi, VI_ATTR_ASRL_BAUD, baud) ;
viSetAttribute (vi,VI_ATTR_ASRL_DATA_BITS, 8);

viPrintf (vi, "*RST\n"); // Resets the signal generator
printf ("The signal generator has been reset\n");
printf ("Power level should be -135 dBm\n");

printf ("\n"); // Prints new line character to the display
viClose (vi); // Closes session
viClose (defaultRM) ; // Closes default session

}

96 Chapter 2

www.valuetronics.com

Programming Examples
RS-232 Programming Examples

Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query
commands are of the type *IDN? and are identified by the question mark that follows the

mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the PSG Family Documentation CD-ROM as

rs232ex2.txt.

10 !*~k~k~k~k~k*********~k~k~k~k~k~k~k~k~k**~k~k***~k*************~k~k~k~k~k~k***~k~k‘k‘k‘k‘k‘k***‘k‘k‘k**‘k‘k*********
20 i

30 ! PROGRAM NAME : rs232ex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used to read

60 ! data from the signal generator.

70 !

80 ! Start Agilent BASIC, type in the following code and then RUN the program.

90 !

100 !*~k~k~k~k~k*********~k~k~k~k~k~k~k~k~k*********************~k~k~k~k~k~k*****************************
110 !

120 INTEGER Num

130 DIM Str$[200],Strls$[20]

140 CONTROL 9,0;1 Resets the RS-232 interface

150 CONTROL 9, 3;9600 Sets the baud rate to match signal generator rate
160 STATUS 9, 4;Stat Reads the value of register 4

170 Num=BINAND (Stat, 7) Gets the AND value

180 CONTROL 9, 4; Num Sets the parity to NONE

190 OUTPUT 9; "*IDN?" Querys the sig gen ID

200 ENTER 9;Str$ Reads the ID

210 WAIT 2 Waits 2 seconds

220 PRINT "ID =",Str$ Prints ID to the screen

230 OUTPUT 9; "POW:AMPL -5 dbm" Sets the the power level to -5 dbm

240 OUTPUT 9;"POW?" Querys the power level of the sig gen

250 ENTER 9;Strl$ Reads the queried value

260 PRINT "Power = ",Strl$ Prints the power level to the screen

270 END End the program

Chapter 2 97

www.valuetronics.com

Programming Examples

RS-

232 Programming Examples

Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. Launch Microsoft
Visual C++, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Family Documentation CD-ROM as
rs232ex2.cpp.

VAR AR EEEEEEEEE SRR R AR EEE R E Rk

//
//
//
//
//
//
//
//
//
//
//
/7
//
//

PROGRAM NAME : rs232ex2.cpp

PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to control
the signal generator.

Connect the computer to the signal generator using the RS-232 serial cable

and enter the following code into the project .cpp source file.

The program queries the signal generator ID string and sets and queries the power
level. Query results are printed to the screen. The default attributes e.g. 9600 baud,
parity, 8 data bits,1l stop bit are used. These attributes can be changed using VISA
functions.

IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

VAR AR EEEEEE SRR EEE AR EEE AR R R R

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

ViStatus status; // Declares a type ViStatus variable
ViSession defaultRM, instr;// Declares type ViSession variables
ViUuInt32 retCount; // Return count for string I/O
ViChar buffer [MAX_COUNTI];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM);// Initializes the system
// Open communication with Serial Port 2
status = viOpen (defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);

if (status) { // If problems, then prompt user
printf ("Could not open ViSession!\n");
printf ("Check instruments and connections\n");

98

Chapter 2

www.valuetronics.com

Programming Examples
RS-232 Programming Examples

printf ("\n");
exit (0);}
// Set timeout for 5 seconds
viSetAttribute (instr, VI_ATTR_TMO_VALUE, 5000);
// Asks for sig gen ID string
status = viWrite (instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Reads the sig gen response
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0’; // Indicates the end of the string
printf ("Signal Generator ID: "); // Prints header for ID

printf (buffer); // Prints the ID string to the screen
printf ("\n"); // Prints carriage return

// Flush the read buffer
// Sets sig gen power to —5dbm
status = viWrite (instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);
// Querys the sig gen for power level
status = viWrite (instr, (ViBuf)"POW?\n",5, &retCount);
// Read the power level
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0’; // Indicates the end of the string
printf ("Power level = "); // Prints header to the screen
printf (buffer); // Prints the queried power level
printf ("\n");

status = viClose (instr); // Close down the system

status = viClose (defaultRM) ;
return 0;

Chapter 2 99
www.valuetronics.com

Programming Examples
RS-232 Programming Examples

100 Chapter 2
www.valuetronics.com

3 Programming the
Status Register System

101
www.valuetronics.com

Programming the Status Register System
Overview

Overview

During remote operation, it is important to monitor the status of the signal generator. In most
applications, it is sufficient to use the :SYSTem:ERRor? query (Refer to “:ERRor[:NEXT]” on
page 208) to see if any errors have been posted in the signal generator's error queue.

The status register system, described in this chapter, is an alternative method to monitor the
status of the signal generator. The status register system is more complex than the simple
:SYSTem:ERROR? query, but does provide two major advantages:

* You can monitor the settling of the signal generator using the Settling Bit of the Operation
Status Group.

* You can use the SRQ interrupt technique to avoid status polling, which may give you a
speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data
structures for reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the
higher-priority registers in the data structures by means of summary bits. The Status Byte
Register is at the top of the hierarchy and contains the general status information for the
signal generator’s events and conditions. All other individual registers are used to determine
the specific events or conditions.

Figure 3-1 shows the signal generator’s status registers and their hierarchy.

IEEE 488.2 common commands (those beginning with *) access the higher-level summary
registers. To access the information from specific registers, use the STATus commands.

102 Chapter 3
www.valuetronics.com

Figure 3-1

Data Questionable Power Status Group

Unused -

Unleveled —

Unused

Low Band Detector Fault -

Unused -
Unused -
Unused -
Unused -
Unused -
Unused o
Unused o
Unused -
Unused -
Unused -

[¢)

1

2

3

Unused~ 4
5

5]

7

8

9

10

11

12

13

14

Always Zero (0)15

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register

Event Enable Reg.

Data Quest. Frequency Status Group

Synth. Unlocked o

10 MHz Ref Unlocked
1 GHz Ref Unlocked
Unused

Unused <

Sampler Loop Unlocked -
YO Loop Unlocked <
Unused H

Unused =

Unused —

Unused H

Unused

Unused -

Unused o

Unused o

Always Zero (0) o

Data Quest. Modulation Status Group

Mod 1 Undermod —

Mod 1 Overmod —

Mod 2 Undermod —

Mod 2 Overmod —

Unused o

Pulse Generator Unlocked —
Internal Modulation Source Unlocked —
Unused -

Unused -

Unused o

Unused 4

Unused -

Unused —

Unused -

Unused <

Always Zero (0) o

Data Quest. Cali
DCFM/DCTM

Zero Failure =

nused -

Unused 4

Unused o

Unused -

Unused -

Data Questionable
Status Group

Unused —
Unused —
Unused —

(summary)—

Temperature _]
(Oven Cold)

(summary)—
Unused —

0

1

2

3

s\ |& |2

sN\\[21Z[2[5 2

6 QL |iL |m|2
o 2=

7 AHEMEEG
=1k .

8 B B e b=
Sl==| o =

9 HB oG

11

12

13

14

15

)
1

2

2 sl |, |13

4 G|5|s|z]e

SR\ \HHHEE

6 fﬂmmwﬁ@_
7 5l5|5[S|s

8 = RHEE

o HE B

10 3 o

11

12

13

14

L15]

bration Status Group

0

1

2

3 K =

4 HEEEE

5 gEEﬁm

W |w D=

6 =y |o]| 2]

7 AEEEE
oo |m|

8 = ==l Y

9 HRSEE
2|¥|5
SIS | |w|®
o it

V] d
Unused
Unused -
Unused
Unused
Unused 10
Unused 911
Unused <12
Unused =113
Unused 114
Always Zero (0) 915

(summary)=—

(summary)—

Selftest=] ©
10

Unused —
Unused — 11
Unused —
Unused —
Unused —
Always Zero (0)—

Oper. Complete
Req. Bus Control
Query Error
Dev. Dep. Error
Execution Error
Command Error
User Request
Power On

Standard Operation Status Group

Unused —
Settling —
Unused —
Sweeping —
Unused <
Waiting for _|

Triger
Unused —

Unused —
Unused <
DCFM/DCTM _|

Nullin Progress
Unused —

Sweep Calculating —
Unused —
Unused —
Unused —

® N oo RN = O

12
13
14
15

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
Standard Event Status Group :
1
1
1
1
1
1
1
1
1
1
1
1
l
I
I
I
I
I
I
I
I
I

Programming the

The Overall Status Byte Register System

Status Register System
Overview

Status Byte Register

Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Status Summary Bit
Message Available (MAV)

Std. Event Status éum. Bit
Req. Serv. Sum. Bit (RQS)
Std. Operation Status é)

[- -

m. Bit

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register

Event Enable Reg.

Event Register
Event Enable Reg.

® N oR N = O

(+)Trans Filter

(-)Trans Filter

Event Register
Event Enable Reg.

©
Condition Register

10
11
12
13
14

Always Zero (0)—

15

)

—

y ¢

&
[
|7|6|5|4|3|2|1|0|

Service Request
Enable Register

ce92a

Chapter 3

www.valuetronics.com

103

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a numerical value based on its location (see Table 3-1).

¢ To enable a particular bit, send its value with the command.
¢ To enable more than one bit, send the sum of all the bits that you are interested in.
* A query returns the sum of all bits that are true.

Example: Enable Bit 0 and Bit 6 of *ESE
1. Add the value of bit 0 (1) and the value of bit 6 (64).

2. Send the sum with the command: *ESE 65.

Example: STATus:OPERation:CONDition? Command Returns Decimal Value of 140
140=128 + 8 +4

In this case bit 7 is true, bit 3 is true, and bit 2 is true.

Table 3-1 Status Register Bit Decimal Values
A RER R REIFEEEIE AR
. wm
Declmal%ggggammv—c
Value B —
<
BitNumber [15 (14 (13 (12 (11 (10 |9 (8|7 |6 |5 |4 |3 |2 (1|0

NOTE Bit 15 is not used to report status and is therefore set to zero.

104 Chapter 3
www.valuetronics.com

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following:

current signal generator hardware and firmware status
* whether a particular condition (bit) has occurred
* when a particular condition (bit) changes

Monitoring Current Signal Generator Hardware and Firmware Status

You can query the condition registers, which continuously monitor status. These registers
represent the current state of the signal generator. Bits in a condition register are updated in
real time. When the condition monitored by a particular bit becomes true, the bit sets to 1.
When the condition becomes false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

Once you enable a bit with the event enable register, the signal generator monitors that
particular bit. If the bit becomes true in the event register, it stays set until the event register
is cleared. Querying the event register enables you to detect that this condition occurred even
if the condition no longer exists. The event register can be cleared only by querying it or
sending the *CLS command, which clears all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The
transition registers are preset to register positive transitions (a change going from 0 to 1).
This can be changed so the selected bit is detected if it goes from true to false (negative
transition), or if either transition occurs.

Chapter 3 105
www.valuetronics.com

Programming the Status Register System
Accessing Status Register Information

Deciding How to Monitor

You can use either of two methods to programmatically access the information in status
registers (either method allows you to monitor one or more conditions).

¢ The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is
accomplished by a program loop that continually sends a query.

The polling method works well if you do not need to know about changes the moment they
occur. Use polling on the following occasions:

— when you use a programming language/development environment or I/O interface that
does not support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

¢ The service request (SRQ) method

In the SRQ method (described in detail on page 107), the signal generator takes a more
active role. It tells the controller when there has been a condition change without the
controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a
change using the polling method, the program must repeatedly read the registers.) Use the
SRQ method on the following occasions:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

106 Chapter 3
www.valuetronics.com

Programming the Status Register System
Accessing Status Register Information

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (example: BASIC used with GPIB.) Using this method, you must do the following:

1. determine which bit monitors the condition
2. determine how that bit reports to the request service (RQS) bit of the status byte

3. send commands to enable the bit that monitors the condition and to enable the summary
bits that report the condition to the RQS bit

4. enable the controller to respond to service requests

When the condition changes, the signal generator sets its RQS bit and asserts an SRQ. The
controller is informed of the change as soon as it occurs. As a result, the time the controller
would otherwise have used to monitor the condition can be used to perform other tasks. The
program determines how the controller responds to the SRQ.

Generating a Service Request To use the SRQ method, you must understand how service
requests are generated. The *SRE command sets the bits in the Service Request Enable
Register, except bit 6 which is ignored. This enables the corresponding summary message bits
in the Status Byte Register to set high (from 0 to 1) when there is a change in instrument
status. When a Status Byte Register bit is set high, it will enable the setting (0 to 1) of the
request service (RQS) bit (bit 6). Refer to Figure 3-1 on page 103 for a visual representation of
this process.

This process is only initiated if both of the following conditions are true:

* The corresponding bit of the Service Request Enable Register is also set to 1.
¢ The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a
time can set the RQS bit. All bits that are asserting an SRQ will be read as part
of the status byte when queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ
only informs the controller that some device on the bus requires service. Setting the RQS bit
allows the controller to determine which signal generator requires service.

Chapter 3 107
www.valuetronics.com

Programming the Status Register System
Accessing Status Register Information

If a program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll when SRQ is true. Each device on the bus
returns the contents of its status byte register in response to this poll. The device whose RQS
bit is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll,
the RQS bit is reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-measurement and the
measurement is in continuous mode, then restarting a measurement (INIT
command) can cause the measuring bit to pulse low. This causes an SRQ when
you have not actually reached the “end-of-measurement” condition. To avoid
this, do the following:

1. Send the command INITiate:CONTinuous OFF.
2. Set/enable the status registers.
3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level, using the IEEE
488.2 common commands listed below. You can set and query individual status registers using
the commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and
clearing all the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable
Register which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register
which is part of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets the Standard Event Status Register to zero so it
can monitor the completion of all commands. The query stops any new commands from
being processed until the current processing is complete, then returns a ‘1’.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service
Request Enable Register, the Standard Event Status Enable Register, and device-specific
event enable registers at power on. The query returns the flag setting from the *PSC
command.

108 Chapter 3
www.valuetronics.com

Programming the Status Register System
Accessing Status Register Information

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request
Enable Register.

*STB? (status byte) queries the value of the status byte register without erasing its
contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and
error/event queue enable registers. (Refer to Table 3-2.)

Table 3-2 Effects of :STATus:PRESet
Register Value after
:STATus:PRESet
:STATus:OPERation:ENABIe 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABIe 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIe 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABIe 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABIe 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767
Chapter 3 109

www.valuetronics.com

Programming the Status Register System
Status Byte Group

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service Request Enable

Register.
Status Byte Register
0 | Unused
1 | Unused
2 | Error/Event Queue Summary Bit
3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
rposmmsses #| B | Request Service (RQS)
i 7 | Operation Status Summary Bit
® |
F® |
WO !
A g@ B J:
 ®
A C@
A Y
&
T
011]2|3]4|5]|6] 7] Service Request Enable Register
ck721a
110 Chapter 3

www.valuetronics.com

Programming the Status Register System
Status Byte Group

Status Byte Register
Table 3-3 Status Byte Register Bits

Bit

Description

0,1

Unused. These bits are always set to 0.

2

Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error
queue is not empty. The SCPI error queue contains at least one error message.

Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data
Questionable summary bit has been set. The Data Questionable Event Register can then be
read to determine the specific condition that caused this bit to be set.

Message Available. A 1 in this bit position indicates that the signal generator has data ready
in the output queue. There are no lower status groups that provide input to this bit.

Standard Event Status Summery Bit. A 1 in this bit position indicates that the Standard
Event summary bit has been set. The Standard Event Status Register can then be read to
determine the specific event that caused this bit to be set.

Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal
generator has at least one reason to require service. This bit is also called the Master Summary
Status bit (MSS). The individual bits in the Status Byte are individually ANDed with their
corresponding service request enable register, then each individual bit value is ORed and input
to this bit.

Standard Operation Status Summary Bit. A 1 in this bit position indicates that the
Standard Operation summary bit has been set. The Standard Operation Event Register can
then be read to determine the specific condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the MSS bit.

Example: The decimal value 136 is returned when the MSS bit is set low (0).
Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Chapter 3 111
www.valuetronics.com

Programming the Status Register System
Status Byte Group

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register
triggers a service request

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except
bit 6. Bit 6 cannot be enabled.

Example: Enable bits 7 and 5 to trigger a service request when either corresponding
status group register summary bit sets to 1. Send the command *SRE 160
(128 + 32).

Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the

*SRE <data> command.

112 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group each consist
of the following registers; the Standard Event Status Group is similar but does not have
negative or positive transition filters.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuously monitors the hardware and firmware
status of the signal generator. There is no latching or buffering for a
condition register; it is updated in real time.

A negative transition filter specifies the bits in the condition register that
will set corresponding bits in the event register when the condition bit
changes from 1 to 0.

A positive transition filter specifies the bits in the condition register that
will set corresponding bits in the event register when the condition bit
changes from O to 1.

An event register latches transition events from the condition register as
specified by the positive and negative transition filters. Bits in the event
register are latched, and once set, they remain set until cleared by either
querying the register contents or sending the *CLS command.

An enable register specifies the bits in the event register that can generate a
summary bit. The signal generator logically ANDs corresponding bits in the
event and enable registers and ORs all the resulting bits to produce a

summary bit. Summary bits are, in turn, used by the Status Byte Register.

In general, a status group is a set of related registers whose contents are programmed to
produce status summary bits. In each status group, corresponding bits in the condition
register are filtered by the negative and positive transition filters and stored in the event
register. The contents of the event register are logically ANDed with the contents of the
enable register and the result is logically ORed to produce a status summary bit in the Status

Chapter 3

113

www.valuetronics.com

Programming the Status Register System
Status Groups

Byte Register.

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the
Status Byte Register. This group consists of the Standard Event Status Register (an event
register) and the Standard Event Status Enable Register.

Operation Complete

Request Bus Control

Query Error

Device Dependent Error

Execution Error
Command Error

User Request
Power On j

Event Register 7 6 5

R —
w <
N
— |
-

(@)

&
A
&
Event . 7 6 5 4 3 210
Enable Register
vy To Status Byte Register Bit #5 ok723a
114 Chapter 3

www.valuetronics.com

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 3-4 Standard Event Status Register Bits
Bit | Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator
operations were completed following execution of the *OPC command.

1 Request Control. This bit is always set to 0. (The signal generator does not request control.)

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors
have SCPI error numbers from —499 to -400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has
occurred. Device dependent errors have SCPI error numbers from —399 to —300 and 1 to 32767.

4 | Execution Error. A 1 in this bit position indicates that an execution error has occurred.
Execution errors have SCPI error numbers from -299 to —200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred.
Command errors have SCPI error numbers from —-199 to -100.

6 | User Request Key (Local). A 1 in this bit position indicates that the Local key has been
pressed. This is true even if the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and
then on.
Query: *ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Chapter 3 115

www.valuetronics.com

Programming the Status Register System
Status Groups

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event
Status Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the
Standard Event Status summary bit of the Status Byte Register is set to 1.
Send the command *ESE 192 (128 + 64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the
*ESE <data> command.

116 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Standard Operation Status Group

The Standard Operation Status Group is used to determine the specific event that set bit 7 in
the Status Byte Register. This group consists of the Standard Operation Condition Register,
the Standard Operation Transition Filters (negative and positive), the Standard Operation
Event Register, and the Standard Operation Event Enable Register.

Unused

Settling

Unused

Sweeping
Unused

Waiting for Trigger
Unused
Unused
Unused
DCFM/DC$M Null in Progress
Unused
Sweep Calculating
Unused
Unused
Unused
Always Zero (0) ——

A Y vyy
Standard Operation |15 14 13 12 11

Condition Register

Standard Operation + +

Positive . |15 14 13 12 11
Transition Filter + + + +
Standard Operation

Negative - [15 14 13 12 11
ransition Filter + + + +

Standard Operation
Event Regiater " [15 14 13 12 11

<
-
<
Bl
>
<
o
-«
-
<
>
<
-
Bl

O |l 3 =

—
o

© [© 4 © 4 ©

@ g O - 0 g 0 |
~N - N e N e
O [O [O 4 O
Ol [O [O [O
Lol N L o
Wl w0 -
NN N N
el o el o el o el
OM| OO 4o

—
o

3
&
&

&
—@ ~ (&

o)t

Ca

el O
)

(@]

Standard Operation

Event
E‘rﬁgleRegister 15 14 13 12 11 10 9 8 7 6 5 4 3

N

¥ To Status Byte Register Bit #7

ce93a

Chapter 3 117
www.valuetronics.com

Programming the Status Register System

Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits
Bit Description
0 Unused. This bit is always set to 0.
1 Settling. A 1 in this bit position indicates that the signal generator is settling.
2 Unused. These bits are always set to 0.
3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.
4 Unused. This bit is always set to 0.
5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for
trigger” state of the trigger model.
6,7,8 Unused. These bits are always set to 0.
9 DCFM/DC@M Null in Progress. A 1 in this bit position indicates that the signal
generator is currently performing a DCFM/DC®M zero calibration.
10 Unused. This bit is always set to 0.
11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is
currently doing the necessary pre-sweep calculations.
12,13, 14, | Unused. These bits are always set to 0.
15 Always 0.
Query: STATus:OPERation:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

118

Chapter 3

www.valuetronics.com

Programming the Status Register System
Status Groups

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus:OPERation:NTRansition <value> (negative), or
STATus:OPERation:PTRansition <value> (positive), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:0OPERation:NTRansition?
STATus:OPERation:PTRansition?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read only. Reading data
from an event register clears the content of that register.

Query: STATus:OPERation[:EVENt]?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard
Operation Event Register set the summary bit (bit 7 of the Status Byte Register) to 1

Command: STATus:OPERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the
Standard Operation Status summary bit of the Status Byte Register is set to 1.
Send the command STAT: OPER:ENAB 520 (512 + 8).

Query: STATus :OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:0OPERation:ENABle <value> command.

Chapter 3 119
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Status Group

The Data Questionable Status Group is used to determine the specific event that set bit 3 in
the Status Byte Register. This group consists of the Data Questionable Condition Register,
the Data Questionable Transition Filters (negative and positive), the Data Questionable
Event Register, and the Data Questionable Event Enable Register.

Unused
Unused
Unused
Power (summary)
Temperature (Oven Cold)
Frequency (summary)

Unused
Modulation (summary)
Calibration (summary)

Selftest
Unused
Unused
Unused
Unused
Unused —m—
Always Zero (0)
_ _l Y YV Y Y Y YYVYY YV VYD
Ratm ueetonate [15 Rk f'
Eﬁé?ﬁ_eté‘es:tnable |15 1413 12 111098 7 65 4 3 2 1 o|
ransition Filter
_ I EEEEEEEEEEEEEER!
Ezgaa%fees:nable| 51413 12 111098 7 654 3 2 1 0|
ransition rilter
YV VY VY VYYYVYYVYVVYY
Data Questionable |15 14 13 12 1110 9 8 7 6 54 3 2 1 0|
y &})
(& %
&
& &
Y
FR0X

$
Data Questionable T
BVt Fegister 151413 2 1110087654321 0]

¥ To Status Byte Register Bit #3

ce94a

120 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 3-6

Data Questionable Condition Register Bits

Bit

Description

0,1,2

Unused. These bits are always set to 0.

3

Power (summary). This is a summary bit taken from the QUEStionable:POWer
register. A 1 in this bit position indicates that one of the following may have happened:
The ALC (Automatic Leveling Control) is unable to maintain a leveled RF output power
(i.e., ALC is UNLEVELED), or the reverse power protection circuit has been tripped.

Temperature (OVEN COLD). A 1 in this bit position indicates that the internal
reference oscillator (reference oven) is cold.

Frequency (summary). This is a summary bit taken from the
QUEStionable:FREQuency register. A 1 in this bit position indicates that one of the
following may have happened: synthesizer PLL unlocked, 10 MHz reference VCO PLL
unlocked, heterodyned VCO PLL unlocked, sampler, or YO loop unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 127.

Unused. This bit is always set to 0.

Modulation (summary). This is a summary bit taken from the
QUEStionable:MODulation register. A 1 in this bit position indicates that one of the
following may have happened: modulation source 1 underrange, modulation source 1
overrange, modulation source 2 underrange, modulation source 2 overrange, or
modulation uncalibrated. See the Data Questionable Modulation Status Group for more
information.

Calibration (summary). This is a summary bit taken from the
QUEStionable:CALibration register. A 1 in this bit position indicates that one of the
following may have happened: an error has occurred in the DCFM/DC®M zero
calibration or an error has occurred in the I/Q calibration. See the Data Questionable
Calibration Status Group for more information.

Self Test. A 1 in this bit position indicates that a self-test has failed during power-up.
This bit can only be cleared by cycling the signal generator’s line power. *CLS will not
clear this bit.

10, 11,
12,13, 14

Unused. These bits are always set to 0.

15

Always 0.

Chapter 3

121

www.valuetronics.com

Programming the Status Register System
Status Groups

Query: STATus:QUEStionable:CONDition?
Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus:QUEStionable:NTRansition <value> (negative), or
STATus:QUEStionable:PTRansition <value> (positive), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus :QUEStionable:NTRansition?
STATus:QUEStionable:PTRansition?
Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified
by the transition filters. Event registers are destructive read-only. Reading data from an event register
clears the content of that register.

Query: STATus:QUEStionable [:EVENt]?

122 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus:QUEStionable:ENABle <value>command where <value> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Status summary bit of the Status Byte Register is set to 1. Send the
command STAT:QUES:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:ENABle <value> command.

Chapter 3 123
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

The Data Questionable Power Status Group is used to determine the specific event that set bit
3 in the Data Questionable Condition Register. This group consists of the Data Questionable
Power Condition Register, the Data Questionable Power Transition Filters (negative and
positive), the Data Questionable Power Event Register, and the Data Questionable Power
Event Enable Register.

Unused
Unleveled
Unused

Low Band Detector Fault
Unused

Unused
Unused
Unused
Unused

Unused
Unused
Unused
Unused

Unused

Unused ——mMM ———

Always Zero (0) 7

Bata Questionable vy
ower

Condition Register 15 14 13

Data Questionable + +
Power

<

f Vv ¥
11 10

-
-
-
-«
>
-«
-
-«

— —

11 10

Positive |15 14 13

Transition Filter

Data Questionable
Power

Negative
Transition Filter

Data Questionable
Power
Event Register

v

v

|15

14

10

v

v

- [R e S
|

| 15

14

10

© (4 O [« © |4 ©
O [P | O (g O |t
N N e N e N
o4O € O 4o [«
Ul [O [O [O

N N RSN = Ny
(S0 SN NN o N
(NN SRS R
- |l = | =

O O [O 4 O

&

& {¥5
(&

&
) (g
@ X
- &
) &
&
PO L y
&
20!
Data Questionable f
Power
Event . 1514131211109876543210|
Enable Register
Y To Data Questionable Status Group Bit #3
ce95a
124 Chapter 3

www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Table 3-7 Data Questionable Power Condition Register Bits

Bit | Description

0 Unused. This bit is always set to 0.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output
power.

2 Unused. This bit is always set to 0.

3 Low Band Detector Fault. A 1 in this bit indicates that the low band coupler detector fault
has caused an error in the power level below 2 GHz.

4-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:POWer:CONDition?

Response: The decimal sum of the bits set to 1

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Commands: STATus:QUEStionable:POWer:NTRansition <value> (negative), or
STATus:QUEStionable:POWer:PTRansition <value> (positive), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus :QUEStionable:POWer:NTRansition?
STATus:QUEStionable:POWer:PTRansition?

Chapter 3 125
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition
register as specified by the transition filters. Event registers are destructive read-only.
Reading data from an event register clears the content of that register.

Query: STATus :QUEStionable:POWer [:EVENt] ?

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable
Condition Register) to 1.

Command: STATus:QUEStionable:POWer:ENABle <value>command where <value> is the
sum of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Power summary bit of the Data Questionable Condition Register is
set to 1. Send the command STAT:QUES:POW:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:POWer:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus :QUEStionable:POWer:ENABle <value> command.

126 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

The Data Questionable Frequency Status Group is used to determine the specific event that
set bit 5 in the Data Questionable Condition Register. This group consists of the Data
Questionable Frequency Condition Register, the Data Questionable Frequency Transition
Filters (negative and positive), the Data Questionable Frequency Event Register, and the
Data Questionable Frequency Event Enable Register.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked
Unused
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —mM8 —
Always Zero (0)

Data Questionablew A 4 / / r Y
Erctaer?e'i‘i‘ta‘ig%yRegister 15 14 13 12 11 10

Data Questionable + + + + + +

Frequency

-
-l
-
Bl
-
-l
-
-
-«
-

S Iy PV N

Postive [15 14 13 12 11 10 |
ransition Filter

Data Questionable + + +

Frequency [15 14 13 12 11 10 |
Negative

Transition Filter + + +

pata Questionable |15 14 13 12 11 10

Event Register

-
|
-

<_

|

—]
© 4| © (@4 © @ ©
© g © (g © |4 @ |«
N N e N e N
o 4O 4O A+ o
Ol 4 O @ O @ O
I R N S = Ny
W] W] W W
(Sl IV I D N
- e
O[] o oo

&
&

&

&

- &
Y
&
(& r‘é 4
Qo ¥
Data Questionable f
Frequency
Event . 1514131211109876543210|
Enable Register
Y To Data Questionable Status Group Bit #5
ce96a
Chapter 3 127

www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Table 3-8 Data Questionable Frequency Condition Register Bits

Bit | Description

0 Synthesizer Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.

1 10 MHz Reference Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is
unlocked.

2 1 GHz Reference Unlocked. A 1 in this bit indicates that the 1 GHz reference signal is
unlocked.

3,4 | Unused. These bits are always set to 0.

5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.

7-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:FREQuency:CONDition?

Response: The decimal sum of the bits set to 1

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in
the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus:QUEStionable:FREQuency:NTRansition <value> (negative) or
STATus:QUEStionable:FREQuency:PTRansition <value> (positive) where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:FREQuency:NTRansition?
STATus:QUEStionable:FREQuency:PTRansition?

128 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters.
Event registers are destructive read-only. Reading data from an event register clears the
content of that register.

Query: STATus :QUEStionable:FREQuency [:EVENt] ?

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the
summary bit (bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus:QUEStionable:FREQuency:ENABle <value>, where <value> is the sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Frequency summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES:FREQ:ENAB 520 (512 + 8).

Query: STATus :QUEStionable:FREQuency:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.

Chapter 3 129
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Modulation Status Group

The Data Questionable Modulation Status Group is used to determine the specific event that
set bit 7 in the Data Questionable Condition Register. This group consists of the Data
Questionable Modulation Condition Register, the Data Questionable Modulation Transition
Filters (negative and positive), the Data Questionable Modulation Event Register, and the
Data Questionable Modulation Event Enable Register.

Modulation 1 Undermod
Modulation 1 Overmod

Modulation 2 Undermod
Modulation 2 Overmod

Unused
Pulse Generator Unlocked
Internal Modulation Source Unlocked
Unused
Unused
Unused
Unused

Unused

Unused
Unused
Unused

Always Zero (0)
Data Questionable 1 Yy
Modulation | 15 14 13 12

Condition Register

Date Questionsble y_ Yy

Positive 15 14 13 12

Transition Filter

Data Questionable + + + +

Modulation
Negative 15 14 13 12

Tra%sitionFiIter + + + + +

Data Questionable
Modulation 15 14 13 12

Event Register
&
& ;¥)
&

-
-«
>
-«
-
>
-
>
-

- |la
- [
—

o ™

[— — |-

||
O [O [« O [4{ o

-
e
—
o

-
e
—
o

|
© (- © [© - ©
© g © g © g © |l
S N N N
[N S lON o KON o i)
Ol [O [U1 [O [
BN P [N SV N PR [N
W [W [W | W
N [N N
= | 2 | =

-
e
—
o

&
&
N6
-@ T ® Yy
OFN |
&
Ol oY
2O}
Data Questionable f
Modulation
Event . 1514131211109876543210|
Enable Register
Y To Data Questionable Status Group Bit #7
ce97a
130 Chapter 3

www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Table 3-9 Data Questionable Modulation Condition Register Bits

Bit | Description

0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on,
is less than 0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is
more than 1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on,
is less than 0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is
more than 1.03 volts.

4 Unused. This bit is always set to 0.

5 Pulse Generator Unlocked. 1 in this bit indicates that the internal pulse generator clock is
unlocked.

6 Internal Modulation Source Unlocked. A 1 in this bit indicates that the internal
modulation source clock is unlocked.

7-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:MODulation:CONDition?

Response: The decimal sum of the bits set to 1

Chapter 3 131
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Commands: STATus:QUEStionable:MODulation:NTRansition <value> (negative), or
STATus:QUEStionable:MODulation:PTRansition <value> (positive), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus :QUEStionable:MODulation:NTRansition?
STATus :QUEStionable:MODulation:PTRansition?

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Query: STATus:QUEStionable:MODulation[:EVENt]?

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the
Data Questionable Modulation Event Register set the summary bit (bit 7 of the Data
Questionable Condition Register) to 1.

Command: STATus:QUEStionable:MODulation:ENABle <value> command where <value>
is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Modulation summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES:MOD:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:MODulation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:MODulation:ENABle <value> command.

132 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

The Data Questionable Calibration Status Group is used to determine the specific event that
set bit 8 in the Data Questionable Condition Register. This group consists of the Data
Questionable Calibration Condition Register, the Data Questionable Calibration Transition
Filters (negative and positive), the Data Questionable Calibration Event Register, and the
Data Questionable Calibration Event Enable Register.

DCFM/DCM Zero Failure
Unused

Unused
Unused
Unused

Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused
Always Zero (0
8afal1)Quest|onable 1 A
alibration

CondltlonReglster 15 14 13 12 11

Data Questionable + + +
Calibration

Posive |15 14 13 12 11
ransition Filter

Data Questionable ‘ + + + +
Calibration |15 14 13 12 11
Negative

Transition Filter + + + + + +

Dat ti bl
Catbration 2 [15 14 13 12 11 10

Event Register

-
-«
<
-
-
hl
-
-
-
-
-
Bl

— — |

3 e 3 |«

© [© [© [© |[&

-
o
- | =

®© (g © g © |a o |
~ e N e N e
O [O [O [t o [
o1 (e 01 [e{ 01 [a— o
I = R S N
R e e K
N [D [N D

- e

ol oo ledo e

&
&

&

@

Calibration

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Enable Register

¥ To Data Questionable Status Group Bit #8

Data Questionable f
1

ce98a

Chapter 3 133
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration
status of the signal generator. Condition registers are read only.

Table 3-10 Data Questionable Calibration Condition Register Bits

Bit | Description

0 DCFM/DC®M Zero Failure. A 1 in this bit indicates that the DCFM/DC®M zero calibration
routine has failed. This is a critical error. The output of the source has no validity until the
condition of this bit is 0.

1-14 | Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Commands: STATus:QUEStionable:CALibration:NTRansition <value> (negative), or
STATus:QUEStionable:CALibration:PTRansition <value> (positive), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:CALibration:NTRansition?
STATus:QUEStionable:CALibration:PTRansition?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Query: STATus:QUEStionable:CALibration[:EVENt]?

134 Chapter 3
www.valuetronics.com

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the
Data Questionable Calibration Event Register set the summary bit (bit 8 of the Data
Questionable Condition register) to 1.

Command: STATus:QUEStionable:CALibration:ENABle <value>, where <value> is the
sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Calibration summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES: CAL:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.

Chapter 3 135
www.valuetronics.com

Programming the Status Register System
Status Groups

136 Chapter 3
www.valuetronics.com

4 Command Reference

137
www.valuetronics.com

Command Reference
Command Reference Information

Command Reference Information

SCPI Command Listings

The Table of Contents lists the PSG SCPI commands without the parameters. The SCPI
command subsystem name will generally have the first part of the command in parenthesis
that is repeated in all commands within the subsystem. The title(s) beneath the subsystem
name is the remaining command syntax. The following example demonstrates this listing:

Communication Subsystem (:SYSTem:COMMunicate)
:GPIB:ADDRess
:LAN:HOSTname

The following examples show the complete commands from the above Table of Contents
listing:

:SYSTem:COMMunicate:GPIB:ADDRess
:SYSTem:COMMunicate:LAN:HOSTname

Softkey and Hardkey Cross Reference

The index is set up so applicable softkeys and hardkeys can be cross-referenced to the
appropriate SCPI command. There are three headings in the index where the softkey or
hardkey names can be found:

¢ individual softkey or hardkey name
¢ softkey or hardkey heading

* subsystem name

Supported Signal Generator Series

Within each command section there is a Supported heading. When “All” is shown next to this
heading, this implies that all PSG series signal generators are supported by the SCPI
command. Conversely, when individual PSG series such as PSG-A are shown next to the
heading, only the listed series are supported by the command.

138 Chapter 4
www.valuetronics.com

Command Reference
SCPI Basics

SCPI Basics

This section describes the general use of the Standard Commands for Programmable
Instruments (SCPI) language for the PSG Family of signal generators. It is not intended to
teach you everything about the SCPI language; the SCPI Consortium or IEEE can provide
that level of detailed information. For a list of the specific commands available for the signal
generator, refer to the Table of Contents.

For additional information, refer to the following publications:

e [EEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation. New York, NY, 1998.

e JEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols and Command
Commands for Use with ANSI/IEEE Standard 488.1-1987. New York, NY, 1998.

Common Terms

The following terms are used throughout the remainder of this section:

Command A command is an instruction in SCPI consisting of mnemonics
(keywords), parameters (arguments), and punctuation. You
combine commands to form messages that control instruments.

Controller A controller is any device used to control the signal generator, for
example a computer or another instrument.

Event Command Some commands are events and cannot be queried. An event has
no corresponding setting. It initiates an action at a particular
time.

Program Message A program message is a combination of one or more properly

formatted commands. Program messages are sent by the
controller to the signal generator.

Query A query is a special type of command used to instruct the signal
generator to make response data available to the controller. A
query ends with a question mark. You can query any command
value that you set.

Response Message A response message is a collection of data in specific SCPI
formats sent from the signal generator to the controller.
Response messages tell the controller about the internal state of
the signal generator.

Chapter 4 139
www.valuetronics.com

Command Reference
SCPI Basics

Command Syntax

A typical command is made up of keywords prefixed with colons (:). The keywords are followed
by parameters. The following is an example syntax statement:

[:SOURce] :POWer [:LEVel] MAXimum|MINimum

In the example above, the [:1LEVel] portion of the command immediately follows the :POWer
portion with no separating space. The portion following the [:LEVel], MINimum|MAXimum, are
the parameters (argument for the command statement). There is a separating space (white
space) between the command and its parameter.

Additional conventions in syntax statements are shown in Table 4-1 and Table 4-2.

Table 4-1 Special Characters in Command Syntax
Characters | Meaning Example
| A vertical stroke between keywords or [:SOURce] :AM:

parameters indicates alterative choices. For | MOD DEEP |NORMal
parameters, the effect of the command varies

depending on the choice. DEEP or NORMal are the

choices.
[] Square brackets indicate that the enclosed [:SOURce] :FREQuency [:CW] ?
keywords or parameters are optional when
composing the command. These implied SOURce and CW are optional
keywords or parameters will be executed items.
even if they are omitted.
<> Angle brackets around a word (or words) [: SOURce] :FREQuency:

indicate they are not to be used literally in STARt <val><unit>

the command. They represent the needed In this command, the words

item. <val> and <unit> should be
replaced by the actual
frequency and unit.
:FREQuency:STARt 2.5GHZ
{} Braces indicate that parameters can [:SOURce] :LIST:
optionally be used in the command once, POWer <val>, {<val>}

several times, or not at all.
a single power listing:
LIST:POWer 5

a series of power listings:
LIST:POWer 5,10,15,20

140 Chapter 4

www.valuetronics.com

Table 4-2 Command Syntax

Command Reference
SCPI Basics

Characters, Keywords, and Syntax

Example

Upper-case lettering indicates the minimum set of
characters required for the command.

[:SOURce] :FREQuency [:CW] ?,

FREQ is the minimum requirement.

Lower-case lettering indicates the portion of the
command that is optional; it can either be included
with the upper-case portion of the command or
omitted. This is the flexible format principle called
forgiving listening. Refer to “Command Parameters
and Responses” on page 144 for more information.

:FREQuency

Either :FREQ , :FREQuency, or
:FREQUENCY is correct.

When a colon is placed between two command
mnemonics, it moves the current path down one level
in the command tree. Refer to “Command Tree” on
page 143 more information on command paths.

:TRIGger:OUTPut :POLarity?

TRIGger is the root level keyword
for this command.

If a command requires more than one parameter, you
must separate adjacent parameters using a comma.
Parameters are not part of the command path, so
commas do not affect the path level.

[:SOURce] : LIST:
DWEL1 <val>, {<val>}

A semicolon separates two commands in the same

program message without changing the current path.

:FREQ 2.5GHZ; :POW 10DBM

White space characters, such as <tab> and <space>,
are generally ignored as long as they do not occur
within or between keywords.

However, you must use white space to separate the
command from the parameter. White space does not
affect the current path.

:FREQ uency or :POWer :LEVel

are not allowed.

A <space> between :LEVel and
6.2 is mandatory .

:POWer:LEVel 6.2

Chapter 4

www.valuetronics.com

141

Command Reference
SCPI Basics

Command Types

Commands can be separated into two groups: common commands and subsystem commands.
Figure 4-1, shows the separation of the two command groups.

Common commands are used to manage macros, status registers, synchronization, and data
storage and are defined by IEEE 488.2. They are easy to recognize because they all begin with
an asterisk. For example *IDN?, *OPC, and *RST are common commands. Common commands
are not part of any subsystem and the signal generator interprets them in the same way,
regardless of the current path setting.

Subsystem commands are distinguished by the colon (:). The colon is used at the beginning of
a command statement and between keywords, as in :FREQuency[:CW?]. Each command
subsystem is a set of commands that roughly correspond to a functional block inside the
signal generator. For example, the power subsystem (:POWer) contains commands for power
generation, while the status subsystem (: STATus) contains commands for controlling status

registers.
Figure 4-1 Command Types
SCPI
COMMON SUBSYSTEM
COMMANDS COMMANDS
*RST : MEAS : VOLT ?
*IDN ? : FREQ 1KHz
ck709a
142 Chapter 4

www.valuetronics.com

Command Reference
SCPI Basics

Command Tree

Most programming tasks involve subsystem commands. SCPI uses a structure for subsystem
commands similar to the file systems on most computers. In SCPI, this command structure is
called a command tree and is shown in Figure 4-2.

Figure 4-2 Simplified Command Tree
AA
BB cC DD
I I I I
EE FF GG HH JJ
ck710a

The command closest to the top is the root command, or simply “the root.” Notice that you
must follow a particular path to reach lower level commands. In the following example,
:POWer represents AA, :ALC represents BB, : SOURce represents GG. The complete command
path is :POWer:ALC:SOURce? (:AA:BB:GQG).

Paths Through the Command Tree

To access commands from different paths in the command tree, you must understand how the
signal generator interprets commands. The parser, a part of the signal generator firmware,
decodes each message sent to the signal generator. The parser breaks up the message into
component commands using a set of rules to determine the command tree path used. The
parser keeps track of the current path (the level in the command tree) and where it expects to
find the next command statement. This is important because the same keyword may appear
in different paths. The particular path is determined by the keyword(s) in the command
statement.

A message terminator, such as a <new line> character, sets the current path to the root.
Many programming languages have output statements that automatically send message

terminators.
NOTE The current path is set to the root after the line-power is cycled or when
*RST is sent.
Chapter 4 143

www.valuetronics.com

Command Reference
SCPI Basics

Command Parameters and Responses

SCPI defines different data formats for use in program and response messages. It does this to
accommodate the principle of forgiving listening and precise talking. For more information on
program data types refer to IEEE 488.2.

Forgiving listening means the command and parameter formats are flexible.

For example, with the :FREQuency:REFerence:STATe ON|OFF |1]|0 command, the signal
generator accepts :FREQuency:REFerence:STATe ON, :FREQuency:REFerence:STATe 1,
:FREQ:REF:STAT ON, :FREQ:REF:STAT 1 to turn on the source’s frequency reference mode.

Each parameter type has one or more corresponding response data types. A setting that you
program using a numeric parameter returns either real or integer response data when
queried. Response data (data returned to the controller) is more concise and restricted and is
called precise talking.

Precise talking means that the response format for a particular query is always the same.

For example, if you query the power state (: POWer : ALC:STATe?) when it is on, the response is
always 1, regardless of whether you previously sent :POWer:ALC:STATe 1 or
:POWer:ALC:STATe ON.

Table 4-3 Parameter and Response Types
Parameter Types Response Data Types
Numeric Real, Integer
Extended Numeric Real, Integer
Discrete Discrete
Boolean Numeric Boolean
String String

Numeric Parameters

Numeric parameters are used in both common and subsystem commands. They accept all
commonly used decimal representations of numbers including optional signs, decimal points,
and scientific notation.

If a signal generator setting is programmed with a numeric parameter which can only assume
a finite value, it automatically rounds any entered parameter which is greater or less than the
finite value. For example, if a signal generator has a programmable output impedance of 50 or
75 ohms, and you specified 76.1 for the output impedance, the value is rounded to 75.

144 Chapter 4
www.valuetronics.com

Command Reference
SCPI Basics

The following are examples of numeric parameters:

100

100.

-1.23
4.56E<space>3
-7.89E-001
+256

.5

Extended Numeric Parameters

no decimal point required

fractional digits optional

leading signs allowed

space allowed after the E in exponential
use either E or e in exponential

leading plus sign allowed

digits left of decimal point optional

Most subsystems use extended numeric parameters to specify physical quantities. Extended
numeric parameters accept all numeric parameter values and other special values as well.

The following are examples of extended numeric parameters:

100
1.2GHZ
200MHZ
-100mV
10DEG

any simple numeric value

GHZ can be used for exponential (E009)
MHZ can be used for exponential (£006)
negative 100 millivolts

10 degrees

Extended numeric parameters also include the following special parameters:

DEFault
Uup

DOWN
MINimum
MAXimum

resets the parameter to its default value
increments the parameter

decrements the parameter

sets the parameter to the smallest possible value

sets the parameter to the largest possible value

Chapter 4
www.valuetronics.com

145

Command Reference
SCPI Basics

Discrete Parameters

Discrete parameters use mnemonics to represent each valid setting. They have a long and a
short form, just like command mnemonics. You can mix upper and lower case letters for
discrete parameters.

The following examples of discrete parameters are used with the command
:TRIGger [:SEQuence] : SOURce BUS|IMMediate|EXTernal.

BUS GPIB triggering
IMMediate immediate trigger (free run)
EXTernal external triggering

Although discrete parameters look like command keywords, do not confuse the two. In
particular, be sure to use colons and spaces properly. Use a colon to separate command
mnemonics from each other and a space to separate parameters from command mnemonics.

The following are examples of discrete parameters in commands:
TRIGger:SOURce BUS
TRIGger:SOURce IMMediate

TRIGger:SOURce EXTernal

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The
two-state boolean parameter has four arguments. The following list shows the arguments for
the two-state boolean paramenter:

ON boolean true, upper/lower case allowed
OFF boolean false, upper/lower case allowed
1 boolean true
0 boolean false
146 Chapter 4

www.valuetronics.com

Command Reference
SCPI Basics

String Parameters

String parameters allow ASCII strings to be sent as parameters. Single or double quotes are
used as delimiters.

The following are examples of string parameters:
'This is valid’
"This is also valid"

SO IS THIS’

Real Response Data

Real response data represent decimal numbers in either fixed decimal or scientific notation.
Most high-level programming languages that support signal generator input/output (I/0)
handle either decimal or scientific notation transparently.

The following are examples of real response data:
+4.000000E+010, —9.990000E+002
-9.990000E+002
+4.0000000000000E+010
+1
0

Integer Response Data

Integer response data are decimal representations of integer values including optional signs.
Most status register related queries return integer response data.

The following are examples of integer response data:

0 signs are optional
+100 leading + allowed
-100 leading — allowed
256 never any decimal point
Chapter 4 147

www.valuetronics.com

Command Reference
SCPI Basics

Discrete Response Data

Discrete response data are similar to discrete parameters. The main difference is that discrete
response data only return the short form of a particular mnemonic, in all upper case letters.

The following are examples of discrete response data:
IMM
EXT
INT
NEG

Numeric Boolean Response Data

Boolean response data returns a binary numeric value of one or zero.

String Response Data

String response data are similar to string parameters. The main difference is that string
response data returns double quotes, rather than single quotes. Embedded double quotes may
be present in string response data. Embedded quotes appear as two adjacent double quotes
with no characters between them.

The following are examples of string response data:
"This is a string”
"one double quote inside brackets: [""]"

"Hello!"

148 Chapter 4
www.valuetronics.com

Command Reference
SCPI Basics

Program Messages

The following commands will be used to demonstrate the creation of program messages:

[:SOURce] :FREQuency : STARt [: SOURce] :FREQuency : STOP
[:SOURce] :FREQuency [: CW] [:SOURce] :POWer [:LEVel] :OFFSet
Example 1

:FREQuency:STARt 500MHZ; STOP 1000MHZ

This program message is correct and will not cause errors; STARt and STOP are at the same
path level. It is equivalent to sending the following message:

FREQuency:STARt 500MHZ; FREQuency:STOP 1000MHZ

Example 2
:POWer 10DBM; :OFFSet 5DB

This program message will result in an error. The message makes use of the default
POWer [:LEVel] node (root command). When using a default node, there is no change to the
current path position. Since there is no command OFFSet at the root level, an error results.

The following example shows the correct syntax for this program message:

:POWer 10DBM; :POWer:0OFFSet 5DB

Example 3
:POWer :OFFSet 5DB;POWer 10DBM

This program message results in a command error. The path is dropped one level at each
colon. The first half of the message drops the command path to the lower level command
OFFSet; POWer does not exist at this level.

The POWer 10DBM command is missing the leading colon and when sent, it causes confusion
because the signal generator cannot find POWer at the POWer: OFFSet level. By adding the
leading colon, the current path is reset to the root. The following shows the correct program
message:

:POWer:0FFSet 5DB; :POWer 10DBM

Example 4
FREQ 500MHZ; POW 4DBM

In this example, the keyword short form is used. The program message is correct because it
utilizes the default nodes of :FREQ[:CW] and :POW[:LEVel]. Since default nodes do not affect
the current path, it is not necessary to use a leading colon before FREQ or POW.

Chapter 4 149
www.valuetronics.com

Command Reference
SCPI Basics

File Name Variables

File name variables, such as "<file name>", represent two formats, "<file name>" and
"<file name@file system>". The following shows the file name syntax for the two formats,
but uses "FLATCAL" as the file name in place of the variable "<file name>":

Format 1 "FLATCAL"
Format 2 "FLATCALQUSERFLAT"

Format 2 uses the file system extension (QUSERFLAT) as part of the file name syntax. Use
Format 2 when the command does not specify the file system. This generally occurs in the
Memory (:MEMory) or Mass Memory (:MMEMory) subsystems.

The following examples demonstrate a command where Format 1 applies:
Command Syntax with the file name variable
:MEMory:STORe:LIST "<file name>"
Command Syntax with the file name

:MEMory:STORe:LIST "SWEEP_1"

This command has :LIST in the command syntax. This denotes that "SweEP_1" will be saved
in the List file system as a list file type.

The following examples demonstrate a command where Format 2 applies:
Command Syntax with the file name variable
:MMEMory:COPY "<file name>", "<file name>"
Command Syntax with the file name

:MMEMory:COPY "FLATCAL@USERFLAT", "FLAT_2CAL@USERFLAT"

This command cannot distinguish which file system "FLATCAL" belongs to without the file
system extension (RQUSERFLAT). If this command were executed without the extension, the
file would not be copied.

Refer to Table 4-4 on page 185 for a listing of the file systems and types.

150 Chapter 4
www.valuetronics.com

Command Reference
SCPI Basics

MSUS (Mass Storage Unit Specifier) Variable

The variable "<msus>" enables a command to be file system specific when working with user
files. Some commands use it as the only command parameter, while others can use it in
conjunction with a file name when a command is not file system specific. When used with a
file name, it is similar to Format 2 in the “File Name Variables” on page 150. The difference is
the file system specifier (msus) occupies its own variable and is not part of the file name
syntax.

The following examples illustrate the usage of the variable "<msus>" when it is the only
command parameter:

Command Syntax with the msus variable
:MMEMory :CATalog? "<msus>"
Command Syntax with the file system

:MMEMory:CATalog? "LIST:"

The variable "<msus>" is replaced with "LIST:". When the command is executed, the output
displays only the files from the List file system.

The following examples illustrate the usage of the variable "<file name>" with the variable
"<msus>":

Command Syntax with the file name and msus variable
:MMEMory :DELete [:NAME] "<file name>", ["<msus>"]
Command Syntax with the file name and file system

:MMEMory :DELete:NAME "LIST 1","LIST:"

The command from the above example cannot discern which file system LIST_1 belongs to
without a file system specifier and will not work without it. When the command is properly
executed, LIST_1 is deleted from the List file system.

The following example shows the same command, but using Format 2 from the “File Name
Variables” on page 150:

:MMEMory:DELete:NAME "LIST 1@LIST"

When a file name is a parameter for a command that is not file system specific, either format
("<file name>", "<msus>" or "<file name@file system>") will work.

Refer to Table 4-4 on page 185 for a listing of the file systems and types.

Chapter 4 151
www.valuetronics.com

Command Reference
SCPI Basics

Quote Usage with SCPI Commands

As a general rule, programming languages require that SCPI commands be enclosed in double
quotes as shown in the following example:

":FM:EXTernal : IMPedance 600"

However, when a string is the parameter for a SCPI command, additional quotes or other
delimiters may be required to identify the string. Your programming language may use two
sets of double quotes, one set of single quotes, or back slashes with quotes to signify the string
parameter. The following examples illustrate these different formats:

"MEMory:LOAD:LIST ""myfile""" usedin BASIC programming languages
"MEMory:LOAD:LIST \"myfile\"" wusedin C, C++, Java, and PERL
"MEMory:LOAD:LIST 'myfile’" accepted by most programming languages

Consult your programming language reference manual to determine the correct format.

152 Chapter 4
www.valuetronics.com

Command Reference
SCPI Basics

Binary, Decimal, Hexadecimal, and Octal Formats

Command values may be entered using a binary, decimal, hexadecimal, or octal format. When
the binary, hexadecimal, or octal format is used, their values must be preceded with the
proper identifier. The decimal format (default format) requires no identifier and the signal
generator assumes this format when a numeric value is entered without one. The following
list shows the identifiers for the formats that require them:

¢ #B identifies the number as a binary numeric value (base-2).

e #H identifies the number as a hexadecimal alphanumeric value (base-16).

* #Q identifies the number as a octal alphanumeric value (base-8).

The following are examples of SCPI command values and identifiers for the decimal value 45:

#B101101 binary equivalent

#H2D hexadecimal equivalent
#055 octal equivalent
NOTE While the commands accept the different numeric formats, the queries will

return all values in decimal.

The following example sets the RF output power to 10 dBm (or the equivalent value for the
currently selected power unit, such as DBUV or DBUVEMF) using the hexadecimal value 000A:

:POW #HOOOA

A unit of measure, such as DBM or mv, will not work with the values when using a format other
than decimal.

Chapter 4 153
www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

IEEE 488.2 Common Commands

*CLS
Supported All

*CLS

The Clear Status (CLS) command clears the Status Byte Register, the Data
Questionable Event Register, the Standard Event Status Register, the Standard
Operation Status Register and any other registers that are summarized in the status

byte.

*RST N/A

Range N/A

Key Entry N/A

Remarks N/A
*ESE

Supported All
*ESE <data>

The Standard Event Status Enable (ESE) command sets the Standard Event Status
Enable Register.

The variable <data> represents the sum of the bits that will be enabled.
*RST N/A

Range 0-255

Key Entry N/A

Remarks The setting enabled by this command is not affected by signal
generator preset or *RST. However, cycling the signal generator power
will reset this register to zero.

Refer to “Standard Event Status Group” on page 114 and “Standard
Event Status Enable Register” on page 116 for more information.

154 Chapter 4
www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*ESE?
Supported All
*ESE?

The Standard Event Status Enable (ESE) query returns the value of the Standard Event
Status Enable Register.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “Standard Event Status Group” on page 114 and “Standard

Event Status Enable Register” on page 116 for more information.

*ESR?
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

*ESR?

The Standard Event Status Register (ESR) query returns the value of the Standard
Event Status Register.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “Standard Event Status Group” on page 114 and “Standard

Event Status Register” on page 115 for more information.

Chapter 4 155
www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*IDN?
Supported All
*IDN?

The Identification (IDN) query outputs an identifying string. The response will show the
following information:

<company name>, <model number>, <serial number>, <firmware revision>

*RST N/A

Range N/A

Key Entry Diagnostic Info

Remarks The identification information can be modified. Refer to

“SYSTem:IDN” on page 294 for more information.

*OPC
Supported All

*OPC

The Operation Complete (OPC) command sets bit 0 in the Standard Event Status
Register when all pending operations have finished.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
156 Chapter 4

www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*OPC?
Supported All
*OPC?

The Operation Complete (OPC) query returns the ASCII character 1 when all pending
operations have finished.

*RST N/A

Range N/A

Key Entry N/A

Remarks N/A
*PSC

Supported All
*PSC ON|OFF|1]|0

The Power-On Status Clear (PSC) command controls the automatic power-on clearing of
the Service Request Enable Register, the Standard Event Status Enable Register, and
device-specific event enable registers.

ON (1) This choice enables the power-on clearing of the listed registers.

OFF (0) This choice disables the clearing of the listed registers and they retain
their status when a power-on condition occurs.

*RST N/A

Choices ON OFF 1 0

Key Entry N/A

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Chapter 4 157
www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*PSC?
Supported All
*PSC?
The Power-On Status Clear (PSC) query returns the flag setting as enabled by the *PSC
command.
*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
*RCL

Supported All
*RCL <reg>, <seq>

The Recall (RCL) command recalls the signal generator’s state from the specified
memory register <reg> of the specified sequence <seq>.

*RST N/A
Range Registers: 0-99 Sequences: 0-9
Key Entry RECALL Reg Select Seq:
Remarks N/A
*RST
Supported All
*RST
The Reset (RST) command resets most signal generator functions to factory-defined
conditions.
*RST N/A
Range N/A
Key Entry N/A
Remarks Each command in this chapter shows the *RST value where the setting
is affected.
158 Chapter 4

www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*SAV
Supported All

*SAV <reg>,<seq>

The Save (SAV) command saves the state of the signal generator to the specified memory
register <reg> of the specified sequence <seq>.

*RST N/A
Range Registers: 0-99 Sequences: 0-9
Key Entry Save Reg Save Seq[n] Reg[nn]
Remarks N/A

*SRE

Supported All
*SRE <data>

The Service Request Enable (SRE) command sets the value of the Service Request
Enable Register.

The variable <val> is the decimal sum of the bits that will be enabled. Bit 6 (value 64) is
ignored and cannot be set by this command.

*RST N/A
Range 0-255
Key Entry N/A

Remarks Refer to “Generating a Service Request” on page 107, “Status Byte
Group” on page 110, and “Service Request Enable Register” on
page 112 for more information.

Entering values from 64 to 127 is equivalent to entering values from 0
to 63.

The setting enabled by this command is not affected by signal
generator preset or *RST. However, cycling the signal generator power
will reset it to zero.

Chapter 4 159
www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*SRE?
Supported All
*SRE?

The Service Request Enable (SRE) query returns the value of the Service Request
Enable Register.

*RST N/A

Range 0-63 or 128-191

Key Entry N/A

Remarks Refer to “Status Byte Group” on page 110 and “Service Request Enable

Register” on page 112 for more information.

*STB?
Supported All
*STBR?

The Read Status Bye (STB) query returns the value of the status byte including the
master summary status (MSS) bit.

*RST N/A

Range 0-255

Key Entry N/A

Remarks Refer to the “Status Byte Register” on page 111 for more information.
*TRG

Supported All
*TRG

The Trigger (TRG) command triggers the device if BUS is the selected trigger source,
otherwise, *TRG is ignored.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
160 Chapter 4

www.valuetronics.com

Command Reference
IEEE 488.2 Common Commands

*TST?
Supported All
*TST?

The Self-Test (TST) query initiates the internal self-test and returns one of the following

results:
0 This shows that all tests passed.
1 This shows that one or more tests failed.
*RST N/A
Range N/A
Key Entry Run Complete Self Test
Remarks N/A
*WAI

Supported All
*WAT

The Wait-to-Continue (WAI) command causes the signal generator to wait until all
pending commands are completed, before executing any other commands.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
Chapter 4 161

www.valuetronics.com

Command Reference
Calibration subsystem (:CALibration)

Calibration subsystem (:CALibration)

:DCFM
Supported PSG-A Series
:CALibration:DCFM

This command initiates a DCFM or DC®M calibration depending on the currently active
modulation. This calibration eliminates any dc or modulation offset of the carrier signal.

NOTE If the calibration is performed with a dc signal applied, any deviation
provided by the dc signal will be removed and the new zero reference point
will be at the applied dc level. The calibration will have to be performed
again when the dc signal is disconnected to reset the carrier signal to the
correct zero reference.

*RST N/A

Range N/A

Key Entry DCFM/DC®M Cal

Remarks Use this calibration for externally applied signals. While the

calibration can also be performed for internally generated signals, dc
offset is not a normal characteristic for them.

162 Chapter 4
www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

Communication Subsystem (:SYSTem:COMMunicate)

:GPIB:ADDRess
Supported All

:SYSTem: COMMunicate:GPIB:ADDRess <number>
:SYSTem:COMMunicate:GPIB:ADDRess?

This command sets the GPIB address of the signal generator.

*RST N/A

Range 0-30

Key Entry GPIB Address

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:LAN:HOSTname
Supported All

:SYSTem:COMMunicate:LAN:HOSTname "<string>"
:SYSTem:COMMunicate: LAN:HOSTname?

This command sets the LAN hostname for the signal generator.

*RST N/A

Range N/A

Key Entry Hostname

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Chapter 4 163
www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:LAN:IP
Supported All

:SYSTem:COMMunicate:LAN:IP "<ipstring>"
:SYSTem:COMMunicate:LAN:IP?

This command sets the LAN IP address for the signal generator.

*RST N/A

Range N/A

Key Entry IP Address

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:PMETer:ADDRess
Supported All

:SYSTem:COMMunicate:PMETer :ADDRess <0-30>
:SYSTem:COMMunicate:PMETer : ADDRess?

This command sets the address for a power meter that is controlled by the signal

generator.

*RST N/A

Range 0-30

Key Entry Meter Address

Remarks The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.
The power meter is controlled only through a GPIB cable.
Ensure that the power meter address is different from the signal
generator address.

164 Chapter 4

www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:PMETer:CHANnel
Supported All

:SYSTem:COMMunicate:PMETer :CHANnel A|B
:SYSTem:COMMunicate:PMETer :CHANnel?

This command sets the measurement channel on the power meter that is controlled by
the signal generator.

*RST N/A

Choices A B

Key Entry Meter Channel A B

Remarks A single-channel power meter uses channel A and selecting channel B

will have no effect.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

The power meter is controlled only through a GPIB cable.

:PMETer:IDN
Supported All

:SYSTem:COMMunicate:PMETer:IDN E4418B|E4419B|E4416A|E4417A
:SYSTem:COMMunicate:PMETer : IDN?

This command sets the model number of the power meter that is controlled by the signal

generator.

*RST N/A

Choices E4416A E4417A E4418B E4419B

Key Entry Power Meter

Remarks The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.
The power meter is controlled only through a GPIB cable.

Chapter 4 165

www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:PMETer:TIMEout
Supported All

:SYSTem:COMMunicate:PMETer: TIMEout <num>[<time suffix>]
:SYSTem:COMMunicate:PMETer: TIMEout ?

This command sets the period of time which the signal generator will wait for a valid
reading from the power meter.

The variable <num> has a resolution of 0.001.

*RST N/A

Range 1mS-100S

Key Entry Meter Timeout

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.
The power meter is controlled only through a GPIB cable.

If a time-out occurs, the signal generator reports an error message.

:SERial:BAUD
Supported All

:SYSTem:COMMunicate: SERial :BAUD <number>
:SYSTem:COMMunicate: SERial :BAUD?

This command sets the baud rate for the rear panel RS-232 interface (AUXILIARY

INTERFACE).
*RST N/A
Choices <number>: 300 1200 2400 4800 9600 19200 38400 57600
Key Entry RS-232 Baud Rate
Remarks The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.
166 Chapter 4

www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:ECHO
Supported All

:SYSTem: COMMunicate:SERial :ECHO ON|OFF|1]0
:SYSTem:COMMunicate: SERial :ECHO?

This command enables or disables the RS-232 echo.

*RST N/A

Choices ON OFF

Key Entry RS-232 ECHO Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:SERial:RECeive:PACE
Supported All

:SYSTem:COMMunicate:SERial :RECeive:PACE XON |NONE
:SYSTem:COMMunicate:SERial :RECeive:PACE?

This command sets XON/XOFF handshaking when the signal generator is receiving

data.

*RST N/A

Choices XON NONE

Key Entry Trans/Recv Pace None Xon

Remarks The serial receive and serial transmit commands are coupled.
Changing the choice for one will enable the same choice for the other.
Refer to “:SERial:TRANsmit:PACE” on page 169 for the serial transmit
command.
The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

Chapter 4 167

www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:RESet
Supported All
:SYSTem:COMMunicate: SERial :RESet

This event command resets the RS-232 buffer and will discard any unprocessed SCPI
input received by the RS-232 port.

*RST N/A

Range N/A

Key Entry Reset RS-232

Remarks N/A
:SERial:TOUT

Supported All

:SYSTem:COMMunicate:SERial:TOUT <val>
:SYSTem:COMMunicate: SERial : TOUT?

This command sets the value for the RS-232 serial port time-out. If further input is not
received within the assigned time-out period while a SCPI command is being processed,
the command is aborted and the input buffer is cleared.

The variable <val> is entered in units of seconds.

*RST N/A

Range 10-60

Key Entry RS-232 Timeout

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

168 Chapter 4
www.valuetronics.com

Command Reference
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:TRANsmit:PACE
Supported All

:SYSTem: COMMunicate:SERial : TRANsmit : PACE XON | NONE
:SYSTem:COMMunicate:SERial: TRANsmit :PACE?

This command sets XON/XOFF handshaking when the signal generator is transmitting

data.

*RST N/A

Choices XON NONE

Key Entry Trans/Recv Pace None Xon

Remarks The serial receive and serial transmit commands are coupled.
Changing the choice for one will enable the same choice for the other.
Refer to “:SERial:RECeive:PACE” on page 167 for the serial receive
command.
The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

Chapter 4 169

www.valuetronics.com

Command Reference
Diagnostic Subsystem (:DIAGnostic)

Diagnostic Subsystem (:DIAGnostic)

[:CPUI:LINFOrmation:BOARds
Supported All

:DIAGnostic[:CPU] : INFOrmation:BOARds?

This query returns a list of the installed boards in the signal generator. The information
will be returned in the following format:

"<board name,part number,serial number,version number,status>"

This information format will repeat with as many iterations as the number of detected
boards in the signal generator.

*RST N/A
Range N/A
Key Entry Installed Board Info
Remarks N/A

[:CPUI:INFOrmation:CCOunt:ATTenuator
Supported All

:DIAGnostic[:CPU] : INFOrmation:CCOunt :ATTenuator?

This query returns the cumulative number of times that the attenuator has been

switched.
*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A
170 Chapter 4

www.valuetronics.com

[:CPULINFOrmation:CCOunt:PON
Supported All

:DIAGnostic[:CPU] : INFOrmation:CCOunt : PON?

Command Reference
Diagnostic Subsystem (:DIAGnostic)

This query returns the cumulative number of times that the signal generator’s line

power has been cycled.

*RST N/A
Range N/A
Key Entry Diagnostic Info

Remarks N/A

[:CPULINFOrmation:DISPlay:OTIMe
Supported All

:DIAGnostic[:CPU] : INFOrmation:DISPlay:0TIMe?

This query returns the cumulative number of hours that the signal generator’s display

has been on.

*RST N/A
Range N/A
Key Entry Diagnostic Info

Remarks N/A

[:CPULINFOrmation:OPTions
Supported All

:DIAGnostic[:CPU] : INFOrmation:OPTions?

This query returns a list of internally installed signal generator options.

*RST N/A
Range N/A
Key Entry Options Info
Remarks N/A
Chapter 4 171

www.valuetronics.com

Command Reference
Diagnostic Subsystem (:DIAGnostic)

[:CPULINFOrmation:OPTions:DETail
Supported All

:DIAGnostic[:CPU] : INFOrmation:0OPTions:DETail?

This query returns the options that are installed along with the option revision and DSP

version if applicable.

*RST N/A
Range N/A
Key Entry Options Info
Remarks N/A

[:CPUI:INFOrmation:OTIMe
Supported All

:DIAGnostic[:CPU] : INFOrmation:O0TIMe?

This query returns the cumulative number of hours that the signal generator has been

on.
*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A

[:CPULINFOrmation:REVision
Supported All

:DIAGnostic[:CPU] : INFOrmation:REVision?

This query returns the revision, date, and time of the signal generator’s main firmware.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A

172
www.valuetronics.com

Command Reference
Diagnostic Subsystem (:DIAGnostic)

[:CPULILINFOrmation:SDATe

Supported All
:DIAGnostic[:CPU] : INFOrmation:SDATe?

This query returns the date and time of the signal generator’s main firmware.

*RST N/A
Range N/A
Key Entry Diagnostic Info
Remarks N/A
Chapter 4 173

www.valuetronics.com

Command Reference
Display Subsystem (:DISPlay)

Display Subsystem (:DISPlay)

:BRIGhtness
Supported All

:DISPlay:BRIGhtness <value>
:DISPlay:BRIGhtness?

This command sets the display brightness. The brightness can be set to the minimum
level (0.02), maximum level (1), or in between by using fractional numeric
values (0.03-0.99).

*RST N/A

Range 0.02-1

Key Entry Brightness

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:CAPture
Supported All
:DISPlay:CAPTure

This event command enables the user to capture the current display and store it in the
signal generator’s memory.

*RST N/A
Range N/A
Key Entry N/A
Remarks The display capture is stored as DISPLAY.BMP in the Binary file

system. This file is overwritten with each subsequent display capture.
The file can be down-loaded in the following manner:

1. Log on to the signal generator using ftp.
2. Change (cd) to the BIN directory.
3. Retrieve the file by using the get command.

174 Chapter 4
www.valuetronics.com

Command Reference
Display Subsystem (:DISPlay)

:CONTrast
Supported All

:DISPlay:CONTrast <value>
:DISPlay:CONTrast?
This command sets the contrast of the of the signal generator’s LCD display. The

contrast can be set to the maximum level (1), minimum level (0), or in between by using
fractional numeric values (0.001-0.999).

*RST N/A

Range 0-1

Key Entry Display contrast hardkeys located below the display
Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:INVerse
Supported All

:DISPlay:INVerse ON|OFF|1]0
:DISPlay:INVerse?

This command sets the display of the source to inverse video mode.

*RST N/A

Choices ON OFF 1 0

Key Entry Inverse Video Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Chapter 4 175
www.valuetronics.com

Command Reference
Display Subsystem (:DISPlay)

:REMote
Supported All

:DISPlay:REMote ON|OFF|[1]0
:DISPlay:REMote?

This command enables or disables the source’s display updating when the signal
generator is remotely controlled.

ON (1) This choice updates the signal generator display so you can see the
settings as the commands are executed, however, this will degrade the
signal generator speed.

OFF (0) This choice turns off the display updating while further optimizing the
signal generator for speed.

*RST N/A

Choices ON OFF 1 0

Key Entry Update in Remote Off On

Remarks The setting enabled by this command is not affected by signal

generator preset or *RST. However, cycling the signal generator power
will reset it to zero.

[:WINDow][:STATe]
Supported All

:DISPlay[:WINDow] [:STATe] ON|OFF |10
:DISPlay[:WINDow] [:STATe]?

This command is used to either blank out (OFF or 0) the display screen or turn it on (ON

or 1).

*RST N/A

Choices ON OFF 1 0

Key Entry N/A

Remarks The setting enabled by this command is not affected by *RST. However,
presetting the signal generator or cycling the power will turn the
display on.

176 Chapter 4

www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

Memory Subsystem :MEMory)

:CATalog:BINary
Supported All

:MEMory:CATalog:BINary?

This command outputs a list of the binary files. The return data will be in the following
form:

<mem used>, <mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file name, file type, file size>"

*RST N/A

Range N/A

Key Entry Binary

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

Chapter 4 177
www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

:CATalog:LIST
Supported All
:MEMory:CATalog:LIST?

This command outputs a list of the list sweep files. The return data will be in the
following form:

<mem used>,<mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file name,file type,file size>"

*RST N/A
Range N/A
Key Entry List
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:CATalog:STATe
Supported All

:MEMory:CATalog: STATe?

This command outputs a list of the state files. The return data will be in the following
form:

<mem used>, <mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file name, file type, file size>"

*RST N/A
Range N/A
Key Entry State
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

178 Chapter 4
www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

:CATalog:UFLT
Supported All
:MEMory:CATalog:UFLT?

This command outputs a list of the user flatness correction files. The return data will be
in the following form:

<mem used>,<mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the directory list. Each file listing parameter will be in the
following form:

"<file name,file type,file size>"

*RST N/A

Range N/A

Key Entry User Flatness

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:CATalog[:ALL]
Supported All
:MEMory:CATalog[:ALL]?

This command outputs a list of all the files in the memory subsystem. The return data
will be in the following form:

<mem used>, <mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the memory subsystem. Each file listing parameter will be in
the following form:

"<file name, file type, file size>"
*RST N/A

Range N/A

Key Entry All

Remarks Refer to Table 4-4 on page 185 for a listing of the file types and “File
Name Variables” on page 150 for information on the file name syntax.

Chapter 4 179
www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

:COPY[:NAME]
Supported All
:MEMory:COPY [:NAME] "<file name>","<file name>"

This command makes a duplicate of the requested file.

*RST N/A

Range N/A

Key Entry Copy File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:DATA
Supported All

:MEMory:DATA "<file name>",<datablock>
:MEMory:DATA? "<file name>"

This command loads <datablock> into the memory location "<file name>". The query
returns the <datablock> associated with the "<file name>".

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

180 Chapter 4
www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

:DELete:ALL
Supported All

CAUTION Using this command deletes all user files including binary, list, state, and
flatness correction files, and any saved setups which use the table editor.
You cannot recover the files after sending this command.

:MEMory:DELete:ALL

This command clears the file system of all user files.

*RST N/A

Range N/A

Key Entry Delete All Files

Remarks N/A
:DELete:BINary

Supported All
:MEMory:DELete:BINary

This command deletes all binary files.

*RST N/A
Range N/A
Key Entry Delete All Binary Files
Remarks N/A
Chapter 4 181

www.valuetronics.com

Command Reference

Memory Subsystem (:MEMory)

:DELete:LIST

Supported

All

:MEMory:DELete:LIST

This command deletes all list files.

*RST
Range
Key Entry

Remarks

:DELete:STATe

Supported

N/A
N/A
Delete All List Files
N/A

All

:MEMory:DELete:STATe

This command deletes all state files.

*RST
Range
Key Entry

Remarks

:DELete:UFLT

Supported

N/A
N/A
Delete All State Files
N/A

All

:MEMory:DELete :UFLT

This command deletes all user flatness correction files.

*RST
Range
Key Entry

Remarks

N/A
N/A
Delete All UFLT Files
N/A

182

www.valuetronics.com

Chapter 4

Command Reference
Memory Subsystem (:MEMory)

:DELete[:NAME]
Supported All

:MEMory:DELete [:NAME] "<file name>"

This command clears the user file system of "<file name>".

*RST N/A

Range N/A

Key Entry Delete File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:FREE[:ALL]
Supported All
:MEMory:FREE[:ALL]?

This command returns the number of bytes left in the user file system.

*RST N/A
Range N/A
Key Entry All
Remarks N/A
:LOAD:LIST

Supported All
:MEMory:LOAD:LIST "<file name>"

This command loads a list sweep file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A
Chapter 4 183

www.valuetronics.com

Command Reference
Memory Subsystem (:MEMory)

:MOVE
Supported All
:MEMory:MOVE "<src_file>", "<dest_file>"

This command renames the requested file in the memory catalog.

*RST N/A

Range N/A

Key Entry Rename File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:STATe:COMMent
Supported All

:MEMory:STATe:COMMent <reg_num>,<seq num>, "<comment>"
:MEMory:STATe:COMMent? <reg_num>, <seq_num>

This command allows you to add a descriptive comment to the saved state
<reg_num>,<seq_num>. Comments can be up to 55 characters long.

*RST N/A
Range N/A
Key Entry Add Comment To Seq[n] Reg[nn]
Remarks N/A
:STORe:LIST

Supported All
:MEMory:STORe:LIST "<file name>"

This command stores the current list sweep data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A
184 Chapter 4

www.valuetronics.com

Command Reference
Mass Memory Subsystem (:MMEMory)

Mass Memory Subsystem (:MMEMory)

:CATalog
Supported All

:MMEMory:CATalog? "<msus>"
This command outputs a list of the files from the specified file system.

The variable "<msus>" (mass storage unit specifier) represents "<file system>:". The file
systems and types are shown in Table 4-4.

Table 4-4
File System File Type
BINARY BIN
LIST LIST (sweep list file)
STATE STAT
USERFLAT UFLT (user flatness file)

The return data will be in the following form:
<mem used>,<mem free>{,"<file listing>"}

The signal generator will return the two memory usage parameters and as many file
listings as there are files in the specified file system. Each file listing will be in the
following format:

"<file name, file type, file size>"

*RST N/A

Range N/A

Key Entry Binary List State User Flatness

Remarks Refer to “MSUS (Mass Storage Unit Specifier) Variable” on page 151

for information on the use of the "<msus>" variable.

Chapter 4 185
www.valuetronics.com

Command Reference
Mass Memory Subsystem (:MMEMory)

:COPY
Supported All
:MMEMory :COPY "<file name>","<file name>"

This command makes a duplicate of the requested file.

*RST N/A

Range N/A

Key Entry Copy File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:DATA
Supported All

:MMEMory:DATA "<file name>", <datablock>
:MMEMory :DATA? "<file name>"

This command loads <datablock> into the memory location "<file name>". The query
returns the <datablock> associated with the "<file name>".

*RST N/A
Range N/A
Key Entry N/A

Remarks Refer to “File Name Variables” on page 150 for information on the file
name syntax.

186 Chapter 4
www.valuetronics.com

Command Reference
Mass Memory Subsystem (:MMEMory)

:DELete[:NAME]
Supported All

:MMEMory :DELete [:NAME] "<file name>", ["<msus>"]

This command clears the user file system of "<file name>" with the option of specifying
the file system separately.

The variable "<msus>" (mass storage unit specifier) represents "<file system>:". For a
list of the file systems refer to Table 4-4 on page 185.

*RST N/A

Range N/A

Key Entry Delete File

Remarks If the optional variable "<msus>" is omitted, the file name needs to

include the file system extension. Refer to “File Name Variables” on
page 150 and “MSUS (Mass Storage Unit Specifier) Variable” on
page 151 for information on the use of the file variables.

:LOAD:LIST
Supported All

:MMEMory:LOAD:LIST "<file name>"

This command loads a list sweep file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A
Chapter 4 187

www.valuetronics.com

Command Reference
Mass Memory Subsystem (:MMEMory)

:MOVE
Supported All
:MMEMory :MOVE "<src_file>", "<dest_file>"

This command renames the requested file in the memory catalog.

*RST N/A

Range N/A

Key Entry Rename File

Remarks Refer to “File Name Variables” on page 150 for information on the file

name syntax.

:STORe:LIST
Supported All

:MMEMory:STORe:LIST "<file name>"

This command stores the current list sweep data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A
188 Chapter 4

www.valuetronics.com

Command Reference
Output Subsystem(:OUTPut)

Output Subsystem(:OUTPut)

:MODulation[:STATe]
Supported PSG-A Series

:OUTPut :MODulation[:STATe] ON|OFF|1]|0
:OUTPut :MODulation[:STATe]?

This command enables or disables the modulation of the RF output with the currently
active modulation type(s).

*RST 1

Choices ON OFF 1 0

Key Entry Mod On/Off

Remarks Most modulation types can be simultaneously enabled except FM with
M.

An annunciator on the signal generator is always displayed to indicate
whether modulation is switched on or off.

[:STATe]

Supported All

:OUTPut [: STATe] ON|OFF|1]0
:OUTPut [: STATe]?

This command enables or disables the RF output.

*RST 0

Choices ON OFF 1 0

Key Entry RF On/Off

Remarks Although you can configure and engage various modulations, no signal
is available at the RF OUTPUT connector until this command is
executed.

An annunciator is always displayed on the signal generator to indicate
whether the RF output is switched on or off.

Chapter 4 189
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

Status Subsystem (:STATus)

:OPERation:CONDition
Supported All

:STATus:OPERation:CONDition?

This command returns the decimal sum of the bits for the registers that are set to one
and are part of the Standard Operation Status Group. For example, if a sweep is in
progress (bit 3), the value 8 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Condition Register” on page 118 for more
information.

The data in this register is continuously updated and reflects current
conditions.

:OPERation:ENABIle
Supported All

:STATus:0OPERation:ENABle <value>
:STATus:0OPERation:ENABRle?

This command determines what bits in the Standard Operation Event Register will set
the Standard Operation Status Summary bit (bit 7) in the Status Byte Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 and
“Standard Operation Event Enable Register” on page 119 for more
information.

190 Chapter 4

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:OPERation:NTRansition
Supported All

:STATus:0PERation:NTRansition <value>
:STATus:OPERation:NTRansition?

This command determines what bits in the Standard Operation Condition Register will
set the corresponding bit in the Standard Operation Event Register when that bit has a
negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 for more

information.

:OPERation:PTRansition
Supported All

:STATus:0OPERation:PTRansition <value>
:STATus:0OPERation:PTRansition?

This command determines what bits in the Standard Operation Condition Register will
set the corresponding bit in the Standard Operation Event Register when that bit has a
positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767
Key Entry N/A
Remarks Refer to “Standard Operation Status Group” on page 117 for more
information.
Chapter 4 191

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:OPERation[:EVENTt]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:OPERation[:EVENt]?

This command returns the decimal sum of the bits in the Standard Operation Event
Register. For example, if a sweep is in progress (bit 3), the value 8 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Standard Operation Status Group” on page 117 and
“Standard Operation Event Register” on page 119 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

:PRESet
Supported All

:STATus:PRESet

This command presets all transition filters, enable registers, and error/event queue
enable registers.

*RST N/A
Range N/A
Key Entry N/A
Remarks Refer to Table 3-2 on page 109 for the status preset register values and
types.
192 Chapter 4

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:CALibration:CONDition
Supported PSG-A Series

:STATus:QUEStionable:CALibration:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Calibration
Condition Register. For example, if the DCFM or DC®M zero calibration fails (bit 0), a
value of 1 is returned.

*RST N/A
Range 0-32767
Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Condition Register” on page 134
for more information.

The data in this register is continuously updated and reflects the
current conditions.

:QUEStionable:CALibration:ENABIle
Supported PSG-A Series

:STATus:QUEStionable:CALibration:ENABle <value>
:STATus:QUEStionable:CALibration:ENABle?

This command determines what bits in the Data Questionable Calibration Event
Register will set the calibration summary bit (bit 8) in the Data Questionable Condition

Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Event Enable Register” on
page 135 for more information.

Chapter 4 193

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:CALibration:NTRansition
Supported PSG-A Series

:STATus:QUEStionable:CALibration:NTRansition <value>
:STATus:QUEStionable:CALibration:NTRansition?

This command determines what bits in the Data Questionable Calibration Condition
Register will set the corresponding bit in the Data Questionable Calibration Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133 for
more information.

:QUEStionable:CALibration:PTRansition
Supported PSG-A Series

:STATus:QUEStionable:CALibration:PTRansition <value>
:STATus:QUEStionable:CALibration:PTRansition?

This command determines what bits in the Data Questionable Calibration Condition
Register will set the corresponding bit in the Data Questionable Calibration Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767
Key Entry N/A
Remarks Refer to “Data Questionable Calibration Status Group” on page 133 for
more information.
194 Chapter 4

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:CALibration[:EVENTt]
Supported PSG-A Series

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:QUEStionable:CALibration[:EVENt]?

This command returns the decimal sum of the bits in the Data Questionable Calibration
Event Register. For example, if the DCFM or DC®M zero calibration has failed, bit 0 will
return a value of 1.

*RST N/A
Range 0-32767
Key Entry N/A

Remarks Refer to “Data Questionable Calibration Status Group” on page 133
and “Data Questionable Calibration Event Register” on page 134 for
more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

:QUEStionable:CONDition
Supported All

:STATus:QUEStionable:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Condition
Register. For example, if the reference oscillator oven is cold (bit 4), a value of 16 is

returned.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Condition Register” on page 121 for more information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4 195
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:ENABIle
Supported All

:STATus:QUEStionable:ENABle <value>
:STATus:QUEStionable:ENABRle?

This command determines what bits in the Data Questionable Event Register will set
the Data Questionable Status Group Summary bit (bit 3) in the Status Byte Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Event Enable Register” on page 123 for more
information.

:QUEStionable:FREQuency:CONDition
Supported All

:STATus :QUEStionable:FREQuency:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Frequency
Condition Register. For example, if the 1 GHz internal reference clock is unlocked (bit 2),
a value of 4 is returned.

*RST N/A
Range 0-32767
Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Condition Register” on page 128 for
more information.

The data in this register is continuously updated and reflects current
conditions.

196 Chapter 4
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency:ENABIle

Supported All

:STATus:QUEStionable:FREQuency:ENABle <value>
:STATus:QUEStionable:FREQuency:ENABle?

This command determines what bits in the Data Questionable Frequency Event Register
will set the frequency summary bit (bit 5) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Event Enable Register” on page 129 for
more information.

:QUEStionable:FREQuency:NTRansition
Supported All

:STATus:QUEStionable:FREQuency:NTRansition <value>
:STATus:QUEStionable:FREQuency:NTRansition?

This command determines what bits in the Data Questionable Frequency Condition
Register will set the corresponding bit in the Data Questionable Frequency Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767
Key Entry N/A
Remarks Refer to “Data Questionable Frequency Status Group” on page 127 for
more information.
Chapter 4 197

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency:PTRansition
Supported All

:STATus:QUEStionable:FREQuency:PTRansition <value>
:STATus:QUEStionable:FREQuency:PTRansition?

This command determines what bits in the Data Questionable Frequency Condition
Register will set the corresponding bit in the Data Questionable Frequency Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 for
more information.

198 Chapter 4
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:FREQuency[:EVEN(t]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:QUEStionable:FREQuency [:EVENt]?

This command returns the decimal sum of the bits in the Data Questionable Frequency
Event Register. For example, if the 1 GHz internal reference clock is unlocked (bit 2), a
value of 4 is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Frequency Status Group” on page 127 and
“Data Questionable Frequency Event Register” on page 129 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.
:QUEStionable:MODulation:CONDition
Supported PSG-A Series

:STATus:QUEStionable:MODulation:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Modulation

Condition Register.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130
and “Data Questionable Modulation Condition Register” on page 131
for more information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4 199
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation:ENABIle
Supported PSG-A Series

:STATus:QUEStionable:MODulation:ENARle <value>
:STATus:QUEStionable:MODulation:ENABle?

This command determines what bits in the Data Questionable Modulation Event
Register will set the modulation summary bit (bit 7) in the Data Questionable Condition

Register.

The variable <value> is the sum of the decimal values of the bits that you want to
enable.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130
and “Data Questionable Modulation Event Enable Register” on
page 132 for more information.

:QUEStionable:MODulation:NTRansition
Supported PSG-A Series

:STATus:QUEStionable:MODulation:NTRansition <value>
:STATus:QUEStionable:MODulation:NTRansition?

This command determines what bits in the Data Questionable Modulation Condition
Register will set the corresponding bit in the Data Questionable Modulation Event
Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130 for
more information.

200 Chapter 4
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation:PTRansition
Supported PSG-A Series

:STATus:QUEStionable:MODulation:PTRansition <value>
:STATus:QUEStionable:MODulation:PTRansition?

This command determines what bits in the Data Questionable Modulation Condition
Register will set the corresponding bit in the Data Questionable Modulation Event
Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130 for
more information.

Chapter 4 201
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:MODulation[:EVEN(t]
Supported PSG-A Series

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:QUEStionable:MODulation[:EVENt]?

This command returns the decimal sum of the bits in the Data Questionable Modulation
Event Register. For example, if EXT[1] with ac-coupling is selected and the modulation is
enabled with no signal connected, a Modulation 1 Undermod condition exists (bit 0) and
a value of 1 is returned.

*RST N/A
Range 0-32767
Key Entry N/A

Remarks Refer to “Data Questionable Modulation Status Group” on page 130
and “Data Questionable Modulation Event Register” on page 132 for
more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

202 Chapter 4
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:NTRansition
Supported All

:STATus:QUEStionable:NTRansition <value>
:STATus:QUEStionable:NTRansition?

This command determines what bits in the Data Questionable Condition Register will
set the corresponding bit in the Data Questionable Event Register when that bit has a
negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Transition Filters (negative and positive)” on page 122
for more information.

:QUEStionable:POWer:CONDition
Supported All

:STATus:QUEStionable:POWer:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Power
Condition Register. For example, if the RF output signal is unleveled (bit 1), a value of 2
is returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 and
“Data Questionable Power Condition Register” on page 125 for more
information.

The data in this register is continuously updated and reflects current
conditions.

Chapter 4 203
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:POWer:ENABIle
Supported All

:STATus:QUEStionable:POWer:ENABle <value>
:STATus:QUEStionable:POWer:ENABle?

This command determines what bits in the Data Questionable Power Event Register will
set the power summary bit (bit 3) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 and
“Data Questionable Power Event Enable Register” on page 126 for
more information.

:QUEStionable:POWer:NTRansition
Supported All

:STATus:QUEStionable:POWer:NTRansition <value>
:STATus:QUEStionable:POWer:NTRansition?

This command determines what bits in the Data Questionable Power Condition Register
will set the corresponding bit in the Data Questionable Power Event Register when that
bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767
Key Entry N/A
Remarks Refer to“Data Questionable Power Status Group” on page 124 for more
information.
204 Chapter 4

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:POWer:PTRansition
Supported All

:STATus:QUEStionable:POWer:PTRansition <value>
:STATus:QUEStionable:POWer:PTRansition?

This command determines what bits in the Data Questionable Power Condition Register
will set the corresponding bit in the Data Questionable Power Event Register when that
bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767
Key Entry N/A
Remarks Refer to “Data Questionable Power Status Group” on page 124 for more
information.
Chapter 4 205

www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:POWer[:EVENLt]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:QUEStionable:POWer [:EVENt] ?

This command returns the decimal sum of the bits in the Data Questionable Power
Event Register. For example, if the RF output signal is unleveled (bit 1), a value of 2 is

returned.

*RST N/A

Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Power Status Group” on page 124 and
“Data Questionable Power Event Register” on page 126 for more
information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

206 Chapter 4
www.valuetronics.com

Command Reference
Status Subsystem (:STATus)

:QUEStionable:PTRansition
Supported All

:STATus:QUEStionable:PTRansition <value>
:STATus:QUEStionable:PTRansition?

This command determines what bits in the Data Questionable Condition Register will
set the corresponding bit in the Data Questionable Event Register when that bit has a
positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to

enable.
*RST N/A
Range 0-32767

Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Transition Filters (negative and positive)” on page 122
for more information.

:QUEStionable[:EVEN(t]
Supported All

CAUTION This is a destructive read. The data in the register is latched until it is
queried. Once queried, the data is cleared.

:STATus:QUEStionable[:EVENt]?

This command returns the decimal sum of the bits in the Data Questionable Event
Register. For example, if the signal generator has just been connected to the line power
and the reference oscillator oven is cold (bit 4), a value of 16 is returned.

*RST N/A
Range 0-32767
Key Entry N/A

Remarks Refer to “Data Questionable Status Group” on page 120 and “Data
Questionable Event Register” on page 122 for more information.

The equivalent PTR or NTR filters must be set before the condition
register can set the corresponding bit in the event register.

Chapter 4 207
www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

System Subsystem (:SYSTem)

:CAPability
Supported All
:SYSTem:CAPability?

This command queries the signal generator’s capabilities and outputs the appropriate
specifiers:

(RESOURCE WITH ((AM|FM|PULM|PM|LFO) & (FSSWEEP | FLIST) & (PSSWEEP |PLIST)
&TRIGGER&REFERENCE))

This is a list of the SCPI-defined basic functionality of the signal generator and the
additional capabilities it has in parallel (a&b) and singularly (a|b).

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
:ERRor[:NEXT]

Supported All
:SYSTem: ERRor [:NEXT] ?

This command queries the signal generator’s error queue and displays the error message
when available. If there are no error messages, the query returns the following output:

+0, "No error"

When there is more than one error message, the query will need to be sent for each

message.
*RST N/A
Range N/A
Key Entry Error Info View Next Error Message
Remarks The error messages are erased after being queried.
208 Chapter 4

www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

‘HELP:MODE
Supported All

:SYSTem: HELP :MODE SINGle|CONTinuous
:SYSTem:HELP : MODE?

This command sets the mode of the signal generator’s help function.
SINGle Help is provided only for the next key that you press.

CONTinuous Help is continuously provided for the next key and subsequent keys
you press. In addition, the key’s function is executed.

Pressing the Help hardkey in either mode, while the help dialog box is displayed, will
turn help off.

*RST N/A

Choices SINGle CONTinuous

Key Entry Help Mode Single Cont

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Chapter 4 209
www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

:PON:TYPE

Supported All

:SYSTem:PON: TYPE PRESet |LAST
:SYSTem:PON: TYPE?

This command sets the defined conditions for the signal generator at power on.

PRESet This choice sets the conditions to factory- or user-defined as determined by
the choice for the preset type. Refer to “:PRESet:TYPE” on page 212 for
selecting the type of preset.

LAST This choice retains the settings at the time the signal generator was last
powered down.

NOTE When LAST is selected, no signal generator interaction can occur for at
least 3 seconds prior to cycling the power for the current settings to be
saved.

*RST N/A

Choices PRESet LAST

Key Entry Power On Last Preset

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:PRESet
Supported All

SYSTem:PRESet

This command returns the signal generator to a set of defined conditions. It is equivalent
to pressing the front panel Preset hardkey.

*RST N/A
Range N/A
Key Entry Preset
Remarks The defined conditions are either factory- or user-defined. Refer to
“PRESet:TYPE” on page 212 for selecting the type of defined
conditions.
210 Chapter 4

www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

:PRESet:ALL
Supported All

:SYSTem:PRESet : ALL

This command sets all states of the signal generator back to their factory default
settings, including states that are not normally affected by signal generator power-on,
preset, or *RST.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

:PRESet:PERSistent
Supported All

:SYSTem:PRESet :PERSistent

This command sets the states that are not affected by signal generator power-on, preset,
or *RST to their factory default settings.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
Chapter 4 211

www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

‘PRESet:TYPE

Supported All

:SYSTem:PRESet : TYPE NORMal | USER
:SYSTem:PRESet : TYPE?

This command toggles the preset state between factory- and user-defined conditions.

*RST N/A

Choices NORMal USER

Key Entry Preset Normal User

Remarks Refer to ““PRESet[:USER]:SAVE” for saving the USER choice preset
settings.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

:PRESet[:USER]:SAVE
Supported All

:SYSTem:PRESet [:USER] : SAVE

This command saves your user-defined preset conditions to a state file.

*RST N/A

Range N/A

Key Entry Save User Preset

Remarks Only one user-defined preset file can be saved. Subsequent saved

user-defined preset files will overwrite the previously saved file.

212 Chapter 4
www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

:SSAVer:DELay
Supported All

:SYSTem:SSAVer:DELay <val>
:SYSTem: SSAVer:DELay?

This command sets the amount of time before the display light or display light and text
is switched off. This will occur if there is no input via the front panel during the delay
period.

The variable <val> is a whole number measured in hours.

*RST N/A

Range 1-12

Key Entry Screen Saver Delay:

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Refer to “:SSAVer:MODE” on page 213 for selecting the screen saver
mode.

:SSAVer:MODE
Supported All

:SYSTem: SSAVer :MODE LIGHt | TEXT
:SYSTem: SSAVer :MODE?

This command toggles the screen saver mode between light only or light and text.

LIGHT This choice enables only the light to turn off during the screen
saver operation while leaving the text visible on the darkened
screen.

TEXT This choice enables both the display light and text to turn off
during the screen saver operation.

*RST N/A

Choices LIGHt TEXT

Key Entry Screen Saver Mode

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

Chapter 4 213
www.valuetronics.com

Command Reference
System Subsystem (:SYSTem)

:SSAVer:STATe
Supported All

:SYSTem: SSAVer:STATe ON|OFF |10
:SYSTem: SSAVer:STATe?

This command enables or disables the display screen saver.

*RST N/A

Choices ON OFF 1 0

Key Entry Screen Saver Off On

Remarks The setting enabled by this command is not affected by signal

generator power-on, preset, or *RST.

:VERSion
Supported All

:SYSTem:VERSion?

This command returns the SCPI version number with which the signal generator

complies.
*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
214 Chapter 4

www.valuetronics.com

Command Reference

Trigger Subsystem

Trigger Subsystem
:ABORt

Supported All

:ABORt

This command causes the list or step sweep in progress to abort.

*RST N/A

Range N/A

Key Entry N/A

Remarks If INIT:CONT[:ALL] is set to ON, the sweep will immediately

re-initiate.

The pending operation flag affecting *OpC, *OPC?, and *WAT will
undergo a transition once the sweep has been reset.

JINITiate:CONTinuous[:ALL]

Supported All

:INITiate:CONTinuous[:ALL] ON|OFF|1|0
:INITiate:CONTinuous [:ALL]?

This command selects either a continuous or single list or step sweep.

ON (1) This choice selects continuous sweep where, after the completion of the
previous sweep, the current sweep will restart automatically or wait
until the appropriate trigger source is received.

OFF (0) This choice selects a single sweep. Refer to
“INITiate[:IMMediate][:ALL]” on page 216 for single sweep triggering

information.
*RST 0
Choices ON OFF 1 0
Key Entry Sweep Repeat Single Cont
Remarks Execution of this command will not affect a sweep in progress.
Chapter 4 215

www.valuetronics.com

Command Reference
Trigger Subsystem

:dINITiate[:IMMediate][:ALL]
Supported All

:INITiate[:IMMediate] [:ALL]
This command arms or arms and starts a single list or step sweep.

The following list demonstrates the behavior of this command:

* arms a single sweep when BUS, EXTernal, or KEY is the trigger source selection

* arms and starts a single sweep when IMMediate is the trigger source selection

*RST N/A

Range N/A

Key Entry Single Sweep

Remarks Refer to “:INITiate:CONTinuous[:ALL]” on page 215 for setting

continuous or single sweep

This command is ignored if a sweep is in progress.

TRIGger:OUTPut:POLarity
Supported All

:TRIGger:OUTPut :POLarity POSitive|NEGative
:TRIGger:0OUTPut :POLarity?

This command sets the polarity of the TTL signal present at the TRIGGER OUT

connector.

*RST POS

Choices POSitive NEGative

Key Entry Trigger Out Polarity Neg Pos

Remarks The trigger out is asserted after the frequency and/or power is set
while the sweep is waiting for its step trigger. In addition, the
swept-sine sends a pulse to the TRIGGER OUT at the beginning of
each sweep.

216 Chapter 4

www.valuetronics.com

Command Reference
Trigger Subsystem

‘TRIGger[:SEQuence]:SLOPe
Supported All

:TRIGger [:SEQuence] : SLOPe POSitive|NEGative
:TRIGger [:SEQuence] : SLOPe?

This command sets the polarity of the ramp or sawtooth waveform slope present at the
TRIGGER IN connector that will trigger a list or step sweep.

*RST POS

Choices POSitive NEGative
Key Entry Trigger In Polarity Neg Pos
Remarks N/A

‘TRIGger[:SEQuence]:SOURce
Supported All

:TRIGger [:SEQuence] : SOURce BUS|IMMediate|EXTernal |KEY
:TRIGger [:SEQuence] : SOURce?

This command sets the sweep trigger source for a list or step sweep.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks The wait for the BUS, EXTernal, or KEY trigger can be bypassed by

sending the : TRIGger [:SEQuence] [: IMMediate] command.

Chapter 4 217
www.valuetronics.com

Command Reference
Trigger Subsystem

‘TRIGger[:SEQuence][:IMMediate]
Supported All

:TRIGger|[:SEQuence] [: IMMediate]

This event command enables an armed list or step sweep to immediately start without
the selected trigger occurring.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
218 Chapter 4

www.valuetronics.com

Command Reference
Unit Subsystem (:UNIT)

Unit Subsystem (:UNIT)

:POWer
Supported All

:UNIT:POWer DBM|DBUV |DBUVEMEF |V |VEMF
:UNIT:POWer?

This command terminates an amplitude value in the selected unit of measure.

*RST DBM

Choices DBM DBUV DBUVEMF V VEMF

Key Entry dBm dBuvV dBuVemf mV uV mVemf uVemf

Remarks All power values in this chapter are shown with DBM as the unit of

measure. If a different unit of measure is selected, replace DBM with
the newly selected unit whenever it is indicated for the value.

Chapter 4 219
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

Amplitude Modulation Subsystem ([:SOURce])

:AMI[1]12...
Supported PSG-A Series

[:SOURce] :AM[1]]2...

This prefix enables the selection of the AM path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the AM Path 1 2 softkey.

AMI1] AM Path 1 2 with 1 selected
AM2 AM Path 1 2 with 2 selected

When just AM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses AM[1], only path one is
affected. Consequently, when AM2 is selected, only path two is set up. However, the
depth of the signals for the two paths can be coupled.

Depth coupling links the depth value of AM[1] to AM2. Changing the deviation value for
one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

¢ DUALsine or SWEPtsine is not the selection for the waveform type

¢ each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

220 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM:INTernal:FREQuency:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :AM: INTernal :FREQuency: STEP [: INCRement] <num>
[:SOURce] :AM: INTernal :FREQuency: STEP [: INCRement] ?

This command sets the step increment for the amplitude modulation internal frequency.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the AM frequency setting. Refer to
“AM[1]12:INTernal[1]| 2:FREQuency” on page 226 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

Chapter 4 221
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

{AM:MODE
Supported PSG-A Series

[:SOURce] :AM:MODE DEEP | NORMal
[:SOURce] : AM:MODE?

This command sets the mode for the amplitude modulation.

DEEP This choice enables the amplitude modulation depth greater dynamic
range with the ALC enabled. The minimum carrier amplitude with this
choice is =10 dBm. DEEP has no specified parameters and emulates the
amplitude modulation NORMal mode with the ALC disabled.

NORMal This choice maintains the amplitude modulation standard behavior and
has specified parameters as outlined in the data sheet.

*RST NORM

Choices DEEP NORMal

Key Entry AM Mode Normal Deep

Remarks The ALC will passively disable when the carrier amplitude is less than

—10 dBm and DEEP is the AM mode.

DEEP is limited to repetitive AM and will not work with a dc
modulation signal.

222 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:EXTernal[1] |1 2:COUPling
Supported PSG-A Series

[:SOURce] :AM[1] |2:EXTernal[1] |2:COUPling AC|DC
[:SOURce] :AM[1] |2:EXTernal[1] |2:COUPling?

This command sets the coupling for the amplitude modulation source through the
selected external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks The command does not change the currently active source or switch the

current modulation on or off. The modulating signal may be the sum of
several signals, either internal or external sources.
:AM[1]12:EXTernal[1] | 2:IMPedance
Supported PSG-A Series

[:SOURce] :AM[1] |2:EXTernal[1l] |2:IMPedance <50|600>
[:SOURce] :AM[1] |2:EXTernal[1l] | 2:IMPedance?

This commands sets the impedance for the selected external input.

*RST +5.00000000E+001
Choices 50 600
Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A
Chapter 4 223

www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:INTernal[1]:FREQuency:ALTernate
Supported PSG-A Series

[:SOURce] :AM[1] |2:INTernal [1] :FREQuency:ALTernate <val><unit>
[:SOURce] :AM[1] |2:INTernal[1l] :FREQuency:ALTernate?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.56HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry AM Tone 2 Rate AM Stop Rate

Remarks The alternate signal frequency is the second tone of a dual-sine or the

stop frequency of a swept-sine waveform.

Refer to “:AM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 227 for
the waveform selection.

:AM[1]12:INTernal[1:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[:SOURce] :AM[1]|2:INTernal [1] :FREQuency:ALTernate:AMPLitude:
PERCent <val><unit>
[:SOURce] :AM[1] |2:INTernal [1] :FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual-sine waveform as a
percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry AM Tone 2 Ampl Percent Of Peak

Remarks Refer to “:AM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

224 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[:SOURce] :AM[1] |2:INTernal [1] :SWEep:RATE <val><unit>
[:SOURce] :AM[1]|2:INTernal[l] :SWEep:RATE?

This command sets the sweep rate for the amplitude-modulated, swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry AM Sweep Rate

Remarks Refer to “:AM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

:AM[1]12:INTernal[1]:SWEep:TRIGger
Supported PSG-A Series

[:SOURce] :AM[1]|2:INTernal[1l] : SWEep:TRIGger BUS|IMMediate|EXTernal |KEY
[:SOURce] :AM[1]|2:INTernal[1l] : SWEep:TRIGger?

This command sets the trigger source for the amplitude modulated swept-sine
waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks Refer to “:AM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

Chapter 4 225
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:INTernal[1] | 2:FREQuency
Supported PSG-A Series

[:SOURce] :AM[1]|2:INTernal[1l] |2:FREQuency <val><unit>|UP |DOWN
[:SOURce] :AM[1]|2:INTernal[l] |2:FREQuency?

This command sets the internal amplitude modulation rate for the following
applications:

¢ the first tone of a dual-sine waveform
¢ the start frequency for a swept-sine waveform

¢ the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.56HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.56HZ—100kHZ
Choices <val><unit> UP DOWN
Key Entry AM Tone 1 Rate AM Start Rate AM Rate
Remarks Refer to “:AM:INTernal:FREQuency:STEP[:INCRement]” on page 221

for setting the value associated with the UP and DOWN choices.
Refer to “:AM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.
:AM[1]12:INTernal[1] | 2:FUNCtion:NOISe
Supported PSG-A Series

[:SOURce] :AM[1] |2:INTernal[1l] |2:FUNCtion:NOISe GAUSsian|UNIForm
[:SOURce] :AM[1]|2:INTernal[1l] |2:FUNCtion:NOISe?

This commands sets the noise type when NOISe is the waveform choice.

*RST UNIF

Choices GAUSsian UNIForm

Key Entry Gaussian Uniform

Remarks Refer to “:AM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” on page 227 for

the waveform selection.

226 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:INTernal[1] | 2.FUNCtion:RAMP
Supported PSG-A Series

[:SOURce] :AM[1]|2:INTernal[l] |2:FUNCtion:RAMP POSitive|NEGative
[:SOURce] :AM[1] |2:INTernal[1l] |2:FUNCtion:RAMP?

This command sets the slope type for the ramp modulated waveform.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:AM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” for the

waveform selection.

:AM[1]12:INTernal[1] | 2:FUNCtion:SHAPe
Supported PSG-A Series

[:SOURce] :AM[1]|2:INTernal[1]|2:FUNCtion:SHAPe SINE|TRIangle|SQUare |
RAMP |[NOISe |DUALsine | SWEPtsine
[:SOURce] :AM[1]|2:INTernal[1l] |2:FUNCtion:SHAPe?

This command sets the AM waveform type.

*RST SINE

Choices SINE TRIangle SQUare RAMP NOISe DUALsine SWEPtsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

Chapter 4 227
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1]12:SOURce
Supported PSG-A Series

[:SOURce] :AM[1]|2:SOURce INT[1]|INT2|EXT[1] |EXT2
[:SOURce] :AM[1] |2:SOURce?

This command sets the source to generate the amplitude modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dc-coupled.

*RST INT

Choices INT[1] INT2 EXT[1] EXT2

Key Entry Internal 1 Internal 2 Extl Ext2

Remarks A 1.0 V, input is required for calibrated AM depth settings.

The externally applied, ac-coupled input signal is tested for a voltage
level and a display annunciator will report a high or low condition if
that voltage is > 3% of 1 V,,.

:AM[1]12:STATe
Supported PSG-A Series

[:SOURce] :AM[1] |2:STATe ON|OFF|1]0
[:SOURce] :AM[1] | 2:STATe?

This command enables or disables the amplitude modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry AM Off On

Remarks The RF carrier is modulated when you have set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever amplitude modulation is enabled, the AM annunciator is
turned on in the display

The two paths for amplitude modulation can be simultaneously
enabled. Refer to “:AM[1]12...” on page 220 for more information.

228 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

[AM[1]12:TYPE
Supported PSG-A Series

[:SOURce] :AM[1]|2:TYPE LINear|EXPonential
[:SOURce] :AM[1] | 2:TYPE?

This command sets the measurement type and unit for the depth of the AM signal.
LINear This choice enables linear depth values in units of percent/volt.

EXPonential This choice enables exponential depth values in units of dB/volt.

*RST LIN

Choices LINear EXPonential
Key Entry AM Type LIN EXP
Remarks N/A

:AM[1]12[:DEPTh]:EXPonential
Supported PSG-A Series

[:SOURce] :AM[1] |2[:DEPTh] :EXPonential <val><unit>
[:SOURce] :AM[1] |2 [:DEPTh] :EXPonential?

This commands sets the depth of the AM signal in units of dB/volt.

*RST +4.00000000E+001

Range 0.00-40.00DB

Key Entry AM Depth

Remarks EXPonential must be the current measurement choice for this

command to have any affect. Refer to “:AM[1]12:TYPE” for setting the
AM measurement mode.

Chapter 4 229
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1] |1 2[:DEPTh][:LINear]
Supported PSG-A Series

[:SOURce] :AM[1] |2[:DEPTh] [:LINear] <val><unit>|UP |DOWN
[:SOURce] :AM[1] |2[:DEPTh] [:LINear]?

This commands sets the depth of the AM signal.

*RST +1.00000000E-001

Range 0.0-100PCT

Choices <val> UP DOWN

Key Entry AM Depth

Remarks LINear must be the current measurement choice for this command to

have any affect. Refer to “:AM[1]]2:TYPE” on page 229 for setting the
AM measurement mode.

When the depth values are coupled, a change made to one path is
applied to both. Refer to “:AM[1]|2[:DEPTh][:LINear]:TRACKk” on
page 231 for AM depth value coupling.

Refer to “:AM[:DEPTh]:STEP[:INCRement]” on page 232 for setting
the value associated with the UP and DOWN choices.

230 Chapter 4
www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

:AM[1] 12[:DEPTh][:LINear]:TRACk

Supported

[:SOURce]
[:SOURce]

PSG-A Series

:AM[1]|2[:DEPTh] [:LINear] :TRACk ON|OFF|1]0
:AM[1]|2[:DEPTh] [:LINear] : TRACk?

This command enables or disables the coupling of the AM depth values between the
paths (AM[1] and AM2).

ON (1) This choice will link the depth value of AM[1] with AM2; AM2 will
assume the AM[1] depth value. For example, if AM[1] depth is set to 15%
and AM2 is set to 11%, enabling the depth tracking will cause the AM2
depth value to change to 15%. This applies regardless of the path (AM[1]
or AM2) selected in this command

OFF (0) This choice disables the coupling and both paths will have independent
depth values.

*RST 0

Choices ON OFF 1 0

Key Entry AM Depth Couple Off On

Remarks When the depth values are coupled, a change made to one path is
applied to both.
LINear must be the current unit of measure choice for this command to
have any affect. Refer to “:AM[1]12:TYPE” on page 229 for setting the
AM measurement unit.

Chapter 4 231

www.valuetronics.com

Command Reference
Amplitude Modulation Subsystem ([:SOURce])

{AM[:DEPTh]:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :AM[:DEPTh] : STEP [: INCRement] <num>
[:SOURce] :AM[:DEPTh] : STEP [: INCRement] ?

This command sets the depth increment value for the LINear measurement choice.

The variable <num> sets the increment value in units of percent.

*RST N/A

Range 0.1-100

Key Entry Incr Set

Remarks Refer to “:AM[1]12:TYPE” on page 229 for setting the AM

measurement choice.

The value set by this command is used with the UP and DOWN choices
for the AM linear depth command. Refer to
“:AM[1]12[:DEPTh][:LINear]” on page 230 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

232 Chapter 4
www.valuetronics.com

Command Reference
Correction Subsystem ([:SOURce]: CORRection)

Correction Subsystem ([:SOURce]:CORRection)

:FLATness?
Supported All

[:SOURce] :CORRection:FLATness?

This command queries the user flatness correction file for the frequency and amplitude
values. The returned values will be in the following form:

<frequency>,<power correction>

The number of paired values returned will be the same as the number of correction
flatness points.

*RST N/A

Range N/A

Key Entry Configure Cal Array

Remarks N/A
:FLATness:LOAD

Supported All
[:SOURce] :CORRection:FLATness:LOAD "<file name>"

This command loads a user flatness correction file.

*RST N/A
Range N/A
Key Entry Load From Selected File
Remarks N/A
Chapter 4 233

www.valuetronics.com

Command Reference
Correction Subsystem ([:SOURce]:CORRection)

:FLATness:PAIR
Supported All

[:SOURce] :CORRection:FLATness:
PAIR <freg>[<freq suffix>],<corr>[<corr suffix>]

This command sets a frequency and amplitude correction pair.

*RST N/A
Range 20 GHz Models
Frequency: 100kHZ-20GHZ Correction (Std.): -20 to 25DB
Correction (Opt. 1E1): =135 to 25DB
40 GHz Models
Frequency: 100kHZ-40GHZ Correction (Std.): =20 to 25DB
Correction (Opt. 1E1): -135 to 25DB

Key Entry Configure Cal Array
Remarks The maximum number of points that can be entered is 1601.
:FLATness:POINts?

Supported All
[:SOURce] :CORRection:FLATness:POINts?

This command queries the signal generator for the number of points in the user flatness
correction file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
234 Chapter 4

www.valuetronics.com

Command Reference
Correction Subsystem ([:SOURce]: CORRection)

:FLATness:PRESet
Supported All

CAUTION The current correction data will be overwritten once this command is
executed. Save the current data if needed. Refer to “:FLATness:STORe”
for storing user flatness files.

[:SOURce] :CORRection:FLATness :PRESet

This command presets the user flatness correction to a factory-defined setting that
consists of one point.

*RST N/A

Range N/A

Key Entry Preset List

Remarks N/A
:FLATness:STORe

Supported All
[:SOURce] :CORRection:FLATness:STORe "<file name>"

This command stores the current user flatness correction data to a file.

*RST N/A
Range N/A
Key Entry Store To File
Remarks N/A
Chapter 4 235

www.valuetronics.com

Command Reference
Correction Subsystem ([:SOURce]:CORRection)

[:STATe]
Supported All

[:SOURce] :CORRection[:STATe] ON|OFF|1]0
[:SOURce] :CORRection[:STATe]?

This command enables or disables the user flatness corrections.

*RST 0
Choices ON OFF 1 0
Key Entry Flatness Off On
Remarks N/A
236 Chapter 4

www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

Frequency Subsystem ([:SOURce])

:FREQuency:FIXed
Supported All

[:SOURce] :FREQuency:FIXed <val><unit>
[:SOURce] :FREQuency :FIXed?

This command sets the RF output frequency.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Frequency
Remarks A frequency change may affect the current output power. Refer to

“POWer[:LEVel]l[:IMMediatel[:AMPLitude]” on page 287 for the
correct specified frequency and amplitude settings.

:FREQuency:MODE
Supported All

[:SOURce] :FREQuency :MODE CW|FIXed|LIST
[: SOURce] :FREQuency : MODE?

This command sets the frequency mode of the signal generator.

CW and FIXed These choices are synonymous with one another and they let the
signal generator operate at a fixed frequency. Refer to
“FREQuency[:CW]” on page 241 for setting the frequency.

LIST This choice lets the currently selected sweep (LIST or STEP)
frequency settings control the output frequency. Refer to
“LIST:TYPE” on page 260 for setting the sweep type.

*RST CwW
Choices CW FIXed LIST
Key Entry Frequency Freq
Remarks N/A
Chapter 4 237

www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency:MULTiplier
Supported All

[:SOURce] :FREQuency :MULTiplier <val>
[:SOURce] :FREQuency :MULTiplier?

This command sets the multiplier for the signal generator’s carrier frequency.

*RST +1

Range Negative Values: —1000 to —.001 Positive Values: .001-1000

Key Entry Freq Multiplier

Remarks For any multiplier other than one, the MULT indicator is shown in the

frequency area of the display.

:FREQuency:OFFSet
Supported All

[:SOURce] :FREQuency:OFFSet <val><unit>
[:SOURce] :FREQuency :OFFSet?

This command sets the frequency offset.

*RST +0.0000000000000E+00

Range 20 GHz Models: 0OHZ-20GHZ 40 GHz Models: 0HZ-40GHZ

Key Entry Freq Offset

Remarks A frequency offset can be entered at any time during normal operation

and when you are operating in frequency reference mode.

When an offset has been entered, the OFFS indicator is turned on in the
frequency area of the display.

The frequency offset state is turned on when any non-zero value is
entered; entering zero will turn it off. Refer to
“FREQuency:OFFSet:STATe” on page 239 for setting the offset state
independent of entering offset values.

238 Chapter 4
www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency:OFFSet:STATe
Supported All

[:SOURce] :FREQuency:OFFSet : STATe ON|OFF |10
[:SOURce] :FREQuency :OFFSet : STATe?

This command enables or disables the offset frequency.

*RST 0

Choices ON OFF 1 o0

Key Entry Freq Offset

Remarks Entering OFF (0) will set the frequency offset to 0 Hz.

:FREQuency:REFerence
Supported All

[:SOURce] :FREQuency:REFerence <val><unit>
[:SOURce] :FREQuency :REFerence?

This command sets the output reference frequency.

*RST +0.0000000000000E+00

Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Ref Set

Remarks N/A

:FREQuency:REFerence:STATe
Supported All

[:SOURce] :FREQuency:REFerence:STATe ON|OFF |10
[:SOURce] :FREQuency:REFerence: STATe?

This command enables or disables the frequency reference mode.

*RST 0

Choices ON OFF 1 0

Key Entry Freq Ref Off On

Remarks When the frequency reference mode is on, subsequent frequency

parameters are set relative to the reference value.

Chapter 4 239
www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency:STARt
Supported All

[:SOURce] :FREQuency: STARt <val><unit>
[:SOURce] :FREQuency: STARL?

This command sets the frequency start point for a step sweep.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Start
Remarks N/A
:FREQuency:STOP

Supported All

[:SOURce] :FREQuency: STOP <val><unit>
[:SOURce] :FREQuency : STOP?

This command sets the frequency stop point for a step sweep.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Freq Stop
Remarks N/A
240 Chapter 4

www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:FREQuency[:CW]
Supported All

[:SOURce] :FREQuency [:CW] <val><unit>
[:SOURce] :FREQuency [:CW] ?

This command sets the signal generator’s output frequency for the CW and FIXed
frequency modes.

*RST 20 GHz Models: +2.0000000000000E+10
40 GHz Models: +4.0000000000000E+10
Range 20 GHz Models: 100kHZ-20GHZ 40 GHz Models: 100kHZ-40GHZ
Key Entry Frequency
Remarks Refer to ““FREQuency:MODE” on page 237 for setting the frequency
type.
:PHASe:REFerence

Supported All
[:SOURce] :PHASe:REFerence

This command sets the current output phase as a zero reference.

*RST N/A

Range N/A

Key Entry Phase Ref Set

Remarks Subsequent phase adjustments are set relative to the new reference.
Chapter 4 241

www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:PHASe[:ADdJust]
Supported All

[:SOURce] :PHASe [:ADJust] <val><unit>
[:SOURce] :PHASe [:ADJust]?

This command adjusts the phase of the modulating signal.

The query will only return values in radians.

*RST +0.00000000E+000

Range Radians: —3.14 to 3.14RAD Degrees: —180 to 179DEG
Key Entry Adjust Phase

Remarks N/A

:ROSCillator:SOURce
Supported All

[:SOURce] :ROSCillator:SOURce?

This command queries the source of the signal generator’s reference oscillator. It returns
either INT (internal) or EXT (external).

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
242 Chapter 4

www.valuetronics.com

Command Reference
Frequency Subsystem ([:SOURce])

:ROSCillator:SOURce:AUTO

Supported

All except signal generators with Option UNJ

[:SOURce] :ROSCillator:SOURce:AUTO ON|OFF|1]0
[:SOURce] :ROSCillator:SOURce:AUTO?

This command enables or disables the ability of the signal generator to automatically
select between the internal and an external reference oscillator.

ON (1) This choice enables the signal generator to detect when a valid
reference signal is present at the 10 MHz IN connector and
automatically switches from internal to external frequency reference.

OFF (0) This choice selects the internal reference oscillator and disables the
switching capability between the internal and an external frequency
reference.

*RST 1
Choices ON OFF 1 0
Key Entry Ref Oscillator Source Auto Off On
Remarks N/A
Chapter 4 243

www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

Frequency Modulation Subsystem ([:SOURce])

:FM[1]12...

Supported PSG-A Series
[:SOURce] :FM[1]]2...

This prefix enables the selection of the FM path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the FM Path 1 2 softkey.

FM[1] FM Path 1 2 with 1 selected
FM2 FM Path 1 2 with 2 selected

When just FM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses FM[1], only path one is
affected. Consequently, when FM2 is selected, only path two is set up. However, the
deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of FM[1] to FM2. Changing the deviation
value for one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

¢ DUALsine or SWEPtsine is not the selection for the waveform type
¢ each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

e FM2 must be set to a deviation less than FM[1]

244 Chapter 4
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM:INTernal:FREQuency:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :FM: INTernal :FREQuency: STEP [: INCRement] <num>
[:SOURce] :FM: INTernal :FREQuency: STEP [: INCRement] ?

This command sets the step increment for the internal frequency modulation.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the FM frequency setting. Refer to
“FM[1]12:INTernal[1] | 2:FREQuency” on page 249 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

:FM[1]12:EXTernal[1] | 2:COUPLing
Supported PSG-A Series

[:SOURce] :FM[1] |2:EXTernal [1] |2:COUPling AC|DC
[:SOURce] :FM[1] |2:EXTernal[1l] |2:COUPling?

This command sets the coupling for the frequency modulation source through the
selected external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks The command does not change the currently active source or switch the

current modulation on or off. The modulating signal may be the sum of
several signals, either internal or external sources.

Chapter 4 245
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:EXTernal[1] | 2:IMPedance
Supported PSG-A Series

[:SOURce] :FM[1] |2:EXTernal[1l] | 2:IMPedance <50|600>
[:SOURce] :FM[1] |2:EXTernal[l] |2:IMPedance?

This command sets the input impedance for the selected external input.

*RST +5.00000000E+001

Choices 50 600

Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A

:FM[1]12:INTernal[1]:FREQuency:ALTernate
Supported PSG-A Series

[:SOURce] :FM[1] |2:INTernal [1] :FREQuency:ALTernate <val><unit>
[:SOURce] :FM[1]|2:INTernal [1] :FREQuency:ALTernate?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.6 HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry FM Tone 2 Rate FM Stop Rate

Remarks The alternate signal frequency is the second tone of a dual-sine or the

stop frequency of a swept-sine waveform.

Refer to “:FM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 250 for
the waveform selection.

246 Chapter 4
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[:SOURce] :FM[1]|2:INTernal [1] :FREQuency:ALTernate:AMPLitude:
PERCent <val><unit>
[:SOURce] :FM[1] |2:INTernal [1] :FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual-sine waveform as a
percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry FM Tone 2 Ampl Percent Of Peak

Remarks Refer to “:FM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

:FM[1]12:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[:SOURce] :FM[1] |2:INTernal[1l] :SWEep:RATE <val><unit>
[:SOURce] :FM[1]|2:INTernal[l] :SWEep:RATE?

This command sets the sweep rate for the swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry FM Sweep Rate

Remarks Refer to “:FM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

Chapter 4 247
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:INTernal[1]:SWEep:TRIGger
Supported PSG-A Series

[:SOURce] :FM[1]|2:INTernal[1l] :SWEep:TRIGger BUS|IMMediate|EXTernal |KEY
[:SOURce] :FM[1]|2:INTernal[1l] : SWEep:TRIGger?

This command sets the trigger source for the frequency modulated swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks Refer to “:FM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

248 Chapter 4
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:INTernal[1] | 2:.FREQuency
Supported PSG-A Series

[:SOURce] :FM[1] |2:INTernal[1l] |2:FREQuency <val><unit>|UP |DOWN
[:SOURce] :FM[1]|2:INTernal[l] |2:FREQuency?

This command sets the internal frequency modulation rate for the following
applications:

¢ the first tone of a dual-sine waveform
¢ the start frequency for a swept-sine waveform

¢ the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.56HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.56HZ-100kHZ
Choices <val><unit> UP DOWN
Key Entry FM Tone 1 Rate FM Start Rate FM Rate
Remarks Refer to “:FM:INTernal:FREQuency:STEP[:INCRement]” on page 245

for setting the value associated with the UP and DOWN choices.

Refer to “:FM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 250 for
the waveform selection.

FM[1]12:INTernal[1] | 2:FUNCtion:NOISe
Supported PSG-A Series

[:SOURce] :FM[1] |2:INTernal[1l] |2:FUNCtion:NOISe GAUSsian|UNIForm
[:SOURce] :FM[1]|2:INTernal[l] |2:FUNCtion:NOISe?

This command sets the noise type when NOISe is the waveform choice.

*RST UNIF

Choices GAUSsian UNIForm

Key Entry Gaussian Uniform

Remarks Refer to “:FM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 250 for

the waveform selection.

Chapter 4 249
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:INTernal[1] | 2:FUNCtion:RAMP
Supported PSG-A Series

[:SOURce] :FM[1]|2:INTernal[l] |2:FUNCtion:RAMP POSitive|NEGative
[:SOURce] :FM[1] |2:INTernal[1l] |2:FUNCtion:RAMP?

This command sets either a positive or negative ramp as the internally modulated

waveform.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:FM[1]12:INTernal[1] | 2:FUNCtion:SHAPe” for the

waveform selection.

:FM[1]12:INTernal[1] | 2:FUNCtion:SHAPe
Supported PSG-A Series

[:SOURce] :FM[1]|2:INTernal[1l]|2:FUNCtion:SHAPe SINE|TRIangle|SQUare |
RAMP |[NOISe |DUALsine | SWEPtsine
[:SOURce] :FM[1]|2:INTernal[1l] |2:FUNCtion:SHAPe?

This command sets the FM waveform type.

*RST SINE

Choices SINE TRIangle SQUare RAMP NOISe DUALsine SWEPTsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

250 Chapter 4
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1]12:SOURce
Supported PSG-A Series

[:SOURce] :FM[1]|2:SOURce INT[1]|INT2|EXT1|EXT2
[:SOURce] :FM[1]|2:SOURce?

This command sets the source to generate the frequency modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dc-coupled.

*RST INT

Choices INT[1] INT2 EXT1 EXT2

Key Entry Internal 1 Internal 2 Extl Ext2

Remarks The externally applied, ac-coupled input signal is tested for a voltage

level and a display annunciator will report a high or low condition if
that voltage is > 3% of 1 V,,.

:FM[1]12:STATe
Supported PSG-A Series

[:SOURce] :FM[1]|2:STATe ON|OFF|1|0
[:SOURce] :FM[1] |2:STATe?

This command enables or disables the frequency modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry FM Off On

Remarks The RF carrier is modulated when you set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever frequency modulation is enabled, the FM annunciator is
turned on in the display

The two paths for frequency modulation can be simultaneously
enabled. Refer to “:FM[1]12...” on page 244 for more information.

Chapter 4 251
www.valuetronics.com

Command Reference
Frequency Modulation Subsystem ([:SOURce])

FM[1]12[:DEViation]
Supported PSG-A Series

[:SOURce] :FM[1] |2 [:DEViation]
[:SOURce] :FM[1] |2[:DEViation]?

<val><unit>

This command sets the frequency modulation deviation.

*RST +1.00000000E+003

Range Frequency Deviation
100kHZ-250MHZ 0-1MHZ
> 250-500MHZ 0-500kHZ
> 500MHZ-1 GHZ 0-1MHZ
> 1-2GHZ 0-2MHZ
> 2-3.2GHZ 0-4MHZ
> 3.2-10GHZ 0-8MHZ
> 10-20GHZ 0-16MHZ
> 20-40GHZ 0-32MHZ

Key Entry FM DEV

Remarks If deviation tracking is ON, a change to the deviation value on one path

will apply to both. Refer to “:FM[1]] 2[:DEViation]:TRACK” on page 253
for more information and setting the deviation tracking.

252
www.valuetronics.com

Chapter 4

Command Reference
Frequency Modulation Subsystem ([:SOURce])

:FM[1] 12[:DEViation]:TRACk
Supported PSG-A Series

[:SOURce] :FM[1]|2[:DEViation] :TRACk ON|OFF|1|0
[:SOURce] :FM[1] |2[:DEViation] : TRACk?

This command enables or disables the deviation coupling between the paths (FM[1] and
Fm?2).

ON (1) This choice will link the deviation value of FM[1] with FM2; FM2 will
assume the FM[1] deviation value. For example, if FM[1] deviation is set
to 500 Hz and FM2 is set to 2 kHz, enabling the deviation tracking will
cause the FM2 deviation value to change to 500 Hz. This applies
regardless of the path (FM[1] or FM2) selected in this command

OFF (0) This choice disables the coupling and both paths will have independent
deviation values.

*RST 0
Choices ON OFF 1 o
Key Entry FM Dev Couple Off On
Remarks This command uses exact match tracking, not offset tracking.
Chapter 4 253

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

List/Sweep subsystem ([:SOURce])

:LIST:DIRection
Supported All

[:SOURce] :LIST:DIRection UP |DOWN
[:SOURce] :LIST:DIRection?

This command sets the direction of a list or step sweep.
UP This choice enables a sweep in an ascending order:
¢ first to last point for a list sweep
e start to stop for a step sweep

DOWN This choice reverses the direction of the sweep.

*RST UP
Choices UP DOWN
Key Entry Sweep Direction Down Up
Remarks N/A
254 Chapter 4

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:DWELI

Supported All

[:SOURce] :LIST:DWEL1 <val>{,<val>}
[:SOURce] :LIST:DWEL1?

This command sets the dwell time for the current list sweep points.

The variable <val> is measured in units of seconds with a 0.001 resolution.

NOTE The dwell time (<val>) does not begin until the signal generator has
settled for the current frequency and/or amplitude change. When the
signal generator has settled, a trigger signal is transmitted through the
rear panel SOURCE SETTLED OUTPUT connector.

*RST N/A
Range 0.001-60
Key Entry N/A

Remarks Dwell time is used when IMMediate is the trigger source. Refer to
“LIST:TRIGger:SOURce” on page 259 for the trigger setting.

The dwell time is the amount of time the sweep is guaranteed to pause
after setting the frequency and/or power for the current point.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.
:LIST:-DWELIL:POINts
Supported All

[:SOURce] : LIST:DWEL1:POINts?

This command queries the signal generator for the number of dwell points in the current
list sweep file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
Chapter 4 255

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:DWELL:TYPE

Supported All

[:SOURce] :LIST:DWEL1:TYPE LIST|STEP
[:SOURce] : LIST:DWEL1:TYPE?

This command toggles the dwell time for the list sweep points between the values
defined in the list sweep and the value for the step sweep.

LIST This choice selects the dwell times from the list sweep. Refer to
“LIST:-DWELI” on page 255 for setting the list dwell points.

STEP This choice selects the dwell time from the step sweep. Refer to
“SWEep:DWELI” on page 262 for setting the step dwell.

*RST LIST

Choices LIST STEP

Key Entry Dwell Type List Step

Remarks N/A
:LIST:FREQuency

Supported All

[:SOURce] :LIST:FREQuency <val>{,<val>}
[:SOURce] : LIST:FREQuency?

This command sets the frequency values for the current list sweep points.

The variable <val> is measured in units of hertz.

*RST N/A
Range 20 GHz Models: 100E3-20E9 40 GHz Models: 100E3-40E9

Key Entry N/A

Remarks The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

256 Chapter 4
www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:FREQuency:POINts
Supported All

[:SOURce] :LIST:FREQuency:POINts?

This command queries the current list sweep file for the number of frequency points.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A
:LIST:MANual

Supported All

[:SOURce] : LIST:MANual <val>
[:SOURce] : LIST:MANual®?

This command sets a list or step sweep point as the current sweep point controlling the
frequency and power output.

*RST N/A

Range 1-1601

Key Entry Manual Point

Remarks If list or step mode is controlling frequency and/or power, then the

indexed point in the respective list(s) will be used.

Entering a value with this command will have no effect, unless
MANual is the selected mode. Refer to “:LIST:MODE” on page 258 for
setting the proper mode.

If the point selected is beyond the length of the longest enabled list,
then the point will be set to the maximum possible point, and an error
will be generated.

Chapter 4 257
www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:MODE

Supported All

[:SOURce] :LIST:MODE AUTO|MANual
[:SOURce] : LIST :MODE?

This command sets the operating mode for the current list or step sweep.

AUTO This choice enables the selected sweep type to perform a sweep of all
points.

MANual This choice enables you to select a sweep point which controls the
frequency and/or amplitude according to the sweep type. Refer to
“LIST:MANual” on page 257 for selecting a sweep point

*RST AUTO

Choices AUTO MANual

Key Entry Manual Mode Off On

Remarks N/A
:LIST:POWer

Supported All

[:SOURce] :LIST:POWer <val>{,<val>}
[:SOURce] : LIST:POWer?

This command sets the amplitude for the current list sweep points.
*RST N/A

Range Refer to ““POWer[:LEVel][:IMMediate][:AMPLitude]” on page 287 for
output power ranges.

Key Entry N/A

Remarks The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

During an amplitude sweep operation, signal generators with Option
1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB. The 45 dB sweep range can be moved by inputting different
power levels.

258 Chapter 4
www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:POWer:POINts
Supported All

[:SOURce] : LIST:POWer :POINts?

This command queries the number of power points in the current list sweep file.

*RST N/A
Range N/A
Key Entry N/A
Remarks N/A

:LIST:TRIGger:SOURce
Supported All

[:SOURce] : LIST:TRIGger:SOURce BUS|IMMediate|EXTernal |KEY
[:SOURce] : LIST:TRIGger : SOURce?

This command sets the point trigger source for a list or step sweep event.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks N/A
Chapter 4 259

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:LIST:TYPE
Supported All

[:SOURce] :LIST:TYPE LIST|STEP
[:SOURce] : LIST:TYPE?

This command toggles between the two types of sweep.

*RST STEP

Choices LIST STEP

Key Entry Sweep Type List Step
Remarks N/A

:LIST:TYPE:LIST:INITialize:FSTep
Supported All

CAUTION The current list sweep data will be overwritten once this command is
executed. If needed, save the current data. Refer to “:STORe:LIST” on
page 184 for storing list sweep files.

[:SOURce] :LIST:TYPE:LIST:INITialize:FSTep

This command replaces the loaded list sweep data with the settings from the current
step sweep data points.

*RST N/A
Range N/A
Key Entry Load List From Step Sweep
Remarks You can have only one sweep list at a time.
260 Chapter 4

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

LIST:TYPE:LIST:INITialize:PRESet

Supported All

CAUTION The current list sweep data will be overwritten once this command is
executed. If needed, save the current data. Refer to “:STORe:LIST” on
page 188 for storing list sweep files.

[:SOURce] :LIST:TYPE:LIST:INITialize:PRESet

This command replaces the current list sweep data with a factory-defined file consisting
of one point at a frequency, amplitude, and dwell time.

*RST N/A
Range N/A
Key Entry Preset List
Remarks N/A
Chapter 4 261

www.valuetronics.com

Command Reference
List/Sweep subsystem ([:SOURce])

:SWEep:DWELI
Supported All

[:SOURce] : SWEep:DWEL1 <val>
[:SOURce] : SWEep :DWEL1?

This command enables you to set the dwell time for a step sweep.

The variable <val> is measured in units of seconds with a 0.001 resolution.

NOTE The dwell time (<val>) does not begin until the signal generator has
settled for the current frequency and/or amplitude change. When the
signal generator has settled, a trigger signal is transmitted through the
rear panel SOURCE SETTLED OUTPUT connector.

*RST +2.00000000E-003

Range 0.001-60

Key Entry Step Dwell

Remarks Dwell time is used when the trigger source is set to IMMediate. Refer

to “:LIST:TRIGger:SOURce” on page 259 for the trigger setting.

The dwell time is the amount of time the sweep is guaranteed to pause
after setting the frequency and/or power for the current point.

:SWEep:POINts

Supported All

[:SOURce] : SWEep:POINts <val>
[:SOURce] : SWEep:POINts?

This command enables you to define the number of points in a step sweep.

*RST 2
Range 2-1601
Key Entry # Points
Remarks N/A
262 Chapter 4

www.valuetronics.com

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:AMPLitude
Supported PSG-A Series

[:SOURce] : LFOutput :AMPLitude <val><unit>
[:SOURce] :LFOutput : AMPLitude?

This command sets the amplitude for the signal at the LF OUTPUT connector.

*RST 0.00

Range 0.000VP-3.5VP

Key Entry LF Out Amplitude Into 50 Ohms
Remarks N/A

:FUNCtion[1:FREQuency:ALTernate
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] :FREQuency:ALTernate <val><unit>
[:SOURce] :LFOutput : FUNCtion[1l] :FREQuency:ALTernate?

This command sets the frequency for the alternate LF output signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.6 HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry LF Out Tone 2 Freq LF Out Stop Freq

Remarks The alternate frequency is the second tone of a dual-sine or the stop

frequency of a swept-sine waveform.

Refer to ““FUNCtion[1]]2:SHAPe” on page 266 for selecting the
waveform type.

Chapter 4 263
www.valuetronics.com

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] :FREQuency:ALTernate:AMPLitude:
PERCent <val><unit>
[:SOURce] : LFOutput : FUNCtion[1] :FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual-sine waveform as a
percentage of the total LF output amplitude. For example, if the second tone makes up
30% of the total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry LF Out Tone 2 Ampl % of Peak

Remarks Refer to “:FUNCtion[1]]2:SHAPe” on page 266 for selecting the

waveform type.

:FUNCtion[1]:SWEep:RATE
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] : SWEep:RATE <val><unit>
[:SOURce] :LFOutput :FUNCtion[1l] : SWEep:RATE?

This command sets the sweep rate for an internally generated swept-sine signal at the

LF output.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry LF Out Sweep Rate

Remarks Refer to “:FUNCtion[1]]2:SHAPe” on page 266 for selecting the

waveform type.

264 Chapter 4
www.valuetronics.com

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1]:SWEep:TRIGger
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] : SWEep:TRIGger BUS|IMMediate|EXTernal |[KEY
[:SOURce] :LFOutput :FUNCtion[1l] : SWEep: TRIGger?

This command sets the trigger source for the internally generated swept-sine waveform
signal at the LF output.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks Refer to “:FUNCtion[1]12:SHAPe” on page 266 for selecting the

waveform type.

Chapter 4 265
www.valuetronics.com

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion[1] | 2:FREQuency
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] | 2:FREQuency <val><unit>
[:SOURce] : LFOutput : FUNCtion[1l] | 2 :FREQuency?

This command sets the internal modulation frequency for the following applications:
¢ the first tone of a dual-sine waveform
¢ the start frequency for a swept-sine waveform

¢ the frequency rate for all other waveforms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.56HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.5HZ-100kHZ
Key Entry LF Out Tone 1 Freq LF Out Start Freq LF Out Freq
Remarks Refer to ““FUNCtion[1]|2:SHAPe” for selecting the waveform type.

:FUNCtion[1] | 2:SHAPe
Supported PSG-A Series

[:SOURce] :LFOutput : FUNCtion[1l] | 2:SHAPe SINE|DUALsine|SWEPtsine|TRIangle|
SQUare | RAMP | NOISe |DC
[:SOURce] : LFOutput : FUNCtion[1] | 2: SHAPe?

This command sets the waveform type for the generated signal at the LF output.

*RST SINE

Choices SINE DUALsine SWEPTsine TRIangle SQUare RAMP
NOISe DC

Key Entry Sine Dual-Sine Swept-Sine Triangle Square Ramp NOISe
DC

Remarks FUNCtion2 does not support the DUALSsine or the SWEPtsine
waveforms.

266 Chapter 4

www.valuetronics.com

Command Reference
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:FUNCtion:NOISe
Supported PSG-A Series

[:SOURce] :LFOutput :FUNCtion[1l] | 2:SHAPe:NOISe UNIForm|GAUSsian
[:SOURce] : LFOutput : FUNCtion[1] | 2:SHAPe:NOISe?

This command sets the noise type at the LF output when NOISe is the selected

waveform.

*RST UNIF

Choices UNIForm GAUSsian

Key Entry Uniform Gaussian

Remarks Refer to “:FUNCtion[1]12:SHAPe” on page 266 for selecting the

waveform type.

:FUNCtion[1]|2:SHAPe:RAMP
Supported PSG-A Series

[:SOURce] : LFOutput : FUNCtion[1] | 2SHAPe:RAMP POSitive |NEGative
[:SOURce] : LFOutput : FUNCtion[1l] | 2SHAPe :RAMP?

This command sets the slope type for the ramp waveform at the LF output.

*RST POS

Choices POSitive NEGative

Key Entry Positive Negative

Remarks Refer to “:FUNCtion[1]|2:SHAPe” on page 266 for selecting the

waveform type.

Chapter 4 267
www.valuetronics.com

Command Reference

Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:SOURce

Supported

PSG-A Series

[:SOURce] :LFOutput : SOURce INT[1] |INT2|FUNCtion[1l] |FUNCtion2
[:SOURce] : LFOutput : SOURce?

This command sets the low frequency source for the LF output.

INT

FUNCtion
*RST

Choices

Key Entry

Remarks

:STATe

Supported

This choice enables you to output a signal where the frequency and
shape of the signal is set by the internal source as it is being used by a
modulation. For example, if the internal source is currently assigned to
an AM path configuration and AM is turned on, the signal output at
the LF OUTPUT connector will have the frequency and shape of the
amplitude modulating signal.

This choice enables the selection of an internal function generator.
INT

INT[1] INT2 FUNCtion[1l] FUNCtion2

Internal 1 Monitor Internal 2 Monitor Function Generator 1

Function Generator 2

Any active modulation using an internal source is turned off when
FUNCtion[1] or FUNCtion2 is selected.

PSG-A Series

[:SOURce] :LFOutput : STATe ON|OFF|1]0
[:SOURce] : LFOutput : STATe?

This command enables or disables the low frequency output.

*RST

Choices
Key Entry

Remarks

0

ON OFF 1 0
LF Out Off On
N/A

268

Chapter 4

www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

Phase Modulation subsystem ([:SOURce])

:PM[1]12...

Supported PSG-A Series
[:SOURce] :PM[1]]2...

This prefix enables the selection of the ®M path and is part of most SCPI commands
associated with this subsystem. The two paths are equivalent to the ®M Path 1 2 softkey.

PM[1] ®M Path 1 2 with 1 selected
PM2 ®M Path 1 2 with 2 selected

When just PM is shown in a command, this means the command applies globally to both
paths.

Each path is set up separately. When a SCPI command uses PM[1], only path one is
affected. Consequently, when PM2 is selected, only path two is set up. However, the
deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of PM[1] to PM2. Changing the deviation
value for one path will change it for the other path.

These two paths can be on at the same time provided the following conditions have been
met:

¢ DUALsine or SWEPtsine is not the selection for the waveform type
¢ each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

¢ PM2 must be set to a deviation less than or equal to PM[1]

Chapter 4 269
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM:INTernal:FREQuency:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :PM: INTernal :FREQuency: STEP [: INCRement] <num>
[:SOURce] :PM: INTernal :FREQuency: STEP [: INCRement] ?

This command sets the step increment for the phase modulation internal frequency.

The variable <num> sets the entered value in units of hertz.

*RST N/A

Range 0.5-1E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the ®M frequency command. Refer to
“PM[1]12:INTernal[1] | 2:FREQuency” on page 274 for more
information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

:PM[1]12:BANDwidth | BWIDth
Supported PSG-A Series

[:SOURce] :PM[1] | 2:BANDwidth |BWIDth NORMal | HIGH
[:SOURce] :PM[1] | 2:BANDwidth |BWIDth?

This command toggles between normal phase modulation and high bandwidth phase
modulation mode.

*RST NORM
Choices NORMal HIGH
Key Entry FM ®M Normal High BW
Remarks N/A
270 Chapter 4

www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:EXTernal[1]12:COUPling
Supported PSG-A Series

[:SOURce] :PM[1] |2:EXTernal[1]]|2:COUPling AC|DC
[:SOURce] :PM[1] |2:EXTernal[1l] |2:COUPling?

This command sets the coupling for the phase modulation source through the selected
external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Choices AC DC
Key Entry Ext Coupling DC AC
Remarks This command does not change the currently active source or switch

the current modulation on or off. The modulating signal may be the
sum of several signals, either internal or external sources.

PM[1]12:EXTernal[1]12:IMPedance

Supported PSG-A Series

[:SOURce]:PM[1]12:EXTernal[1] | 2:IMPedance <50 | 600>
[:SOURcel:PM[1] 1 2:EXTernal[1] | 2:IMPedance?

This command sets the input impedance for the selected external input.

*RST +5.00000000E+001
Choices 50 600
Key Entry Ext Impedance 50 Ohm 600 Ohm
Remarks N/A
Chapter 4 271

www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:INTernal[1]:FREQuency:ALTernate
Supported PSG-A Series

[:SOURce] :PM[1] |2:INTernal [1] :FREQuency:ALTernate <val><unit>
[:SOURce] :PM[1]|2:INTernal[1l] :FREQuency:ALTernate?

This command sets the frequency for the alternate signal.

*RST +4.00000000E+002

Range Dual-Sine: 0.6HZ-1MHZ Swept-Sine: 1HZ-1MHZ

Key Entry ®M Stop Rate @M Tone 2 Rate

Remarks The alternate frequency is the second tone of a dual-sine or the stop

frequency of a swept-sine waveform.

Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for
the waveform selection.

:PM[1]12:INTernal[1:FREQuency:ALTernate:AMPLitude:PERCent
Supported PSG-A Series

[:SOURce] :PM[1]|2:INTernal [1] :FREQuency:ALTernate:AMPLitude:
PERCent <val><unit>
[:SOURce] :PM[1]|2:INTernal [1] :FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for the dual-sine waveform as a
percentage of the total amplitude. For example, if the second tone makes up 30% of the
total amplitude, then the first tone is 70% of the total amplitude.

*RST +5.00000000E+001

Range 0-100PCT

Key Entry ®M Tone 2 Ampl Percent of Peak

Remarks Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

272 Chapter 4
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:INTernal[1]:SWEep:RATE
Supported PSG-A Series

[:SOURce] :PM[1] |2:INTernal [1] :SWEep:RATE <val><unit>
[:SOURce] :PM[1] |2:INTernal[l] :SWEep:RATE?

This command sets the sweep rate for a phase-modulated, swept-sine waveform.

The variable <val> has a minimum resolution of 0.5 hertz.

*RST +4.00000000E+002

Range 0.5HZ-100kHZ

Key Entry ®M Sweep Rate

Remarks Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

:PM[1]12:INTernal[1]:SWEep:TRIGger
Supported PSG-A Series

[:SOURce] :PM[1]|2:INTernal[1l]:SWEep:TRIGger BUS|IMMediate|EXTernal |KEY
[:SOURce] :PM[1]|2:INTernal[1l] :SWEep:TRIGger?

This command sets the trigger source for the phase-modulated, swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or
LAN triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally
applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by
pressing the Trigger hardkey.
*RST IMM
Choices BUS IMMediate EXTernal KEY
Key Entry Bus FreeRun Ext Trigger Key
Remarks Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

Chapter 4 273
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:INTernal[1] | 2:FREQuency
Supported. PSG-A Series

[:SOURce] :PM[1]|2:INTernal[l] |2:FREQuency <val><unit>|UP |DOWN
[:SOURce] :PM[1]|2:INTernal[l] |2:FREQuency?

This command sets the internal modulation frequency rate for the following
applications:

¢ the first tone of a dual-sine waveform
¢ the start frequency for a swept-sine waveform

¢ the frequency rate for all other wave forms

*RST +4.00000000E+002
Range Dual-Sine & Sine: 0.5 HZ-1MHZ Swept-Sine: 1HZ-1MHZ
All Other Waveforms: 0.56HZ—100kHZ
Choices <val><unit> UP DOWN
Key Entry ®M Tone 1 Rate ®M Start Rate ®M Rate
Remarks Refer to “:PM:INTernal:FREQuency:STEP[:INCRement]” on page 270

for setting the value associated with the UP and DOWN choices.

Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for
the waveform selection.

:PM[1]12:INTernal[1] | 2:2FUNCtion:NOISe
Supported PSG-A Series

[:SOURce] :PM[1] |2:INTernal[1l] |2:FUNCtion:NOISe GAUSsian|UNIForm
[:SOURce] :PM[1] |2:INTernal[1l] |2:FUNCtion:NOISe?

This command sets the noise type when NOISe is the waveform choice.

*RST UNIF

Choices GAUSsian UNIForm

Key Entry Gaussian Uniform

Remarks Refer to “:PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” on page 275 for

the waveform selection.

274 Chapter 4
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:INTernal[1] | 2:FUNCtion:RAMP
Supported PSG-A Series

[:SOURce] :PM[1] |2:INTernal[1l] |2:FUNCtion:RAMP POSitive|NEGative
[:SOURce] :PM[1] |2:INTernal[1l] |2:FUNCtion:RAMP?

This command specifies the slope type for the ramp-modulated waveform.

*RST POS

Key Entry Positive Negative

Choices POSitive NEGative

Remarks Refer to ““PM[1]12:INTernal[1]| 2:FUNCtion:SHAPe” for the

waveform selection.

PM[1]12:INTernal[1] | 2:FUNCtion:SHAPe
Supported PSG-A Series

[:SOURce] :PM[1]|2:INTernal[1]|2:FUNCtion:SHAPe SINE|TRIangle|SQUare |
RAMP |[NOISe|DUALsine | SWEPtsine
[:SOURce] :PM[1]|2:INTernal[l] |2:FUNCtion:SHAPe?

This command sets the phase modulation waveform type.

*RST SINE

Choices SINE TRIangle SQUare RAMP NOISe DUALsine SWEPTsine
Key Entry Sine Triangle Square Ramp Noise Dual-Sine Swept-Sine
Remarks The INTernal2 source selection does not support the DUALsine and

SWEPtsine waveform choices.

Chapter 4 275
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12:SOURce
Supported PSG-A Series

[:SOURce] :PM[1]|2:SOURce INT[1]|INT2|EXT1|EXT2
[:SOURce] :PM[1]|2:SOURce?

This command sets the source to generate the phase modulation.
INT This choice selects internal source 1 or 2 to provide an ac-coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to
provide an externally applied signal that can be ac- or dec-coupled.

*RST INT

Choices INT[1] INT2 EXT1 EXT2

Key Entry Internal 1 Internal 2 Extl Ext2

Remarks The externally applied, ac-coupled input signal is tested for a voltage

level and a display annunciator will report a high or low condition if
that voltage is > +3% of 1 V,,.

PM[1]12:STATe

Supported PSG-A Series

[:SOURce] :PM[1]|2:STATe ON|OFF|1|0
[:SOURce] :PM[1] |2:STATe?

This command enables or disables the phase modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry ®M Off On

Remarks The RF carrier is modulated when you set the signal generator’s

modulation state to ON, see “:MODulation[:STATe]” on page 189 for
more information.

Whenever phase modulation is enabled, the ®M annunciator is turned
on in the display

The two paths for phase modulation can be simultaneously enabled.
Refer to “:PM[1]12...” on page 269 for more information.

276 Chapter 4
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12[:DEViation]
Supported PSG-A Series

[:SOURce] :PM[1] |2[:DEViation] <val><unit>|UP |DOWN
[:SOURce] :PM[1] |2[:DEViation]?

This command sets the deviation of the phase modulation.

The variable <unit> will accept RAD (radians), PIRAD (pi-radians), and DEG (degrees);
however, the query will only return values in radians.

*RST +0.00000000E+000
Range Frequency Normal Bandwidth High Bandwidth
100kHZ-250MHZ 0-10RAD 0-1RAD
> 250-500MHZ 0-5RAD 0-0.5RAD
> 500MHZ-1GHZ 0-10RAD 0-1RAD
> 1-2GHZ 0-20RAD 0-2RAD
> 2-3.2GHZ 0-40RAD 0—4RAD
> 3.2-10GHZ 0-80RAD 0-8RAD
> 10-20GHZ 0-160RAD 0-16RAD
> 20-40GHZ 0-320RAD 0-32RAD
Choices <val><unit> UP DOWN
Key Entry ®M Dev
Remarks If deviation tracking is active, a change to the deviation value on one
path will apply to both.

Refer to “:PM[:DEViation]:STEP[:INCRement]” on page 278 for setting
the value associated with the UP and DOWN choices.

Chapter 4 277
www.valuetronics.com

Command Reference
Phase Modulation subsystem ([:SOURce])

:PM[1]12[:DEViation]:TRACk
Supported PSG-A Series

[:SOURce] :PM[1] |2[:DEViation] :TRACk ON|OFF|1]0
[:SOURce] :PM[1] |2[:DEViation] : TRACk?

This command enables or disables the deviation coupling between the paths (PM[1] and
PM2).

ON (1) This choice will link the deviation value of PM[1] with PM2; PM2 will
assume the PM[1] deviation value. For example, if PM[1] deviation is set
to 500 Hz and PM2 is set to 2 kHz, enabling the deviation tracking will
cause the PM2 deviation value to change to 500 Hz. This applies
regardless of the path (PM[1] or PM2) selected in this command.

OFF (0) This choice disables the coupling and both paths will have independent
deviation values.

*RST 0

Choices ON OFF 1 o

Key Entry ®M Dev Couple Off On

Remarks This command uses exact match tracking, not offset tracking.

:PM[:DEViation]:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :PM[:DEViation] : STEP [: INCRement] <num>
[:SOURce] :PM[:DEViation] : STEP [: INCRement] ?

This command sets the phase modulation deviation step increment.

The variable <num> sets the increment value in units of radians.

*RST N/A

Range 0.001-1E3

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices

for the ®M deviation command. Refer to “:PM[1] | 2[:DEViation]” on
page 277 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

278 Chapter 4
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

Power Subsystem ([:SOURcel])

:POWer:ALC:BANDwidth | BWIDth
Supported All

[:SOURce] :POWer:ALC:BANDwidth |BWIDth <num>[<freq suffix>]
[:SOURce] :POWer :ALC:BANDwidth |BWIDth?

This command sets the bandwidth of the automatic leveling control (ALC) loop.

*RST 100.0

Choices <num>[<freq suffix>]: 100HZ 1kHZ 10kHZ 100kHZ
Key Entry 100Hz 1kHz 10kHz 100 kHz

Remarks N/A

:POWer:ALC:BANDwidth | BWIDth:AUTO

Supported All

[:SOURce] :POWer : ALC:BANDwidth |BWIDth:AUTO ON|OFF|1|0
[:SOURce] :POWer : ALC:BANDwidth |BWIDth:AUTO?

This command sets the state of the ALC automatic bandwidth capability.

*RST 0
Choices ON OFF 1 0
Key Entry Auto
Remarks N/A
Chapter 4 279

www.valuetronics.com

Command Reference

Power Subsystem ([:SOURce])

POWer:ALC:LEVel

Supported

All with Option 1E1

[:SOURce] :POWer:ALC:LEVel <value>DB
[:SOURce] :POWer:ALC:LEVel?

This command sets the ALC level when the attenuator hold is active.

*RST +1.00000000E+000

Range -20 to 25

Key Entry Set ALC Level

Remarks Use this command when the automatic attenuation mode is set to
OFF (0). Refer to “:POWer:ATTenuation:AUTO” on page 283 for
choosing the attenuator mode.

:POWer:ALC:SEARch
Supported All

[:SOURce] :POWer:ALC:SEARch ON|OFF|1]0|ONCE
[:SOURce] :POWer :ALC: SEARch?

This command enables or disables the internal power search calibration.

ON (1)

OFF (0)
ONCE
*RST

Choices
Key Entry

Remarks

This choice executes the power search automatically with each change in
RF frequency or power.

This choice disables the automatic power search routine.

This choice executes a single power search of the current RF output signal.

0
ON OFF 1 0 ONCE

Power Search Manual Auto Do Power Search

Use this command when the ALC state is set to OFF (0). Refer to
“POWer:ALC[:STATe]” on page 282 for setting the ALC state.

If ON was previously selected, executing ONCE will cause OFF to be
the current selection after the power search is completed.

280

Chapter 4

www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

POWer:ALC:SOURce
Supported All

[:SOURce] :POWer:ALC:SOURce INTernal |DIODe |MMHead
[:SOURce] :POWer:ALC:SOURce?

This command enables you to select the ALC leveling source.

*RST INT

Choices INTernal DIODe MMHead

Key Entry Internal Ext Detector Source Module
Remarks N/A

:POWer:ALC:SOURce:EXTernal:COUPling
Supported All

[:SOURce] :POWer:ALC: SOURce:EXTernal :COUPling <value>DB
[:SOURce] :POWer:ALC: SOURce:EXTernal :COUPling?

This command sets the external detector coupling factor.

*RST +1.60000000E+001

Range —-200 to 200

Key Entry Ext Detector Coupling Factor

Remarks Use this command when DIODe is the selected ALC leveling source.

Refer to “:POWer:ALC:SOURce” for the source selection.

Chapter 4 281
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

:POWer:ALC[:STATe]
Supported All

[:SOURce] :POWer:ALC[:STATe] ON|OFF |10
[:SOURce] :POWer:ALC[:STATe]?

This command enables or disables the automatic leveling control (ALC) circuit.

*RST 1

Choices ON OFF 1 o

Key Entry ALC Off On

Remarks An alternative to setting the ALC to OFF (0), is to set the ALC to a

narrow bandwidth.

The purpose of the ALC circuit is to hold output power at the desired
level in spite of drift due to temperature and time.

POWer:ATTenuation
Supported All with Option 1E1

[:SOURce] :POWer:ATTenuation <val><unit>
[:SOURce] :POWer:ATTenuation?

This command sets the amount of attenuation at the RF output.

*RST +115

Choices <val><unit>: 0DB 5DB 15DB 25DB 35DB 45DB 55DB
65DB 75DB 85DB 95DB 105DB 115DB

Key Entry Set Atten

Remarks Use this command when the automatic attenuation mode is set to

OFF (0). Refer to “:POWer:ATTenuation:AUTO” on page 283 for
choosing the attenuator mode.

The output power is the ALC level minus the attenuator setting. Refer
to “:POWer:ALC:LEVel” on page 280 for setting and determining the
ALC level.

282 Chapter 4
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

‘POWer:ATTenuation:AUTO
Supported All with Option 1E1

[:SOURce] :POWer:ATTenuation:AUTO ON|OFF|1]0
[:SOURce] :POWer:ATTenuation:AUTO?

This command sets the state of the attenuator hold function.
ON (1) This choice enables the attenuators to operate normally.

OFF (0) This choice holds the attenuator at its current setting or at a selected
value that will not change during power adjustments.

*RST 1

Choices ON OFF 1 o

Key Entry Atten Hold Off On

Remarks Refer to ““POWer:ATTenuation” on page 282 for setting the attenuator

value when OFF (0) is the choice.

The OFF (0) choice eliminates the power discontinuity normally
associated with the attenuator switching during power adjustments.

During an amplitude sweep operation, signal generators with Option
1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB. The 45 dB sweep range can be moved by inputting different
power levels.

POWer:MODE
Supported All

[:SOURce] :POWer :MODE FIXed|LIST
[:SOURce] :POWer :MODE?

This command sets the signal generator’s RF output power operating mode.

*RST FIX
Choices FIXed LIST
Key Entry Amplitude Ampl
Remarks N/A
Chapter 4 283

www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

:POWer:REFerence

Supported All

[:SOURce] :POWer:REFerence <val><unit>
[:SOURce] :POWer :REFerence?

This command sets the current output power reference.

*RST +0.00000000E+000

Range -400 to 300DBM

Key Entry Ampl Ref Set

Remarks The power reference range is affected by power offset.

:POWer:REFerence:STATe

Supported All

[:SOURce] :POWer:REFerence:STATe ON|OFF |10
[:SOURce] :POWer:REFerence:STATe?

This command enables or disables the RF output reference.

*RST 0

Choices ON OFF 1 0

Key Entry Ampl Ref Off On

Remarks Once the reference state is ON, all subsequent output power settings

are set relative to the reference value.

Amplitude offsets can be used with the amplitude reference mode.

284 Chapter 4
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

POWer:STARt
Supported All

[:SOURce] :POWer: STARt <val><unit>
[:SOURce] :POWer:STARL?

This command sets the amplitude of the first point in a step sweep.

*RST -1.35000000E+002

Range Refer to “:POWer[:LEVel][:IMMediatel[:AMPLitude]” on page 287 for
output power ranges.

Key Entry Ampl Start

Remarks During an amplitude sweep operation, signal generators with Option

1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB and be moved around the whole power range by inputting a
different power level.

:POWer:STOP
Supported All

[:SOURce] :POWer:STOP <val><unit>
[:SOURce] :POWer:STOP?

This command sets the amplitude of the last point in a step sweep.

*RST -1.35000000E+002

Range Refer to ““POWer[:LEVel][:IMMediate][:AMPLitude]” on page 287 for
output power ranges.

Key Entry Ampl Stop

Remarks During an amplitude sweep operation, signal generators with Option

1E1 protect the step attenuator by automatically switching to
attenuator hold (OFF) mode. The amplitude sweep range is limited to
45 dB and be moved around the whole power range by inputting a
different power level.

Chapter 4 285
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

POWer[:LEVell[:IMMediate]:OFFSet

Supported All

[:SOURce] :POWer [:LEVel] [: IMMediate] :OFFSet <val><unit>
[:SOURce] :POWer [:LEVel] [: IMMediate] :OFFSet?

This command sets the power offset value.

*RST +0.00000000E+000

Range -200DB to 200DB

Key Entry Ampl Offset

Remarks This simulates a power level at a test point beyond the RF OUTPUT

connector without changing the actual RF output power. The offset
value only affects the displayed amplitude setting.

You can enter an amplitude offset any time in either normal operation
or amplitude reference mode.

286 Chapter 4
www.valuetronics.com

Command Reference
Power Subsystem ([:SOURce])

POWer[:LEVel][:IMMediate][:AMPLitude]

Supported

All

[:SOURce] :POWer [:LEVel] [: IMMediate] [:AMPLitude] <val><unit>
[:SOURce] :POWer [:LEVel] [: IMMediate] [:AMPLitude]?

This command sets the RF output power.

*RST -1.35000000E+002
Range 20 GHz Models: E8241A & E8251A
Frequency range Standard Option 1IEA
250kHZ-3.2GHZ -20 to 13DBM -20 to 16DBM
> 3.2-20GHZ -20 to 13DBM —20 to 20DBM
With Option 1E1
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -135to 11DBM -135 to 15 DBM
> 3.2-20GHZ -135 to 11DBM -135 to 18DBM
40 GHz Models: E8244A & E8254A
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -20 to 9DBM -20 to 15DBM
> 3.2-20GHZ -20 to 9DBM -20 to 18DBM
> 20-40GHZ -20 to 9DBM -20 to 14DBM
With Option 1E1
Frequency range Standard Option 1EA
250kHZ-3.2GHZ -135 to TDBM -135 to 14DBM
> 3.2-20GHZ -135 to 7DBM -135 to 16DBM
> 20-40GHZ -135 to 7DBM -135 to 12DBM
Key Entry Amplitude
Remarks The ranges for this command are specified values from the data sheet.
Chapter 4 287

www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:DELay
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :DELay <num>[<time suffix>] |UP |DOWN
[:SOURce] :PULM: INTernal[l] :DELay?

This command sets the pulse delay of the internally generated pulse modulation source.

The optional variable [<time suffix>] accepts nS (nanoseconds) to S (seconds).

*RST +0.00000000E+000

Range Internal Free Run: —(pulse period — 20 nS) to (pulse period — 20 nS)
Internal Triggered & Doublet: 70nS to (pulse period — 20 nS)

Choices <num>[<time suffix>] UP DOWN

Key Entry Pulse Delay

Remarks The range value is dependent on the value set for the pulse period.
Refer to ““PULM:INTernal[1]:PERiod” on page 290 for pulse period
settings.

Refer to ““PULM:INTernal[1]:DELay:STEP” on page 289 for setting
the value associated with the UP and DOWN choices.

288 Chapter 4
www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:DELay:STEP
Supported PSG-A Series

[:SOURce] :PULM: INTernal[l] :DELay:STEP <num>[<time suffix>]
[:SOURce] :PULM:INTernal [1] :DELay:STEP?

This command sets the step increment for the pulse delay.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST N/A

Range 10nS to (pulse period — 20 nS)

Key Entry N/A

Remarks The value set by this command is used with the UP and DOWN choices

for the pulse modulation delay command. Refer to
“PULM:INTernal[1]:DELay” on page 288 for more information.

The setting enabled by this command is not affected by signal
generator power-on, preset, or *RST.

:PULM:INTernal[1]:FREQuency
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :FREQuency <val><unit>
[:SOURce] :PULM: INTernal[1l] :FREQuency?

This command sets the rate of the internal square wave pulse modulation source.

*RST +4.00000000E+002

Range 0.1HZ-10MHZ

Key Entry Pulse Rate

Remarks This command is used when SQUare is the current pulse modulation

type. Refer to ““PULM:SOURce:INTernal” on page 292 for the pulse
modulation type selection.

Chapter 4 289
www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:PERiod
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :PERiod <val><unit> |UP |DOWN
[:SOURce] :PULM: INTernal [1] :PERiod?

This command sets the period for the internally generated pulse modulation source.

*RST +2.00000000E-006

Range 70nS—42S

Choices <val><unit> UP DOWN

Key Entry Pulse Period

Remarks If the entered value for the pulse period is equal to or less than the

value for the pulse width, the pulse width changes to a value that is
less than the pulse period.

Refer to “:PULM:INTernal[1]:PERiod:STEP[:INCRement]” for setting
the value associated with the UP and DOWN choices.
‘PULM:INTernal[1]:PERiod:STEP[:INCRement]
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :PERiod:STEP [: INCRement] <val><unit>
[:SOURce] :PULM: INTernal [1l] :PERiod:STEP[: INCRement] ?

This command sets the step increment for the internal pulse period.

*RST +1.00000000E-006

Range 10nS-42S

Key Entry N/A

Remarks The value set by this command is used with the UP and DOWN choices

for the pulse period command. Refer to ““PULM:INTernal[1]:PERiod”
for more information.

290 Chapter 4
www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:PWIDth
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :PWIDth <num>[<time suffix>] |UP|DOWN
[:SOURce] :PULM: INTernal [1] :PWIDth?

This command sets the pulse width for the internally generated pulse modulation
source.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST +1.00000000E-006

Range 10nS to (pulse period — 20 nS)

Choices <num>[<time suffix>] UP DOWN

Key Entry Pulse Width

Remarks If the entered value for the pulse width is equal to or greater than the

value for the pulse period, the pulse width will change to a value that
is less than the pulse period.

Refer to ““PULM:INTernal[1]:PWIDth:STEP” for setting the value
associated with the UP and DOWN choices.

:PULM:INTernal[1]:PWIDth:STEP
Supported PSG-A Series

[:SOURce] :PULM: INTernal [1] :PWIDth:STEP <num> [<time suffix>]
[:SOURce] :PULM: INTernal [1] :PWIDth:STEP?

This command sets the step increment for the pulse width.

The optional variable [<time suffix>] accepts nS (nano-seconds) to S (seconds).

*RST +1.00000000E-006

Range 10nS to (pulse period — 20 nS)

Key Entry N/A

Remarks The value set by this command is used by the UP and DOWN choices

for the pulse width command. Refer to “:PULM:INTernal[1]:PWIDth”
for more information.

Chapter 4 291
www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:SOURce
Supported PSG-A Series

[:SOURce] :PULM: SOURce INTernal |EXTernal
[:SOURce] :PULM: SOURce?

This command sets the source for the pulse modulation.

*RST INT

Choices INTernal EXTernal

Key Entry Internal Square Int Free-Run Int Triggered Int Doublet Int Gated
Ext Pulse

Remarks N/A

:PULM:SOURce:INTernal
Supported PSG-A Series

[:SOURce] :PULM:SOURce: INTernal SQUare|FRUN|TRIGgered|DOUBlet |GATEd
[:SOURce] :PULM: SOURce: INTernal?

This command sets the type of internally generated pulse modulation.

*RST FRUN
Choices SQUare FRUN TRIGgered DOUBIlet GATEd
Key Entry Internal Square Int Free-Run Int Triggered Int Doublet Int Gated
Remarks N/A
292 Chapter 4

www.valuetronics.com

Command Reference
Pulse Modulation Subsystem ([:SOURce])

:PULM:STATe
Supported PSG-A Series

[:SOURce] :PULM:STATe ON|OFF|1]0
[:SOURce] :PULM: STATe?

This command enables or disables pulse modulation for the selected path.

*RST 0

Choices ON OFF 1 0

Key Entry Pulse Off On

Remarks When pulse modulation is enabled, the PULSE annunciator is shown in

the display

Chapter 4 293
www.valuetronics.com

Command Reference
SCPI Command Compatibility

SCPI Command Compatibility

:SYSTem:IDN

Supported All
:SYSTem:IDN "<string>"

This command modifies the identification string that the *IDN? query returns. Sending
an empty string returns the query output to its factory shipped setting. The maximum
string length is 72 characters.

*RST N/A
Range N/A
Key Entry N/A
Remarks Modification of the *IDN? query output enables the PSG to identify

itself as another signal generator when it is used as a backwards
compatible replacement.

The display diagnostic information, shown by pressing the
Diagnostic Info softkey, is not affected by this command.

294 Chapter 4
www.valuetronics.com

Command Reference
SCPI Command Compatibility

8340B/41B Compatible Commands (firmware > C.01.21)

The tables in this section provide the following:

Table 4-5 on page 296: a comprehensive list of 8340B/41B programming codes, listed in
alphabetical order. The equivalent SCPI command sequence for each supported code is
provided; codes that are not supported by the PSG family are indicated as such in the
command column.

Table 4-6 on page 304: a list of the implemented 8340B/41B programming codes that set
the active function. This table also indicates which codes are compatible with the RB
command (knob), and lists the operation active (OA) query, the increment (up), and the
decrement (down) SCPI commands.

NOTE Compatibility is provided for GPIB only; RS-232 and LAN are not
supported.

Table 4-7 on page 306: information regarding the RM and RE status byte masks.

Table 4-8 on page 307 and Table 4-9 on page 308: information regarding the OS status
bytes #1 and #2.

When using 8340B/41B programming codes, you can:

* set the PSG system language to 8340 for the current session.
Utility > GPIB/RS-232 LAN > Preset Language > 8340B
or
:SYST:LANG “8340”

* set the PSG system language to 8340 so that it does not reset with either preset or
cycling power.

Utility > Power On/Preset > Preset Language > 8340B
or
:SYST:PRESET: LANG “8340”
* set the *IDN? response to any 8340-like response you prefer.

Use the command :SYSTem:IDN on page 294.

Chapter 4 295
www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
Al Leveling, internal POWer:ALC:SOURce INTernal
A22 Leveling, external diode detector |POWer:ALC:SOURce DIODe
POWer :ALC:SOURce:EXTernal :COUPling <val>DB
A3 Leveling, power meter not supported
AK Amplitude marker not supported

AL Alternate state

not supported

AMO | Amplitude modulation off AM1:State OFF|0
AM2:State OFF|0
AM1P | Amplitude modulation on AM1:State OFF |0
AM2 : SOURce EXT[1]
AM2 :EXTernal[1] :COUPling DC
AM2 :Depth 100
AM2 :EXTernal[1l] : IMPedance 600
AM2:State ON|1
AS Select alternate state not supported
AT Set attenuator POWer:ATTenuation <val><unit>
AU Auto not supported

BC Change frequency band

not supported

CF Center frequency (step sweep)

FREQuency :MODE LIST
POWer :MODE FIXED
LIST:TYPE STEP
INITiate:CONTinuous [:ALL]
LIST:TRIGger:SOURce BUS
FREQuency:STARt <val><unit>
FREQuency:STOP <val><unit>

ON|1

CS Clear both status bytes

*CLS

CW Set CW frequency

FREQuency :MODE CW
FREQuency [:CW] <val><unit>

DB dB(m) terminator

DB

296
www.valuetronics.com

Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
DF Delta frequency FREQuency :MODE LIST
POWer :MODE FIXED
LIST:TYPE STEP
INITiate:CONTinuous[:ALL] ON|1
LIST:TRIGger:SOURce BUS
FREQuency:STARt <val><unit>
FREQuency:STOP <val><unit>
DN Step down supported, see Table 4-6 on page 304
DUO | Display off DISPlay[:WINDow] [:STATe] OFF |0
DU1 Display on DISPlay[:WINDow] [:STATe] ON|1
EF¢ Entry display off DISPlay[:WINDow] [:STATe] ON|1
EK Enable knob not supported
FA Start frequency (step sweep) FREQuency:MODE LIST
POWer :MODE FIXED
LIST:TYPE STEP
INITiate:CONTinuous|[:ALL] ON|1

LIST:TRIGger:SOURce BUS
FREQuency:STARt <val><unit>

FB Stop frequency (step sweep) FREQuency :MODE LIST
POWer :MODE FIXED
LIST:TYPE STEP
INITiate:CONTinuous[:ALL] ON|1
LIST:TRIGger:SOURce BUS
FREQuency:STOP <val><unit>

FMO Frequency modulation off FMl:State OFF|0
FM2:State OFF |0

FM14 Frequency modulation on FMl:State OFF|0
FM2:SOURce EXT2
FM2:EXTernal2:COUPling DC
FM2:EXTernal2:IMPedance 600
FM2:State ON|1

FM1¢ |Frequency modulation sensitivity |FM2[:DEViation] <val><unit>

FP Fast phaselock supported, but has no effect on PSG Family

Chapter 4 297

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence

GZ GHz terminator GHZ

HZ Hz terminator HZ

IF Increment frequency TRIGger [: SEQuence] [: IMMediate]

or
FREQuency [:CW] UP

IL 123b| Input learn data

not supported

IP Instrument preset

STATus:QUEStionable:POWer:NTRansition O
STATus:QUEStionable:POWer:PTRansition 2
STATus:QUEStionable:POWer:ENABle 2
STATus:QUEStionable:FREQuency:NTRansition 0
STATus:QUEStionable:FREQuency:PTRansition 103
STATus:QUEStionable:FREQuency:ENABle 103
STATus:QUEStionable:MODulation:NTRansition O
STATus:QUEStionable:MODulation:PTRansition 2
STATus:QUEStionable:MODulation:ENABle 2
STATus:QUEStionable:CALibration:NTRansition 0
STATus:QUEStionable:CALibration:PTRansition 0O
STATus:QUEStionable:CALibration:ENABle O
STATus:QUEStionable:NTRansition O
STATus:QUEStionable:PTRansition 696
STATus:QUEStionable:ENABle 0
STATus:OPERation:NTRansition 10
STATus:0OPERation:PTRansition 0
STATus:0OPERation:ENABle 0

*ESE 0

*SRE 0O

*CLS

*RST

FREQuency [:CW] : STEP [: INCRement] 1 GHz
FREQuency:MULTiplier<saved multiplier>

POWer [:LEVel] [:IMMediate] [:AMPLitude] 0O dB
OUTput [: STATe] ON]|1

Keyboard release

not supported

KHZ

KR
K7 kHz terminator
MO Marker off

not supported

M1 Marker 1 on

not supported

298
www.valuetronics.com

Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence

M2 Marker 2 on not supported

M3 Marker 3 on not supported

M4 Marker 4 on not supported

M5 Marker 5 on not supported

MC Marker to CF not supported

MD Marker delta not supported

MO Marker off not supported

MP Marker sweep M1-M2 not supported

MS msec terminator not supported

MZ MHz terminator MHZ

NA Configure for network analyzer not supported

OA Output active parameter see Table 4-6 on page 304

OB Output next band frequency not supported

oC Output coupled parameters not supported

OD Output diagnostic values not supported

OF Output fault values supported, but no equivalent SCPI command sequence
orf Output identification *IDN?

OK Output last lock frequency not supported

OL Output learn data not supported

OM Output mode data not supported

OPAT |Output attenuator supported, but no equivalent SCPI command sequence
OPCF | Output center frequency supported, but no equivalent SCPI command sequence
OPCW | Output CW frequency FREQuency [:CW] ?

OPDF |Output delta frequency supported, but no equivalent SCPI command sequence
Chapter 4 299

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
OPFA | Output start frequency FREQuency : START?
OPFB | Output stop frequency FREQuency : STOP?
OPFM1| Output FM sensitivity FM2[:DEViation]?
OPPL | Output power level POWer[:LEVel] [:IMMediate] [:AMPLitude]?
OPSF | Output frequency step size FREQuency [:CW] : STEP [: INCRement] ?
OPSL | Output power slope supported, but no equivalent SCPI command sequence
OPSN | Output # points in stepped sweep |SWEep:POINts?
OR Output internally measured not supported
power level
oS Output status bytes see Table 4-8 on page 307 and Table 4-9 on page 308
PL Set power level POWer:ATTenuation:AUTO ON|1
POWer [:LEVel] [: IMMediate] [:AMPLitude]<val><unit>
PMO Pulse modulation off PULM: STATe OFF|0
PM1 Pulse modulation on PULM: SOURce EXTernalPULM:STATe ON|1
PS Power sweep not supported
RBE Remote rotary knob see Table 4-6 on page 304
RCP Recall instrument state *RCL <reg_num>[, <seq_num>]
RE Mask extended status byte see Table 4-7 on page 306
RFO RF output off OUTPut [:STATe] OFF|0
RF1 RF output on OUTPut [:STATe] ON|1
RM Mask status byte see Table 4-7 on page 306
RPO RF peaking off command accepted; peaking not required for PSG Family
RP1 RF peaking on command accepted; peaking not required for PSG Family
RS Reset sweep not supported
S1 Sweep, continuous not supported
300 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
S2 Sweep, single not supported
S3 Sweep, manual not supported
SC Seconds terminator not supported
SF Frequency step size FREQuency [:CW] : STEP [: INCRement] <val><unit>
SG Sweep, single not supported
SH Shift prefix not supported
SHA1 |Disable ALC, set power not supported
SHA2 |External source module leveling | not supported
SHA3 |Directly control POWer :ATTenuatuion:AUTO OFF|0
linear modulator circuit, POWer:ALC[:STATe] OFF|O0
bypassing ALC POWer:ALC:LEVel <val>DB
SHAK |Immediate YTM peak command accepted; peaking not required for PSG Family
SHAL | Retain multiplication factor on supported, but no equivalent SCPI command sequence
power on/off and preset
SHAM | Pulse modulation enhancement command accepted, but has no effect on PSG Family
SHAZ |Leveling mode = POWer :ALC: SOURce MMHead
external source module (mm head)| POWer:ALC:LEVel <val>DB
SHCF | Set frequency step size FREQuency [:CW] : STEP [: INCRement] <val><unit>
SHCW | CW increment resolution not supported
SHEF | Restore cal. const. access function |not supported
SHFA |Frequency multiplier FREQuency:MULTiplier <val>
SHFB | Frequency offset FREQuency:0FFSet <val><unit>
SHIP |Reset mult. factor to 1, and preset |supported, but no equivalent SCPI command sequence
SHM1 |Diagnostic: M/N, 20/30 freq. not supported
SHM2 | Diagnostic: band, YO not supported
SHMS3 | Diagnostic: VCO1, VCO2 freq. not supported
Chapter 4 301

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence
SHM4 | Diagnostic: test/display results not supported

SHMS5 | Diagnostics off not supported
SHMO | All markers off not supported
SHMP | Marker sweep, M1-M2 not supported

SHPL | Set power level step POWer[:LEVel] [:Immediate] [:AMPLitude] : STEP [:
INCREment] <val>

SHPM | Enable 8756A/57A compatibility |not supported

SHPS | Decouple attenuator and ALC POWer:ATTenuation:AUTO OFF |0

(control ALC independently) POWer:ALC[:STATe] ON|1

POWer:ALC:LEVel <val>DB

SHRC |Remove save-lock not supported

SHS1 |Blank displays not supported

SHS3 | Display fault diagnostic not supported

SHS10¢| Disable display update Display[:WINDow] [:STATe] OFF |0

SHS11!| Re-enable display update Display[:WINDow] [:STATe] ON|1

SHSL/ | Set attenuator from front panel POWer:ATTenuation <val><unit>

SHST |Zoom function not supported

SHSV | Lock save/recall not supported

SHRF |Disable ALC, set power not supported

SHRP |Tracking calibration command accepted, but has no effect on PSG Family
SHT1 |Test displays not supported

SHT2 |Bandcrossing penlift not supported

SHT3 |Display unlock indicators not supported

SHGZ |10 channel not supported

SHMZ |10 subchannel not supported

302 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-5 8340B/41B Programming Codes and Equivalent SCPI Sequences
Code Description Equivalent SCPI Command Sequence

SHKZ | Write to IO not supported

SHHZ |Read from IO not supported

SLO Power slope off POWer:SLOPe:STATe OFF |0

SL1 Power slope on POWer:SLOPe:STATe ON|1
POWer:SLOPe <value>[DB/freqgsuffix]

SM Sweep, manual not supported

SN Steps, maximum SWEep:POINts <val>

SP Set power step size POWer[:LEVel] [:Immediate] [:AMPLitude] : STEP [:
INCREment] <val>

ST Sweep time not supported

SV Save instrument state *SAV <reg_num> [, <seq_num>]

SW Swap NA channels

not supported

T1 Trigger, free run not supported
T1b Test GPIB not supported
T2 Trigger, line not supported
T3 Trigger, external not supported
TL Time line not supported
TS Take sweep not supported
UP Up step see Table 4-6 on page 304

o pe T

= I

PSG family uses external detector coupling factor instead of reference voltage.
PSG family uses AM2 path and EXT 1 input.
Same as DUO on page 297 for PSG family.

. PSG family uses FM2 path and EXT 2 input.

8340B /41B: sensitivity values <1 MHz are set to 1 MHz;
sensitivity values >1 MHz are set to 10 MHz
PSG Family: sensitivity is set to specified value.
Refer to the “:SYSTem:IDN” command on page 294 to customize the string returned by *IDN? or OI.
RB command emulates knob motion on PSG family.

. Saved under seq_num = 0, and note that RC 0 (recall last front panel settings) is not supported.

Same as DU1 on page 297 for PSG family.
Same as AT on page 296 for PSG family.

Chapter 4 303
www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-6 Programming Codes that Set the Active Function;
RB Compatibility; OA Query & UP/DN SCPI Commands

Sets | Compatible| Comp.| Comp.
Code | Active with with | with
Function| RB (knob) | OA |UP/DN

Equivalent SCPI Commands
for OA Query and UP or Down

POWer :ALC:SOURce:EXTernal : COUP1ling?
A2 O O O POWer:ATTenuation UP
POWer:ATTenuation DOWN

POWer:ATTenuation UP

AT a 0 .
POWer:ATTenuation DOWN

CF O none

FREQuency [:CW]?
CW O O O O FREQuency [:CW] UP
FREQuency [:CW] DOWN

DF O none

DN decrements active function by step value
FA O 0 FREQuency:STARt?

FB O O FREQuency:STOP?

FM1 a g FM2 [:DEViation]?

POWer[:LEVel] [:IMMediate] [:AMPLitude]?
PL 0 0 0 0 POWer [:LEVel] [:IMMediate] [:AMPLitude]UP
POWer[:LEVel] [:IMMediate] [:AMPLitude] DOWN

RC O none

SF O O O FREQuency [:CW] : STEP [: INCRement] ?

POWer:ALC:LEVel?
SHA3 O O O O POWer:ATTenuatuion UP
POWer:ATTenuatuion DOWN

SHAZ O O O POWer:ALC:LEVel?

SHCF O O O FREQuency [:CW] : STEP [: INCRement] ?

SHFA O O O FREQuency:MULTiplier?

SHFB O O O FREQuency:OFFSet?

304 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-6 Programming Codes that Set the Active Function;
RB Compatibility; OA Query & UP/DN SCPI Commands
Se.ts Comqatlble Co?np. Canp. Equivalent SCPI Commands
Code | Active with with | with for OA Query and UP or Down
Function| RB (knob) | OA |UP/DN ry
SHPL 0 0 0 POWer[:LEVel] [:Immediate] [:AMPLitude]:
STEP [: INCREment]?
POWer:ALC:LEVel?
SHPS 0 0 0 0 POWer:ATTenuation UP
POWer:ATTenuation DOWN
SHSL 0 0 POWer :ATTenuat%on 9)2
POWer:ATTenuation DOWN
SL1 O none
SN a a 0 SWEep:POINts?
Sp 0 0 0 POWer [:LEVel] [:Immediate] [:AMPLitude]:
STEP [: INCREment] ?
SV O none
UP increments active function by step value
Chapter 4 305

www.valuetronics.com

Command Reference

SCPI Command Compatibility

Table 4-7 8340 Status Byte Masks
Bit Number 7 6 5 4 3 2 1 0
Decimal 128 64 32 16 8 4 2 1
Value
RM Mask
Function
SRQ on New GPIB |End of RF Change in |Numeric |Any
frequencies syntax |sweep settled extended |entry front panel
or error status byte|completed |key
sweep time (GPIB or |pressed
in effect front panel)
Request
Service
(RQS)
PSG Bit(s) 0 #6 #5 #3 #1 #3 0 0
Status Group Std Operation|Operation
Event
Register Service |Event |[Event Event Service
Request |Enable |Enable Enable Request
Enable Enable
Notes:

Enable/disable Bit #7 of Service Request Enable Register based on Operation Status Group Event Enable Register.
Enable/disable Bit #5 of Service Request Enable Register based on Std. Event Status Group Event Enable Register.

RE Mask
Function Fault RF Power |RF Ext. Freq. |Oven cold |Over Self test
indicator |unleveled |failure |unlocked |Ref. selected modulation |failed
on
PSG Bit(s) #5 #3 #7 #5 Implemented #4 #7 #9
(condition
only)
Status Group
Data Questionable O O O O O O
Standard Event 0
Register Event Event Event |Event Event Event Event
Enable Enable Enable |Enable Enable Enable Enable
306 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-8 8340 OS Status Byte #1
Bit Number 7 6 5 4
Decimal Value 128 64 32 16
Function

SRQ on New frequencies GPIB syntax error End of sweep

szeep time in effect
Request Service (RQS)

PSG Bit(s) 0 #6 #5 #3

Status Group Standard Event Operation

Register Status Byte Event Event—Negative transition
Bit Number 3 2 1 0
Decimal Value 8 4 2 1
Function

SRQ on RF settled Change in Numeric entry completed |Any

extended status byte|(GPIB or front panel) front panel key pressed

PSG Bit(s) #1 Implemented 0 0

Status Group|Operation

Register Event—Negative transition
Chapter 4 307

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-9 OS Status Byte #2
Bit Number 7 6 5 4
Decimal Value 128 64 32 16
Function Fault indicator on RF unleveled Power failure| RF unlocked
PSG Bit(s) #0—2 #5 #1 #3 #7a #0—2 #5
and and
#5—6 #5—6
Status Group|Data Data Data Data Std Event Data Data
Questionable| Questionable |Questionable|Questionable Questionable| Questionable
Frequency |(Summary) Power (Summary) Frequency |(Summary)
Register Condition Event— Condition Event— Event Condition Event—
Pos. transition Pos. transition Pos. transition

a. Cleared by IP
Bit Number 3 2 1 0
Decimal Value 8 4 2 1
Function Ext. Freq. Ref. selected |Oven cold Over modulation Self test failed
PSG Bit(s) Implemented #4 #1 #7 #9

(condition only)
Status Group Data Questionable |Data Data Data Questionable
Questionable |Questionable
Modulation (Summary)
Register Condition Condition Event— Event—

Pos. transition |[Pos. transition

308 Chapter 4
www.valuetronics.com

836xxB/L Compatible SCPI Commands

Command Reference

SCPI Command Compatibility

Table 4-10 is a comprehensive list of 836xxB/L SCPI commands arranged by subsystem.
Commands that are supported by the PSG Family are identified, in addition to commands
that are unsupported. Use the legend within the table to determine command compatibility.

Some of the PSG supported commands are a subset of the 836xxB/L commands. When this
occurs, the syntax supported by the PSG is shown in addition to the syntax that is not

supported.

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family " (me " (me
IEEE Common Commands
*CLS Y Y
*ESE <data> Y Y
*ESE? Y Y
*ESR? Y Y
*IDN?2 Y Y
*T,RN? N N
*QOPC Y Y
*QOPC? Y Y
*OPT? N N
*RCL <reg_num> Y Y
*RST Y Y
*SAV <reg_num> Y Y
*SRE <data> Y Y
*SRE? Y Y

Chapter 4 309

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L. SCPI Commands

Y= Supported by PSG Family 83620B | 83620L
N= Not supported by PSG Family a3 (me " 68me
*STB? Y Y
*TRG Y Y
*TST? Y Y
*WAT Y Y
Abort Subsystem

:ABORt Y Y

Amplitude Modulation Subsystem

:AM[:DEPTh] <num>[PCT] |MAXimum |MINimum | <num>DB

:AM[:DEPTh]? [MAXimum|MINimum]

Y

:AM:INTernal :FREQuency <num>[<freq suffix>] |MAXimum|
MINimum

:AM: INTernal :FREQuency? [MAXimum|MINimum]

:AM: INTernal :FUNCtion SINusoid]|SQUare|TRIangle|RAMP |NOISe

:AM: INTernal :FUNCtion?

:AM:SOURce INTernal |EXTernal

:AM:SOURce?

:AM:MODE DEEP | NORMal

:AM:MODE?

:AM:STATe ON|OFF|1]0

:AM:STATe?

:TYPE LINear |EXPonential

KRR R KRR R KK

E |k

:TYPE?

310 Chapter 4
www.valuetronics.com

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

Calibration Subsystem

:CALibration:AM:AUTO ON|OFF|1|0

:CALibration:AM:AUTO?

:CALibration:AM[:EXECute]

:CALibration:PEAKing:AUTO ON|OFF |10

:CALibration:PEAKing:AUTO?

:CALibration:PEAKing[:EXECute]

:CALibration:PMETer:DETector:INITiate? IDETector|DIODe

:CALibration:PMETer:DETector :NEXT? <num>[<lvl suffix>]

:CALibration:PMETer:FLATness:INITiate? USER|DIODe |PMETER |
MMHead

Zz|\z|z|z|Z2|z2|z|2| Z

Z|z|z|z|2| =z

:CALibration:PMETer:FLATness :NEXT? <value>[<lvl suffix>]

:CALibration:SPAN:AUTO ON|OFF|1]|0

:CALibration:SPAN:AUTO?

:CALibration:SPAN|[:EXECute]

:CALibration:TRACk

Z|z|z| 2| Z

Z|z|z| 2| Z

Correction Subsystem

:CORRection:ARRay[i] {<value>[DB]}

:CORRection:ARRay[i]?

:CORRection:FLATness {<num>[freq suffix],<num>[DB]}2*801

:CORRection:FLATness?

:CORRection:SOURce[i1] ARRay|FLATness

:CORRection:SOURce[1]?

Z|z|<| 2| 2| =2

Z|z|<| 2| 2| =2

Chapter 4
www.valuetronics.com

311

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L

:CORRection:FLATness:POINts? [MAXimum|MINimum] Y Y
:CORRection[:STATe] ON|OFF|1]0 Y Y
:CORRection[:STATe]? Y Y
Diagnostics Subsystem

:DIAGnostics:ABUS? <value> N N
:DIAGnostics:ABUS:AVERage <value> N N
:DIAGnostics:ABUS:AVERage? N N
:DIAGnostics:ABUS:STATus? N N
:DIAGnostics:INSTrument :PMETer :ADDRess <value> N N
:DIAGnostics: INSTrument :PMETer : ADDRess? N N
:DIAGnostics:INSTrument : PRINter :ADDRess <value> N N
:DIAGnostics:INSTrument :PRINter:ADDRess? N N
:DIAGnostics:IORW <value>,<value> N N
:DIAGnostics:IORW? <value> N N
:DIAGnostics:OUTPut :FAULt? N N
:DIAGnostics:RESult? N N
:DIAGnostics:TEST:CONTinue N N
:DIAGnostics:TEST:DATA:DESC? N N
:DIAGnostics:TEST :DATA : MAXimum? N N
:DIAGnostics:TEST:DATA :MINimum? N N
:DIAGnostics:TEST:DATA:VALue? N N
:DIAGnostics:TEST:DISable {<num>}1*?|ALL N N

312 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &

83640B 83640L

:DIAGnostics:TEST:ENABle {<num>}1*?|ALL N N
:DIAGnostics:TEST[:EXECute] <value> N N
:DIAGnostics:TEST:1LOG:SOURce ALL|FAIL N N
:DIAGnostics:TEST:LOG: SOURce? N N
:DIAGnostics:TEST:LOG(: STATe] ? N N
:DIAGnostics:TEST:LOG[:STATe] ON|OFF|1|0 N N
:DIAGnostics:TEST:LOOP ON|OFF|1]0 N N
:DIAGnostics:TEST:LOOP? N N
:DIAGnostics:TEST:NAME? [<value>] N N
:DIAGnostics:TEST:POINts? N N
:DIAGnostics:TEST:RESult? [<value>] N N
:DIAGnostics:TINT? <value> N N
Display Subsystem
:DISPlay[:STATe] ONJ|OFF|1]0
:DISPlay[:STATe]?
Frequency Modulation Subsystem
:FM:COUPling AC|DC Y
:FM:COUPling? Y
:FM[:DEViation] <val><unit>|MAXimum|MINimum Y
:FM[:DEViation]? [MAXimum|MINimum] Y
:FM:FILTer:HPASs <num> [<freq suffix>] |[MAXimum|MINimum N
:FM:FILTer:HPASs? [MAXimum|MINimum] N

Chapter 4 313

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:FM:
MINimum

INTernal :FREQuency <num>[<freq suffix>]|MAXimum|

Y

:FM:

INTernal :FREQuency? [MAXimum|MINimum]

:FM:

INTernal :FUNCtion SINusoid|SQUare|TRIangle|RAMP |NOISe

:FM:

INTernal:FUNCtion?

:FM:

SOURce INTernal |EXTernal

:FM:

SOURce?

:FM:

SENSitivity <val><freq suffix/V>|MAXimum|MINimum

:FM:

SENSitivity? [MAXimum|MINimum]

:FM:

STATe ON|OFF |10

:FM:

STATe?

T I I T B B < e I B

Frequency Subsystem

:FREQuency:CENTer <num>[<freq suffix>] |MAXimum|MINimum |
UP | DOWN

:FREQuency:CENTer? [MAXimum|MINimum]

:FREQuency [:CW| :FIXed] <num>[<freq suffix>] |MAXimum|
MINimum | UP | DOWN

:FREQuency [:CW]? [MAXimum|MINimum]

:FREQuency [:FIXed]? [MAXimum|MINimum]

:FREQuency [:CW] : AUTO ON|OFF|1]0

:FREQuency [:CW] : AUTO?

:FREQuency [:FIXed] :AUTO ON|OFF|1]0

:FREQuency [:FIXed] :AUTO?

Zz|lz|lz2|z2|~<|

z|lz|z|2z2|~<|

314

www.valuetronics.com

Chapter 4

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L
:FREQuency:MANual <num>[freq suffix] |MAXimum|MINimum|UP | N N
DOWN
:FREQuency:MANual? [MAXimum|MINimum] N N
:FREQuency:MODE FIXed|CW|SWEep|LIST Y Y
:FREQuency :MODE? Y Y
:FREQuency:MULTiplier <num>|MAXimum\MINimumb Y Y
:FREQuency :MULTiplier? [MAXimum|MINimum] Y Y
:FREQuency:MULTiplier:STATe ON|OFF|1|0 N N
:FREQuency:MULTiplier:STATe? N N
:FREQuency:0FFSet <num>|MAXimum |MINimum Y Y
:FREQuency:0FFSet? [MAXimum|MINimum] Y Y
:FREQuency:0FFSet : STATe ON|OFF |10 Y Y
:FREQuency:OFFSet : STATe? Y Y
:FREQuency:SPAN <num>[<freq suffix>] |MAXimum|MINimum|UP | Y Y
DOWN
:FREQuency: SPAN? [MAXimum|MINimum] Y Y
:FREQuency: STARt <num> [<freq suffix>] |MAXimum|MINimum |UP | Y Y
DOWN
:FREQuency: STARt? [MAXimum|MINimum] Y Y
:FREQuency: STEP:AUTO ON|OFF |10 Y Y
:FREQuency: STEP : AUTO? Y Y
:FREQuency:STEP [: INCRement] <num>[<freq suffix>] |MAXimum | Y Y
MINimum
:FREQuency: STEP [: INCRement] ? Y Y
Chapter 4 315

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L
:FREQuency:STOP <num>[<freq suffix>] |[MAXimum |MINimum|UP | Y Y
DOWN
:FREQuency:STOP? [MAXimum|MINimum] Y Y

Initiate Subsystem

:INITiate:CONTinuous ON|OFF|1]0

:INITiate:CONTinuous?

:INITiate[:IMMediate]

List Subsystem

:LIST:DWEL1 {<num>[<time suffix>] |MAXimum|MINimum} Y Y
:LIST:DWEL1? [MAXimum|MINimum] Y Y
:LIST:DWEL1:POINts? [MAXimum|MINimum] Y Y
:LIST:FREQuency {<value>[<freq suffix>]|MAXimum|MINimum} Y Y
:LIST:FREQuency? Y Y
:LIST:FREQuency:POINts? [MAXimum|MINimum] Y Y
:LIST:MANual <num> Y Y
:LIST:MANual? Y Y
:LIST:MODE AUTO|MANual Y Y
:LIST:MODE? Y Y
:LIST[:POWer] : CORRection {<value>[DB] |MAXimum|MINimum} N N
:LIST[:POWer] :CORRection? N N
:LIST[:POWer] :CORRection:POINts? [MAXimum|MINimum] N N
:LIST:TRIGger:SOURce IMMediate |BUS|EXTernal Y Y

316 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

www.valuetronics.com

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family a3 (me a3 (me
:LIST:TRIGger : SOURce? Y Y
Marker Subsystem
:MARKer [n] :AMPLitude[:STATe] ON|OFF|1]0 N N
:MARKer [n] :AMPLitude [:STATe]? N N
:MARKer [n] :AMPLitude:VALue <value>[DB] |MAXimum |MINimum N N
:MARKer [n] :AMPLitude:VALue? [MAXimum|MINimum] N N
:MARKer [n] :AOFF N N
:MARKer [n] :DELTa? <value>,<value> N N
:MARKer [n] :FREQuency <value>[<freq suffix>] |MAXimum| N N

MINimum

:MARKer [n] :FREQuency? [MAXimum|MINimum] N N
:MARKer [n] :MODE FREQuency |DELTa N N
:MARKer [n] :MODE? N N
:MARKer [n] :REFerence <n> N N
:MARKer [n] :REFerence? N N
:MARKer [n] [:STATe] ON|OFF|1|0 N N
:MARKer [n] [:STATe]? N N
Measure Subsystem
:MEASure:AM? N
:MEASure:FM? N
Modulation Subsystem
:MODulation:0UTPut : SOURce AM|FM N
:MODulation:OUTPut : SOURce? N

Chapter 4 317

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L. SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L
:MODulation:OUTPut : STATe ON|OFF|1]0 Y
:MODulation:0UTPut:STATe? Y
:MODulation:STATe? Y
Power Subsystem
:POWer:ALC:BANDwidth| :BWIDth <value>[<freq suffix>] | Y Y
MAXimum | MINimum
:POWer:ALC:BANDwidth? | :BWIDth? [MAXimum|MINimum] Y Y
:POWer :ALC:BANDwidth| :BWIDth:AUTO ON|OFF |10 Y Y
:POWer :ALC:BANDwidth | :BWIDth:AUTO? Y Y
:POWer:ALC:CFACtor <value>[DB] |MAXimum|MINimum|UP | DOWN Y Y
:POWer :ALC:CFACtor? [MINimum|MAXimum] Y Y
:POWer :ALC:SOURce PMETer N N
:POWer :ALC:SOURce INTernal|DIODe |MMHead Y Y
:POWer :ALC: SOURce? Y Y
:POWer:ALC[:STATe] ON|OFF|1]0 Y Y
:POWer :ALC[:STATe]? Y Y
:POWer :AMPLifier:STATE ON|OFF|110 N N
:POWer:AMPLifier:STATE? N N
:POWer :AMPLifier:STATE:AUTO ON|OFF |10 N N
:POWer:AMPLifier:STATE:AUTO? N N
:POWer:ATTenuation <num>[DB] |MAXimum|MINimum |UP |DOWN Y Y
:POWer:ATTenuation? [MAXimum|MINimum] Y Y
318 Chapter 4

www.valuetronics.com

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:POWer :ATTenuation:AUTO ON|OFF |10

Y

Y

:POWer:ATTenuation:AUTO?

:POWer :CENTer <num>[<lvl suffix>] |MAXimum|MINimum |UP | DOWN

e

<

:POWer :CENTer? [MAXimum|MINimum]

<

<

:POWer [:LEVel] <num>[<lvl suffix>] |MAXimum|MINimum |UP |
DOWN

<

<

:POWer [:LEVel]? [MAXimum|MINimum]

:POWer :MODE FIXed|SWEep

:POWer :MODE?

:POWer :OFFSet <num>[DB] |MAXimum |MINimum |UP | DOWN

:POWer :OFFSet? [MAXimum|MINimum]

:POWer :0OFFSet : STATe ON|OFF |10

:POWer :OFFSet : STATe?

:POWer :RANGe <value>[<lvl suffix>] |MAXimum|MINimum |UP |
DOWN

ZI K| K| R KK <

ZI K| K| R KK <

:POWer : RANGe?

:POWer:SEARch ON|OFF |1]0|ONCE

:POWer : SEARch?

:POWer:SLOPe <value>[DB/<freq suffix>] |MIN|MAX|UP |DOWN

:POWer :SLOPe? [MAXimum|MINimum]

:POWer :SLOPe:STATe ON|OFF|1]0

:POWer :SLOPe:STATe?

:POWer : SPAN <value>[DB] |MAXimum|MINimum | UP | DOWN

T I e T S B < B 4

KRR R KR < Z

Chapter 4
www.valuetronics.com

319

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:POWer:

SPAN? [MAXimum|MINimum]

Y

Y

:POWer:

STARt <val><unit>|MAXimum|MINimum |UP | DOWN

:POWer:

STARt? [MAXimum|MINimum]

:POWer:

STATe ON|OFF|1]0

:POWer:

STATe?

:POWer:

STEP:AUTO ON|OFF|1]0

:POWer:

STEP :AUTO?

:POWer:

STEP [: INCRement] <num> [DB] | MAXimum |MINimum

:POWer:

STEP [: INCRement] ? [MAXimum|MINimum]

:POWer:

STOP <val><unit>|MAXimum |MINimum|UP |DOWN

:POWer:

STOP? [MAXimum|MINimum]

oI BT e TR BT B e R

oI T e T BT B i R

Pulse Modulation Subsystem

:PULM:EXTernal:DELay <value>[<time suffix>] |MAXimum|
MINimum

z

:PULM:EXTernal :DELay? [MAXimum|MINimum]

:PULM:EXTernal :POLarity NORMal | INVerted

:PULM:EXTernal :POLarity?

:PULM: INTernal:
MINimum

FREQuency <num>[<freqg suffix>] |MAXimum |

<] <z

:PULM: INTernal :FREQuency? [MAXimum|MINimum]

Y

:PULM: INTernal :GATE ON|OFF |10

:PULM: INTernal : GATE?

320

www.valuetronics.com

Chapter 4

Table 4-

10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:PULM:

INTernal :PERiod <num> [<time suffix>] |MAXimum]

MINimum

Y

:PULM:

INTernal :PERiod? [MAXimum |MINimum]

:PULM:

INTernal : TRIGger:SOURce INTernal |EXTernal

:PULM:

INTernal :TRIGger:SOURce? [MAXimum|MINimum]

:PULM:

INTernal :WIDTh <num> [<time suffix>] |MAXimum|MINimum

:PULM:

INTernal :WIDTh? [MAXimum|MINimum]

:PULM:

SLEW <value>[<time suffix>] |MAXimum|MINimum

:PULM:

SLEW? [MAXimum|MINimum]

:PULM:

SLEW:AUTO ON|OFF |10

:PULM:

SLEW:AUTO?

:PULM:
:PULM

SOURce SCALar

:SOURce INTernal |EXTernal

:PULM:

SOURce?

:PULM:

STATe ON|OFF|[1]0

:PULM:

STATe?

Kl < <zl Zz] 2|22 <| <]~~~

Pulse Subsystem

:PULSe:FREQuency <num>[<freq suffix>] [MAXimum|MINimum

:PULSe:FREQuency? [MAXimum|MINimum]

:PULSe:PERiod <num>[<time suffix>] |MAXimum|MINimum

:PULSe:PERiod? [MAXimum |MINimum]

:PULSe:WIDTh <num>[<time suffix>] |MAXimum|MINimum

:PULSe:WIDTh? [MAXimum|MINimum]

Ml] | | |

Chapter

4

www.valuetronics.com

321

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

Reference Oscillator Subsystem

:ROSCillator:SOURce?

:ROSCillator:SOURce:AUTO ON|OFF|1]0

:ROSCillator:SOURce:AUTO?

:ROSCillator:SOURce INTernal |EXTernal |NONE

<] |

<] |

Status Subsystem

:STATus:OPERation:CONDition?

:STATus:0PERation:ENABle <value>

:STATus:OPERation:ENABle?

:STATus:OPERation[:EVENt]?

:STATus:0PERation:NTRansition <value>

:STATus:OPERation:NTRansition?

:STATus:0OPERation:PTRansition <value>

:STATus:OPERation:PTRansition?

:STATus :PRESet

:STATus:QUEStionable:CONDition?

:STATus:QUEStionable:ENABle <value>

:STATus:QUEStionable:ENABle?

:STATus:QUEStionable [:EVENt]?

:STATus:QUEStionable:NTRansition <value>

:STATus:QUEStionable:NTRansition?

:STATus:QUEStionable:PTRansition <value>

T I < I I B O e B B I B B e i I

Tl I < I e B e e B A I B B e i I

322
www.valuetronics.com

Chapter 4

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:STATus:QUEStionable:PTRansition?

Y

Y

Sweep Subsystem

: SWEep

:CONTrol:STATe ON|OFF|1]0

:SWEep:

CONTrol:STATe?

:SWEep:

CONTrol:TYPE MASTer|SLAVe

:SWEep:

CONTrol:TYPE?

: SWEep

:DWEL]1 <num>[<time suffix>] |MAXimum|MINimum

:SWEep

:DWEL1? [MAXimum|MINimum]

:SWEep

:DWEL1:AUTO ON|OFF|1]0

: SWEep

:DWEL1:AUTO?

:SWEep:

GENeration STEPped|ANALog

:SWEep:

GENeration?

: SWEep

:MANual : POINt <num> |MAXimum |MINimum

:SWEep

:MANual :POINt? [MAXimum|MINimum]

:SWEep

:MANual [:RELative] <value>

: SWEep

:MANual [:RELative]?

:SWEep

:MARKer :STATe ON|OFF|1]0

:SWEep

:MARKer:STATe?

: SWEep

:MARKer : XFER

:SWEep

:MODE AUTO|MANual

: SWEep

:MODE?

: SWEep

:POINts <num>|MAXimum|MINimum

Kl <<l 22|22 2| <K|X|2 2|2 2|<|<|2Z2|2|2|2

Kl <<l 2Z2|2|Z22 2| <|<|2 2|2 2|« <|2Z2|2|2|2

Chapter

4

www.valuetronics.com

323

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

: SWEep

:POINts? [MAXimum|MINimum]

e

o

:SWEep:

STEP <value> [<freq suffix>] |[MAXimum|MINimum

:SWEep:

STEP? [MAXimum|MINimum]

:SWEep:

TIME <value>[<time suffix>] |MAXimum|MINimum

:SWEep:

TIME? [MAXimum|MINimum]

:SWEep:

TIME:AUTO ON|OFF |10

:SWEep:

TIME:AUTO?

:SWEep:

TIME:LLIMit <value>[<time suffix>] |MAXimum|MINimum

:SWEep:

TIME:LLIMit? [MAXimum|MINimum]

:SWEep:

TRIGger:SOURce IMMediate |BUS|EXTernal

:SWEep:

TRIGger:SOURce?

<l =<|lZzZlz|Z2|Zz2|Zz2|2|2Z2| 2

K|l=<|lZzZlz|Z2|z2|Zz2|2|2Z2| 2

System Subsystem

:SYSTem:ALTernate <value>|MAXimum|MINimum

:SYSTem:ALTernate? [MAXimum|MINimum]

:SYSTem:ALTernate:STATe ON|OFF |10

:SYSTem:ALTernate:STATe?

:SYSTem:COMMunicate:GPIB:ADDRess <number>

:SYSTem:DUMP : PRINter?

:SYSTem:ERRor?

:SYSTem: LANGuage CIIL|COMPatible
:SYSTem: LANGuage SCPI

:SYSTem:MMHead: SELect : AUTO ON|OFF |10

:SYSTem:MMHead: SELect : AUTO?

Kl || <Z| <l 2| <|22]|2|Z

Kl < <Z2| <l 2| <|22]|2|Z

324

www.valuetronics.com

Chapter 4

Table 4-10 836xxB/L SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family
N= Not supported by PSG Family

836208B
&
83640B

83620L
&
83640L

:SYSTem:

MMHead:SELect FRONt | REAR |NONE®

Y

Y

:SYSTem:

MMHead:SELect?

:SYSTem

:PRESet [:EXECute]

:SYSTem:

PRESet : SAVE

:SYSTem:

PRESet : TYPE FACTory|USER

:SYSTem:

PRESet : TYPE?

:SYSTem:

SECurity:COUNt <value>de

:SYSTem:

SECurity:COUNt? [MINimum |MAXimum]

:SYSTem:

SECurity[:STATe] ON|OFF|1]0°

:SYSTem

:SECurity[:STATe]?

:SYSTem:

VERSion?

KK KR KRR K

eI I e T B e I B Il

Trigger Subsystem

:TRIGger [:IMMediate]

:TRIGger:0ODELay <value>[time suffix] |MAXimum |MINimum

:TRIGger:ODELay? [MAXimum|MINimum]

:TRIGger:SOURce IMMediate |BUS|EXTernal

:TRIGger : SOURce?

Kl 2] 2| K

Kl =<lZzZ] 2|

Tsweep Subsystem

: TSWeep

Unit Subsystem

:UNIT:AM DB|PCT

:UNIT:AM?

Chapter 4

www.valuetronics.com

325

Command Reference
SCPI Command Compatibility

Table 4-10 836xxB/L SCPI Commands
Y= Supported by PSG Family 83620B 83620L
N= Not supported by PSG Family & &
83640B 83640L
:UNIT:POWer {<lvl suffix>} Y Y
:UNIT:POWer? Y Y

a. The identification information can be modifed for the PSG to reflect the signal generator that is being replaced.

Refer to “:SYSTem:IDN” on page 294 for more information.

b. A multiplier of zero is not allowed.

c. Since the PSG Family signal generators have no front panel millimeter head (source module) interface connector,

the “FRONT” suffix defaults to the rear connector.

d. Flash memory allows only a limited number of “writes and erasures”, excessive use of this command will reduce

the memory lifetime.

e. This command can take several hours to execute because the PSG memory size is much larger than the HP

836xx memory.

326
www.valuetronics.com

Chapter 4

Command Reference
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

Table 4-11 is a comprehensive list of 8373xB and 8371xB SCPI commands arranged by
subsystem. Commands that are supported by the PSG Family are identified, in addition to
commands that are unsupported. Use the legend within the table to determine command
compatibility.

Some of the PSG supported commands are subsets of the 8373xB and 8371xB commands.
When this occurs, the syntax supported by the PSG Family is shown in addition to the syntax
that is not supported.

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family 83 ’;&32B 63 78;2B
IEEE Common Commands
*CLS Y Y
*DMC N N
*EMC N N
*EMC? N N
*ESE <data> Y Y
*ESE? Y Y
*ESR? Y Y
*GMC? N N
*IDN?2 Y Y
*LMC? N N
*LRN? N N
*OPC Y Y
*OPC? Y Y
*OPT? N N

Chapter 4 327

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands

Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family 63 ';&32B 63 78;213
*PMC N N
*PSC Y Y
*PSC? Y Y
*RCL <reg_num> Y Y
*RMC N N
*RST Y Y
*SAV <reg_num> Y Y
*SRE <data> Y Y
*SRE? Y Y
*STB? Y Y
*TST? Y Y
*WAI Y Y
Abort Subsystem

:ABORt Y
Amplitude Modulation Subsystem

[:SOURce] :AM[:DEPTh] <val><unit>

[:SOURce] :AM[:DEPTh] <num> [<PCT>] | <num>DB

[:SOURce] :AM[:DEPTh] : STEP [: INCRement] incr |MINimum |

MAXimum |DEFault

[:SOURce] :AM: INTernal :FREQuency <num>[<freq suffix>] incr| Y

MINimum|MAXimum|DEFault

[:SOURce] :AM: INTernal :FREQuency : STEP [: INCRement] Y

328 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
[:SOURce] :AM: INTernal :FUNCtion SINusoid|SQUare|TRIangle| Y
RAMP |[NOISe |UNIForm|GAUSsian
[:SOURce] :AM: SENSitivity <val>|MIN|MAX |DEF N
[:SOURce] :AM: SOURce FEED N
[:SOURce] :AM: SOURce INTernal |EXTernal Y
[: SOURce] :AM: SOURce? Y
[:SOURce] :AM: STATe ON|OFF Y
[:SOURce] :AM: STATe? Y
[:SOURce] :AM: TYPE LINear |EXPonential Y
[:SOURce] :AM: TYPE? Y
Display Subsystem
:DISPlay[:WINDow] [:STATe] ON|OFF |10
:DISPlay[:WINDow] [:STATe]?
Initiate Subsystem
:INITiate:CONTinuous ON|OFF|1]0
:INITiate:CONTinuous?
Correction Subsystem
[:SOURce] :CORRection:FLATness [:DATA] <freg>,<corr.>, ... Y Y
<freg>, <corr.>
[:SOURce] :CORRection:FLATness:POINts <points> Y Y
[:SOURce] :CORRection[:STATe] ON|OFF Y Y
[:SOURce] :CORRection[:STATe] ? Y Y
[:SOURce] : CORRection:CSET[:SELect] tableno N N
Chapter 4 329

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
[:SOURce] :CORRection:CSET[:SELect]? N N
[:SOURce] : CORRection:CSET:STATe ON|OFF |10 N N
[:SOURce] :CORRection:CSET:STATe? N N
Frequency Modulation Subsystem
[:SOURce] :FM:COUPling AC|DC Y
[:SOURce] :FM:COUPling? Y
[:SOURce] :FM[:DEViation] <val><unit> Y
[:SOURce] :FM[:DEViation] : STEP [: INCRement] <val> Y
[<freq suffix>]
[:SOURce] :FM: INTernal :FREQuency <num>[<freqg suffix>]
[:SOURce] :FM: INTernal :FREQuency:STEP [: INCRement] incr|
MINimum|MAXimum|DEFault
[:SOURce] :FM: INTernal :FUNCtion SINusoid|SQUAre|TRIAngle| N
RAMP |UNIForm|GAUSsian
[:SOURce] :FM: SENSitivity? Y
[:SOURce] :FM: SOURce FEED N
[:SOURce] :FM:SOURce INTernal |[EXTernal Y
[:SOURce] :FM:STATe ON|OFF|1|0 Y
[:SOURce] :FM: STATe? Y
Frequency Subsystem
[:SOURce] :FREQuency [:CW| :FIXed] <num>[<freq suffix>]|UP| Y Y
DOWN | DEFault
[:SOURce] :FREQuency [:CW| :FIXed] [MAXimum|MINimum|DEFault]
[:SOURce] :FREQuency [:CW| :FIXed] : STEP <val><unit>
330 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
[:SOURce] :FREQuency [:CW| :FIXed] : STEP? Y Y
[:SOURce] :FREQuency :MULTiplier <val>|UP |DOWN|DEFaultP Y Y
[:SOURce] :FREQuency :MULTiplier? Y Y
[:SOURce] :FREQuency :MULTiplier:STEP[: INCRement] incr| N N
MINimum|MAXimum|DEFault
[:SOURce] :FREQuency :MULTiplier:STEP [: INCRement] ? N N
Memory Subsystem
:MEMory:CATalog[:ALL]? Y Y
:MEMory:CATalog:TABLe? N N
:MEMory :CATalog:MACRoO N N
:MEMory:RAM:INITialize N N
:MEMory: TABLe :FREQuency freq, ...freq|MINimum|MAXimum N N
:MEMory : TABLe : FREQuency? MINimum|MAXimum N N
:MEMory : TABLe : FREQuency : POINt s ? N N
:MEMory:TABLe : LOSS [:MAGNitude] cf, ...cf|MINimum|MAXimum N N
:MEMory: TABLe : LOSS [:MAGNitude] ? N N
:MEMory : TABLe : LOSS [:MAGNitude] :POINts? N N
:MEMory:TABLe:SELect tableno N N
:MEMory: TABLe: SELect? N N
Modulation Subsystem
[: SOURce] :MODulation:AOFF Y
[:SOURce] :MODulation:STATe ON|OFF
Chapter 4 331

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
[:SOURce] :MODulation:STATe? Y
Output Subsystem
:OUTPut : IMPedance? N N
:OUTPut : PROTection[:STATe] ON|OFF N N
:OUTPut :PROTection[:STATe] ? N N
:OUTPut [: STATe] ONJ|OFF|1]0 Y Y
:OUTPut [: STATe] ? Y Y
Phase Modulation Subsystem
[:SOURce] :PM:COUPling AC|DC Y
[:SOURce] :PM[:DEViation] <val><unit> Y
[:SOURce] :PM[:DEViation] : STEP [: INCRement] Y
[:SOURce] :PM: INTernal :FREQuency <val><unit> Y
[:SOURce] :PM: INTernal : FREQuency : STEP [: INCRement] Y
[:SOURce] :PM: INTernal :FUNCtion SINusoid|SQUare|TRIAngle| Y
RAMP |UNIForm|GAUSsian
[:SOURce] :PM:RANGe AUTO|LOW|HIGH Y
[:SOURce] :PM: SENSitivity sens|MINimum|MAXimum|DEFault N
[:SOURce] :PM: SOURce FEED N
[:SOURce] :PM: SOURce INTernal |[EXTernal Y
[:SOURce] :PM:STATe ON|OFFE|1|0 Y
Power Subsystem
[:SOURce] :POWer:ALC:PMETer pmeter |MINimum|MAXimum|DEFault N
[:SOURce] :POWer:ALC:PMETer? N
332 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
[:SOURce] :POWer:ALC:PMETer:STEP incr |[MINimum|MAXimum | N N
DEFault
[: SOURce] :POWer:ALC:PMETer: STEP? N N
[:SOURce] :POWer:ALC:SOURce PMETer N N
[:SOURce] :POWer :ALC:SOURce INTernal |DIODe Y Y
[: SOURce] :POWer : ALC: SOURce? Y Y
[: SOURce] :POWer :ATTenuation:AUTO ONCE N N
[:SOURce] :POWer :ATTenuation:AUTO ON|OFF Y Y
[:SOURce] :POWer:ATTenuation:AUTO? Y Y
[:SOURce] :POWer [:LEVel] ampl |MINimum |MAXimum|UP |DOWN | Y Y
DEFault
[:SOURce] :POWer [:LEVel]? Y Y
[:SOURce] :POWer[:LEVel] :STEP incr|MINimum|MAXimum|DEFault Y Y
[:SOURce] :POWer [:LEVel] : STEP? Y Y
[: SOURce] :POWer :PROTection:STATe ON|OFF N N
[:SOURce] :POWer :PROTection:STATe? N N
Pulse Modulation Subsystem
[:SOURce] :PULM:EXTernal :POLarity NORMal | INVerted Y
[:SOURce] :PULM:EXTernal :POLarity? Y
[:SOURce] :PULM:SOURce INTernal |EXTernal Y
[: SOURce] :PULM: SOURce? Y
[:SOURce] :PULM:STATe ON|OFF|1]|0 Y
[:SOURce] :PULM:STATe? Y
Chapter 4 333

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B

Pulse Subsystem

[:SOURce] :PULSe:DELay delay |MINimum|MAXimum|UP | DOWN | Y

DEFault

[:SOURce] :PULSe:DELay? Y

[:SOURce] :PULSe:DELay:STEP <num>[<time suffix>] [DEFault] Y

[:SOURce] :PULSe:DELay:STEP? [DEFault] Y

[:SOURce] :PULSe:DOUBRle [: STATE] ON|OFF N

[:SOURce] :PULSe:DOUBle [: STATE] ? N

[:SOURce] :PULSe:FREQuency freq|MINimum|MAXimum|UP |DOWN | Y

DEFault

[: SOURce] :PULSe : FREQuency? Y

[:SOURce] :PULSe:FREQuency:STEP freq|DEFault Y

[:SOURce] :PULSe:FREQuency:STEP? [MIN|MAX|DEF] Y

[:SOURce] :PULSe:PERiod <num>[<time suffix>] |UP|DOWN Y

[:SOURce] :PULSe:PERiod? Y

[:SOURce] :PULSe:PERiod:STEP <num> [<time suffix>] Y

[:SOURce] :PULSe:PERiod:STEP? Y

[:SOURce] :PULse:TRANSition[:LEADing] SLOW|MEDium|FAST N

[:SOURce] :PULSe:TRANsition[:LEADing]? N

[:SOURce] :PULSe:TRANsition:STATe ON|OFF N

[:SOURce] :PULSe: TRANsition:STATe? N

[:SOURce] :PULSe:WIDTh MAXimum|MINimum|UP |DOWN |DEFault Y

[:SOURce] :PULSe:WIDTh? [MAXimum|MINimum|DEFault] Y
334 Chapter 4

www.valuetronics.com

Table 4-11 8373xB and 8371xB SCPI Commands

Command Reference
SCPI Command Compatibility

Y= Supported by PSG Family

N= Not supported by PSG Family

83731B
&
83732B

83711B
&
83712B

[:SOURce] :PULSe:WIDTh:STEP <num> [<time suffix>] |DEFault

Y

[:SOURce] :PULSe:WIDTh:STEP?

[MINimum |MAXimum |DEFault]

Y

Reference Oscillator Subsystem

[:SOURce] :ROSCillator:SOURce?

Status Subsystem

:STATus:0OPERation:CONDition?

:STATus:OPERation:ENABle <value>

:STATus:OPERation:ENABle?

:STATus:OPERation[:EVENt] ?

:STATus:0OPERation:NTRansition <value>

:STATus:OPERation:NTRansition?

:STATus:0OPERation:PTRansition <value>

:STATus:0OPERation:PTRansition?

:STATus:PRESet

:STATus:QUEStionable:CONDition?

:STATus:QUEStionable:ENABle <value>

:STATus:QUEStionable:ENABle?

:STATus:QUEStionable [: EVENt]

?

:STATus:QUEStionable:NTRansition <value>

:STATus:QUEStionable:NTRansition?

:STATus:QUEStionable:PTRansition <value>

:STATus:QUEStionable:PTRansition?

T I o B B e e I A R e B B A I I

T I e e B e e I A R e B B A I B

Chapter 4
www.valuetronics.com

335

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family & &
83732B 83712B
System Subsystem
:SYSTem:COMMunicate:GPIB:ADDRess <number> Y Y
:SYSTem: COMMunicate:GPIB:ADDRess? Y Y
:SYSTem:COMMunicate:PMETer : ADDRess Y Y
:SYSTem:COMMunicate :PMETer : ADDRess? Y Y
:SYSTem:ERRoOr? Y Y
:SYSTem:KEY keycode |[MINimum|MAXimum N N
:SYSTem:KEY? N N
:SYSTem: LANGuage "COMP=8673" |"COMPatibility=8673" N N
:SYSTem:LANGuage "SCPI" Y Y
:SYSTem: LANGuage? Y Y
:SYSTem:PRESet Y Y
:SYSTem:VERSion? Y Y
Trigger Subsystem
:TRIGger [:SEQuence| : STARt] : SOURce IMMediate|EXTernal N
:TRIGger [:SEQuence]| : STARt] : SOURce? N
:TRIGger: SEQuence2:STOP:SOURce IMMediate|EXTernal N
: TRIGger : SEQuence2: STOP : SOURce? N
:TRIGger: SEQuence2:SLOPe N
Unit Subsystem
:UNIT:FREQuency {<freq suffix>} N N
:UNIT:FREQuency?
:UNIT:POWer {<1lvl suffix>} Y Y
336 Chapter 4

www.valuetronics.com

Command Reference
SCPI Command Compatibility

Table 4-11 8373xB and 8371xB SCPI Commands
Y= Supported by PSG Family 83731B | 83711B
N= Not supported by PSG Family a3 'fng o 78;213
:UNIT:POWer? Y Y
:UNIT:TIME N N
:UNIT:TIME? N N
:UNIT:VOLTage {<lvl suffix>} N N
:UNIT:VOLTage? N N

a. The identification information can be modifed for the PSG to reflect the signal generator that is being replaced.

Refer to “:SYSTem:IDN” on page 294 for more information.

b. A multiplier of zero is not allowed.

Chapter 4
www.valuetronics.com

337

Command Reference
SCPI Command Compatibility

338 Chapter 4
www.valuetronics.com

Symbols

phase modulation subsystem keys
®M Tone 2 Ampl Percent of Peak softkey, 272
softkey, 269, 272, 273, 274, 276, 277, 278

Numerics

softkey, 279

1 kHz softkey, 279

10 kHz softkey, 279

100 kHz softkey, 279

8340B/41B, compatible commands, 295
836xxB/L, compatible commands, 309
8371xB, compatible commands, 327
8373xB, compatible commands, 327

A

abort function, 9
address
GPIB address, 7
IP address, 15
Adjust Phase softkey, 242
Agilent
BASIC, 35
SICL, 34
VISA, 34
Agilent BASIC, 4
Agilent VISA, 7, 14, 26
ALC Off On softkey, 282
All softkey, 179, 183
AM softkeys
AM Depth, 229, 230
AM Depth Couple Off On, 231
AM Mode Normal Deep, 222
AM Off On, 228
AM Path 1 2, 220
AM Rate, 226
AM Start Rate, 226
AM Stop Rate, 224
AM Sweep Rate, 225
AM Tone 1 Rate, 226
AM Tone 2 Ampl Percent Of Peak, 224
AM Tone 2 Rate, 224
AM Type LIN EXP, 229
Ampl softkeys
Ampl, 283
Ampl Offset, 286
Ampl Ref Off On, 284
Ampl Ref Set, 284

Index

Ampl Start, 285
Ampl Stop, 285
Amplitude hardkey, 283, 287
amplitude modulation subsystem keys
AM Depth, 229, 230
AM Depth Couple Off On, 231
AM Mode Normal Deep, 222
AM Off On, 228
AM Path 12, 220
AM Rate, 226
AM Start Rate, 226
AM Stop Rate, 224
AM Sweep Rate, 225
AM Tone 1 Rate, 226
AM Tone 2 Ampl Percent Of Peak, 224
AM Tone 2 Rate, 224
AM Type LIN EXP, 229
Dual-Sine, 227
Ext Coupling DC AC, 223
Ext Impedance 50 Ohm 600 Ohm, 223
Ext1, 228
Ext2, 228
Gaussian, 226
Incr Set, 221, 232
Internal 1, 228
Internal 2, 228
Negative, 227
Noise, 227
Positive, 227
Ramp, 227
Sine, 227
Square, 227
Swept-Sine, 227
Triangle, 227
Uniform, 226
ascii, 12
Atten Hold Off On softkey, 283
Auto softkey, 279
automatic leveling control, 279, 282

B

backward compatible SCPI commands
*IDN? output, 294
8340B/41B, 295
836xxB/L, 309
8371xB, 327
8373xB, 327
BASIC

www.valuetronics.com

339

Index

ABORT, 9 Copy File softkey, 180, 186
CLEAR, 12 correction subsystem keys
ENTER, 13 Configure Cal Array, 233, 234
LOCAL, 11 Flatness Off On, 236
LOCAL LOCKOUT, 10 Load From Selected File, 233
OUTPUT, 12 Preset List, 235
REMOTE, 10 Store To File, 235

Binary softkey, 177, 185

binary values, 153 D

bit status, how and what to monitor, 105
bit values, 104

boolean SCPI parameters, 146

boolean, numeric response data, 148
Brightness softkey, 174

Bus softkey, 217, 225, 248, 259, 265, 273

data questionable filters
calibration transition, 134
frequency transition, 128
modulation transition, 132
power transition, 125
transition, 122

data questionable groups

C calibration status, 133
C/C++, 4 frequency status, 127
include files, 33 modulation status, 130
calibration subsystem keys power status, 124
DCFM/DC®M Cal, 162 status, 120
clear command, 12 data questionable registers
clear function, 12 calibration condition, 134
CLS command, 108 calibration event, 134
command compatibility. See backwards calibration event enable, 135
compatible SCPI commands condition, 121
command prompt, 15, 91 event, 122
command tree, SCPI, 143 event enable, 123
commands, 9, 10, 11, 12, 13 frequency condition, 128
comments, adding to Seq[n] Reg[nn] softkey, 184 frequency event, 129
communication subsystem keys frequency event enable, 129
GPIB Address, 163 modulation condition, 131
Hostname, 163 modulation event, 132
IP Address, 164 modulation event enable, 132
Meter Address, 164 power condition, 125
Meter Channel A B, 165 power event, 126
Meter Timeout, 166 power event enable, 126
Power Meter, 165 data transfer, 3
Reset RS-232, 168 dBm softkey, 219
RS-232 Baud Rate, 166 dBuV softkey, 219
RS-232 ECHO Off On, 167 dBuVemf softkey, 219
RS-232 Timeout, 168 DC softkey, 266
Trans/Recv Pace None Xon, 167, 169 DCFM/DC®M Cal softkey, 162
computer interface, 3 decimal values, 153
condition registers Delete File softkey, 187
description, 113 Delete softkeys
Configure Cal Array softkey, 233, 234 Delete All Binary Files, 181
controller, 8 Delete All Files, 181
340

www.valuetronics.com

Delete All List Files, 182
Delete All State Files, 182
Delete All UFLT Files, 182
Delete File, 183
developing programs, 33
Diagnostic Info softkey, 156, 170, 171, 172, 173
diagnostic subsystem keys
Diagnostic Info, 170, 171, 172, 173
Installed Board Info, 170
Options Info, 171, 172
discrete response data, 148
discrete SCPI parameters, 146
display contrast hardkeys, 175
display subsystem keys
Brightness, 174
display contrast, 175
Inverse Video Off On, 175
Update in Remote Off On, 176
Do Power Search softkey, 280
DOS prompt, 20
download libraries, 7, 14
Dual-Sine softkey, 227, 250, 266, 275
Dwell Type List Step softkey, 256

E

echo, lack of, 23
EnableRemote, 10
enter function, 13
Error Info softkey, 208
errors, 16
ESE commands, 108
event enable register
description, 113
event registers
description, 113
Ext softkey, 217
Ext softkeys
Ext, 225, 248, 259, 265, 273
Ext Coupling DC AC, 223, 245, 271
Ext Detector, 281
Ext Detector Coupling Factor, 281
Ext Impedance 50 Ohm 600 Ohm, 223, 246, 271
Ext Pulse, 292
Extl, 228, 276
Ext2, 228, 251, 276
Ext1 softkey, 251
extended numeric SCPI parameter, 145

Index

F

file
systems, 185
types, 185
file transfer, 24
files, 33
filters
See also transition filters
negative transition, description, 113
positive transition, description, 113
firmware status, monitoring, 105
Flatness Off On softkey, 236
FM softkeys
FM Dev, 252
FM Dev Couple Off On, 253
FM ®M Normal High BW, 270
FM Off On, 251
FM Path 1 2, 244
FM Rate, 249
FM Start Rate, 249
FM Stop Rate, 246
FM Sweep Rate, 247
FM Tone 1 Rate, 249
FM Tone 2 Amp Percent of Peak, 247
FM Tone 2 Rate, 246
forgiving listening and precise talking, 144
Free Run softkey, 217, 225, 248, 259, 265, 273
Freq softkeys
Freq, 237
Freq Multiplier, 238
Freq Offset, 238, 239
Freq Ref Off On, 239
Freq Ref Set, 239
Freq Start, 240
Freq Stop, 240
Frequency hardkey, 237, 241
frequency modulation subsystem keys
Bus, 248
Dual-Sine, 250
Ext, 248
Ext Coupling DC AC, 245
Ext Impedance 50 Ohm 600 Ohm, 246
Extl, 251
Ext2, 251
FM Dev, 252
FM Dev Couple Off On, 253
FM Off On, 251
FM Path 1 2, 244
FM Rate, 249

www.valuetronics.com

341

Index

FM Start Rate, 249

FM Stop Rate, 246

FM Sweep Rate, 247

FM Tone 1 Rate, 249

FM Tone 2 Amp Percent of Peak, 247

FM Tone 2 Rate, 246

Free Run, 248

Gaussian, 249

Incr Set, 245

Internal 1, 251

Internal 2, 251

Negative, 250

Noise, 250

Positive, 250

Ramp, 250

Sine, 250

Square, 250

Swept-Sine, 250

Triangle, 250

Trigger Key, 248

Uniform, 249
frequency subsystem keys

Adjust Phase, 242

Freq, 237

Freq Multiplier, 238

Freq Offset, 238, 239

Freq Ref Off On, 239

Freq Ref Set, 239

Freq Start, 240

Freq Stop, 240

Frequency, 237, 241

Phase Ref Set, 241

Ref Oscillator Source Auto Off On, 243
FTP, 24
Function Generator 1 softkey, 268
Function Generator 2 softkey, 268

G

Gaussian, 226
Gaussian softkey, 249, 267, 274
Getting Started Wizard, 8
GPIB, 3

address, 7

cables, 8

card installation, 5

configuration, 7

controller, 8

interface, 5

10 libraries, 7

listener, 8

on UNIX, 6

overview, 5

program examples, 34

SCPI commands, 9

talker, 8

verifying operation, 8
GPIB Address softkey, 163

H

hardware status, monitoring, 105
Help Mode Single Cont softkey, 209
hexadecimal values, 153
hostname, 15

configuration, 15
Hostname softkey, 163
HyperTerminal, 28

I

iabort, 9
ibloc, 11
ibstop, 9
ibwrt, 13
iclear, 12
IEEE 488.2 common command keys
Diagnostic Info, 156
RECALL Reg, 158
Run Complete Self Test, 161
Save Reg, 159
Save Seq[n] Reg[nn], 159
Select Seq:, 158
IEEE standard, 5
igpibllo, 11
Incr Set hardkey, 221, 232, 245, 270, 278
Incr Set, 289
Installed Board Info softkey, 170
instrument status, monitoring, 102
Int softkeys
Int Doublet, 292
Int Free-Run, 292
Int Gated, 292
Int Triggered, 292
integer response data, 147
interface, 3
interface cards, 5
Internal 1 softkeys, 228
Internal 2 softkeys, 228

342
www.valuetronics.com

Internal softkeys
Internal, 281
Internal 1, 251, 276
Internal 1 Monitor, 268
Internal 2, 251, 276
Internal 2 Monitor, 268
Internal Square, 292
Inverse Video Off On softkey, 175
IO libraries, 2, 3, 5, 7, 9, 26
IP address, 15
configuration, 15
See also hostname
IP Address softkey, 164
iremote, 10

J

Java
example, 91

L

LabView, 4
LAN, 3
configuration, 15
hostname configuration, 15
interface, 3
IO libraries, 14
IP address configuration, 15
overview, 14
program examples, 64
sockets, 64
sockets LAN, 14
TELNET, 20
verifying operation, 15
VXI-11, 14, 64, 65
languages, 32
LF Out softkeys
LF Out Amplitude Into 50 Ohms, 263
LF Out Freq, 266
LF Out Off On, 268
LF Out Start Freq, 266
LF Out Stop Freq, 263
LF Out Sweep Rate, 264
LF Out Tone 1 Freq, 266
LF Out Tone 2 Ampl % of Peak, 264
LF Out Tone 2 Freq, 263
libraries, 2, 3, 7, 9, 14, 26
List softkey, 178, 185
list/sweep subsystem keys
Points, 262

Index

Bus, 259
Dwell Type List Step, 256
Ext, 259
Free Run, 259
Load List From Step Sweep, 260
Manual Mode Off On, 258
Manual Point, 257
Preset List, 261
Step Dwell, 262
Sweep Direction Down Up, 254
Sweep Type List Step, 260
Trigger Key, 259

listener, 8

Load From Selected File softkey, 183, 187, 233

Load List From Step Sweep softkey, 260
local echo, lack of, 23
local function, 11
local lockout function, 10
low frequency output subsystem keys
Bus, 265
DC, 266
Dual-Sine, 266
Ext, 265
Free Run, 265
Function Generator 1, 268
Function Generator 2, 268
Gaussian, 267
Internal 1 Monitor, 268
Internal 2 Monitor, 268
LF Out Amplitude Into 50 Ohms, 263
LF Out Freq, 266
LF Out Off On, 268
LF Out Start Freq, 266
LF Out Stop Freq, 263
LF Out Sweep Rate, 264
LF Out Tone 1 Freq, 266
LF Out Tone 2 Ampl % of Peak, 264
LF Out Tone 2 Freq, 263
Negative, 267
Noise, 266
Positive, 267
Ramp, 266
Sine, 266
Square, 266
Swept-Sine, 266
Triangle, 266
Trigger Key, 265
Uniform, 267

www.valuetronics.com

343

Index

M

Manual Mode Off On softkey, 258
manual operation, 10
Manual Point softkey, 257
mass memory subsystem keys
Binary, 185
Copy File, 186
Delete File, 187
List, 185
Load From Selected File, 187
Rename File, 188
State, 185
Store To File, 188
User Flatness, 185
memory subsystem keys
All, 179, 183
Binary, 177
Copy File, 180
Delete All Binary Files, 181
Delete All Files, 181
Delete All List Files, 182
Delete All State Files, 182
Delete All UFLT Files, 182
Delete File, 183
List, 178
Load From Selected File, 183
Rename File, 184
Seq[n] Reg[nn], adding comment, 184
State, 178
Store To File, 184
User Flatness, 179
Meter Address softkeys, 164
Meter Channel A B softkey, 165
Meter Timeout softkey, 166
Mod On/Off hardkey, 189
MS-DOS Command Prompt, 15
mV softkey, 219
mVemf softkey, 219

N

National Instruments

NI-488.2, 34

NI-488.2 include files, 33

VISA, 34
National Instruments VISA, 7, 14, 26
Negative softkey, 227, 250, 267, 275
negative transition filter, description, 113
NI-488.2, 7, 14, 26

EnableRemote, 10

ibler, 12

ibloc, 11

ibrd, 13

ibstop, 9

ibwrt, 13

SetRWLS, 11
Noise softkey, 227, 250, 266, 275
numeric boolean response data, 148
numeric SCPI parameter, 144
numeric, extended SCPI parameter, 145

(0]

octal values, 153
OPC commands, 108
Options Info softkey, 171, 172
output command, 12
output function, 12
output subsystem keys
Mod On/Off, 189
RF On/Off, 189

P
parameter types. See SCPI commands parameter
types
paths, SCPI command tree, 143
PCI-GPIB, 34
PERL
example, 89
personal computer, PC, 5
®M Tone 2 Ampl Percent of Peak, 272
phase modulation subsystem keys
®M Dev, 277
®M Dev Couple Off On, 278
®M Off On, 276
®M Path 12, 269
®M Rate, 274
®M Start Rate, 274
®M Stop Rate, 272
®M Sweep Rate, 273
®M Tone 1 Rate, 274
®M Tone 2 Ampl Percent of Peak, 272
®M Tone 2 Rate, 272
Bus, 273
Dual-Sine, 275
Ext, 273
Ext Coupling DC AC, 271
Ext Impedance 50 Ohm 600 Ohm, 271

344
www.valuetronics.com

Extl1, 276

Ext2, 276

FM ®M Normal High BW, 270

Free Run, 273

Gaussian, 274

Incr Set, 270, 278

Internal 1, 276

Internal 2, 276

Negative, 275

Noise, 275

Positive, 275

Ramp, 275

Sine, 275

Square, 275

Swept-Sine, 275

Triangle, 275

Trigger Key, 273

Uniform, 274
Phase Ref Set softkey, 241
ping program, 15
polling method (status registers), 106
ports, 69
Positive softkey, 227, 250, 267, 275
positive transition filter, description, 113
Power Meter softkey, 165
Power On Last Preset softkey, 210
Power Search Manual Auto softkey, 280
power subsystem keys

100 Hz, 279

1 kHz, 279

10 kHz, 279

100 kHz, 279

ALC Off On, 282

Ampl, 283

Ampl Offset, 286

Ampl Ref Off On, 284

Ampl Ref Set, 284

Ampl Start, 285

Ampl Stop, 285

Amplitude, 283, 287

Atten Hold Off On, 283

Auto, 279

Do Power Search, 280

Ext Detector, 281

Ext Detector Coupling Factor, 281

Internal, 281

Power Search Manual Auto, 280

Set ALC Level, 280

Set Atten, 282

Index

Source Module, 281
precise talking and forgiving listening, 144
Preset hardkey, 210
Preset List softkey, 235, 261
Preset Normal User softkey, 212
programming languages, 32
pulse modulation subsystem keys

Ext Pulse, 292

Incr Set, 289

Int Doublet, 292

Int Free-Run, 292

Int Gated, 292

Int Triggered, 292

Internal Square, 292

Pulse Delay, 288

Pulse Off On, 293

Pulse Period, 290

Pulse Rate, 289

Pulse Width, 291
Pulse softkeys

Pulse Delay, 288

Pulse Off On, 293

Pulse Period, 290

Pulse Rate, 289

Pulse Width, 291

Q

quotes, SCPI command use of, 152

R

Ramp softkey, 227, 250, 266, 275
real response data, 147
RECALL Reg softkey, 158
Ref Oscillator Source Auto Off On softkey, 243
register system overview, 102
registers
See also status registers
condition, description, 113
data questionable calibration condition, 134
data questionable calibration event, 134
data questionable calibration event enable, 135
data questionable condition, 121
data questionable event, 122
data questionable event enable, 123
data questionable frequency condition, 128
data questionable frequency event, 129
data questionable frequency event enable, 129
data questionable modulation condition, 131

www.valuetronics.com

345

Index

data questionable modulation event, 132
data questionable modulation event enable, 132

data questionable power condition, 125
data questionable power event, 126

data questionable power event enable, 126

in status groups (descriptions), 113
overall system, 103
standard event status, 115
standard event status enable, 116
standard operation condition, 118
standard operation event, 119
standard operation event enable, 119
status byte, 111

remote
annunciator, 94

remote function, 10

remote interface, 2
GPIB, 6
LAN, 15
RS-232, 26

Rename File, 184

Rename File softkey, 188

Reset RS-232 softkey, 168

response data types. See SCPI commands

response types

RF On/Off hardkey, 189
RS-232, 3

address, 94

baud rate, 27

cable, 27

configuration, 27

echo, 27

flow control, 27

format parameters, 29

interface, 27

IO libraries, 26

overview, 26

program examples, 93

settings, baud rate, 94

verifying operation, 28
RS-232 Baud Rate softkey, 166
RS-232 ECHO 0ff On softkeys, 167
RS-232 Timeout softkeys, 168
Run Complete Self Test softkey, 161

S

Save Reg softkey, 159
Save Seq[n] Reg[nn] softkey, 159

Save User Preset softkey, 212
SCPI, 4, 5
SCPI command subsystems
amplitude modulation, 220
calibration, 162
communication, 163
correction, 233
diagnostic, 170
display, 174
frequency, 237
frequency modulation, 244
IEEE 488.2 common commands, 154
list/sweep, 254
low frequency output, 263
mass memory, 185
memory, 177
output, 189
phase modulation, 269
power, 279
pulse modulation, 288
status, 190
system, 208
trigger, 215
unit, 219
SCPI commands. See table of contents
SCPI commands, 9
backward compatible
*IDN? output, 294
8340B/41B, 295
836xxB/L, 309
8371xB, 327
8373xB, 327
command tree paths, 143
for status registers
IEEE 488.2 common commands, 108
parameter and response types, 144
parameter types
boolean, 146
discrete, 146
extended numeric, 145
numeric, 144
string, 147
response data types
discrete, 148
integer, 147
numeric boolean, 148
real, 147
string, 148
root command, 143

346
www.valuetronics.com

SCPI register model, 102
Screen Saver softkeys
Screen Saver, 213
Screen Saver Delay:, 213
Screen Saver Off On, 214
Select Seq: softkey, 158
service request method (status registers), 106
service request method, using, 107
Set ALC Level softkey, 280
Set Atten softkey, 282
SetRWLS, 11
SICL, 7, 14, 26, 34
iabort, 9
iclear, 12
igpibllo, 11
iprintf, 13
iremote, 10
iscanf, 13
signal generator
monitoring status, 102
Sine softkey, 227, 250, 266, 275
Single Sweep softkey, 216
sockets
example, 69, 72
Java, 91
LAN, 64, 69
PERL, 89
UNIX, 69
Windows, 70
sockets LAN, 19
®M Rate, 274
®M Start Rate, 274
®M Stop Rate, 272
®M Sweep Rate, 273
®M Tone 1 Rate, 274
®M Tone 2 Rate, 272
softkey, 183, 184, 215, 262
Points, 262
100 Hz, 279
®M Dev, 277
®M Dev Couple Off On, 278
®M Off On, 276
®M Path 12, 269
®M Tone 2 Ampl Percent of Peak, 272
phase modulation subsystem keys
®M Dev Couple Off On, 278
softkeys
Diagnostic Info, 156
Extl1, 251

Index

RECALL Reg, 158

Run Complete Self Test, 161

Save Reg, 159

Save Seq[n] Reg[nn], 159

Select Seq:, 158
Source Module softkey, 281
Square softkey, 227, 250, 266, 275
SRE commands, 108
SRQ command, 107
SRQ method (status registers), 106
standard event status enable register, 116
standard event status group, 114
standard event status register, 115
standard operation condition register, 118
standard operation event enable register, 119
standard operation event register, 119
standard operation status group, 117
standard operation transition filters, 119
State softkey, 178, 185
status byte

overall register system, 103
status byte group, 110
status byte register, 111
status groups

data questionable, 120

data questionable calibration, 133

data questionable frequency, 127

data questionable modulation, 130

data questionable power, 124

registers, 113

standard event, 114

standard operation, 117

status byte, 110
status registers

See also registers

accessing information, 105

bit values, 104

hierarchy, 102

how and what to monitor, 105

in status groups, 113

overall system, 103

programming, 101

SCPI commands, 108

SCPI model, 102

setting and querying, 108

standard event, 115

standard event status enable, 116

system overview, 102

using, 104

www.valuetronics.com

347

Index

STB command, 108 Bus, 217, 225

Step Dwell softkey, 262 Ext, 217, 225

Store To File softkey, 184, 188, 235 Free Run, 217, 225

string response data, 148 Single Sweep, 216

string SCPI parameter, 147 Sweep Repeat Single Cont, 215

strings, quote usage, 152 Trigger In Polarity Neg Pos, 217

subsystems, SCPI commands. See SCPI command Trigger Key, 217, 225
subsystems Trigger Out Polarity Neg Pos, 216

Sweep Direction Down Up softkey, 254 troubleshooting

Sweep Repeat Single Cont, 215 ping response errors, 16

Sweep Type List Step softkey, 260 RS-232, 29

Swept-Sine softkey, 227, 250, 266, 275

system requirements, 33 U

system subsystem keys Uniform, 226

Error Info, 208

Uniform softkey, 249, 267, 274
Help Mode Single Cont, 209 Y ’ ’

unit subsystem keys

Power On Last Preset, 210 dBm. 219

Preset, 210 dBu\’/ 219

Preset Normal User, 212 dBth:,mf 219

Save User Preset, 212 mV. 219 ’

Screen Saver Delay:, 213 mV(’amf 219

Screen Saver Mode, 213 uVv 21,;,

Screen Saver Off On, 214 uV(:,mf 219

View Next Error Message, 208 UNIX, 5’

UNIX TELNET command, 23

T Update in Remote Off On softkey, 176
talker, 8 User Flatness softkey, 179, 185
TCP/1P, 19 uV softkey, 219
TELNET uVemf softkey, 219

example, 23

UNIX, 22 Vv

using, 20 View Next Error Message softkey, 208
Trans/Recv Pace None Xon softkey, 167, 169 viPrintf. 12
transition filters VISA, 7’, 14, 26

See also filters
data questionable, 122
data questionable calibration, 134

include files, 33
library, 34

. scanf, 13
data questionable frequency, 128 viClear. 12
data questionable modulation, 132 viPrintf’ 12
2

data questionable power, 125 viTerminate. 9
M

description, 113 VISA Assistant, 8
standard operation, 119 Visual Basic, 4
M

Triangle softkey, 227, 250, 266, 275 viTerminate. 9
b

Trigger softkeys VXI-11. 17. 64
Trigger In Polarity Neg Pos, 217 progr;.mn’ling 65
Trigger Key, 217, 225, 248, 259, 265, 273 with SICL 65’
Trigger Out Polarity Neg Pos, 216 with VIS A’ 66

trigger subsystem keys i

348

www.valuetronics.com

	Programming Guide
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	IO Libraries
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting IO Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting IO Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using TELNET LAN
	Using FTP

	Using RS-232
	1. Selecting IO Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group

	4 Command Reference
	Command Reference Information
	SCPI Command Listings
	Softkey and Hardkey Cross Reference
	Supported Signal Generator Series

	SCPI Basics
	Common Terms
	Command Syntax
	Command Types
	Command Tree
	Command Parameters and Responses
	Program Messages
	File Name Variables
	MSUS (Mass Storage Unit Specifier) Variable
	Quote Usage with SCPI Commands
	Binary, Decimal, Hexadecimal, and Octal Formats

	IEEE 488.2 Common Commands
	*CLS
	*ESE
	*ESE?
	*ESR?
	*IDN?
	*OPC
	*OPC?
	*PSC
	*PSC?
	*RCL
	*RST
	*SAV
	*SRE
	*SRE?
	*STB?
	*TRG
	*TST?
	*WAI

	Calibration subsystem
	:DCFM

	Communication Subsystem
	:GPIB:ADDRess
	:LAN:HOSTname
	:LAN:IP
	:PMETer:ADDRess
	:PMETer:CHANnel
	:PMETer:IDN
	:PMETer:TIMEout
	:SERial:BAUD
	:SERial:ECHO
	:SERial:RECeive:PACE
	:SERial:RESet
	:SERial:TOUT
	:SERial:TRANsmit:PACE

	Diagnostic Subsystem
	[:CPU]:INFOrmation:BOARds
	[:CPU]:INFOrmation:CCOunt:ATTenuator
	[:CPU]:INFOrmation:CCOunt:PON
	[:CPU]:INFOrmation:DISPlay:OTIMe
	[:CPU]:INFOrmation:OPTions
	[:CPU]:INFOrmation:OPTions:DETail
	[:CPU]:INFOrmation:OTIMe
	[:CPU]:INFOrmation:REVision
	[:CPU]:INFOrmation:SDATe

	Display Subsystem
	:BRIGhtness
	:CAPture
	:CONTrast
	:INVerse
	:REMote
	[:WINDow][:STATe]

	Memory Subsystem
	:CATalog:BINary
	:CATalog:LIST
	:CATalog:STATe
	:CATalog:UFLT
	:CATalog[:ALL]
	:COPY[:NAME]
	:DATA
	:DELete:ALL
	:DELete:BINary
	:DELete:LIST
	:DELete:STATe
	:DELete:UFLT
	:DELete[:NAME]
	:FREE[:ALL]
	:LOAD:LIST
	:MOVE
	:STATe:COMMent
	:STORe:LIST

	Mass Memory Subsystem
	:CATalog
	:COPY
	:DATA
	:DELete[:NAME]
	:LOAD:LIST
	:MOVE
	:STORe:LIST

	Output Subsystem
	:MODulation[:STATe]
	[:STATe]

	Status Subsystem
	:OPERation:CONDition
	:OPERation:ENABle
	:OPERation:NTRansition
	:OPERation:PTRansition
	:OPERation[:EVENt]
	:PRESet
	:QUEStionable:CALibration:CONDition
	:QUEStionable:CALibration:ENABle
	:QUEStionable:CALibration:NTRansition
	:QUEStionable:CALibration:PTRansition
	:QUEStionable:CALibration[:EVENt]
	:QUEStionable:CONDition
	:QUEStionable:ENABle
	:QUEStionable:FREQuency:CONDition
	:QUEStionable:FREQuency:ENABle
	:QUEStionable:FREQuency:NTRansition
	:QUEStionable:FREQuency:PTRansition
	:QUEStionable:FREQuency[:EVENt]
	:QUEStionable:MODulation:CONDition
	:QUEStionable:MODulation:ENABle
	:QUEStionable:MODulation:NTRansition
	:QUEStionable:MODulation:PTRansition
	:QUEStionable:MODulation[:EVENt]
	:QUEStionable:NTRansition
	:QUEStionable:POWer:CONDition
	:QUEStionable:POWer:ENABle
	:QUEStionable:POWer:NTRansition
	:QUEStionable:POWer:PTRansition
	:QUEStionable:POWer[:EVENt]
	:QUEStionable:PTRansition
	:QUEStionable[:EVENt]

	System Subsystem
	:CAPability
	:ERRor[:NEXT]
	:HELP:MODE
	:PON:TYPE
	:PRESet
	:PRESet:ALL
	:PRESet:PERSistent
	:PRESet:TYPE
	:PRESet[:USER]:SAVE
	:SSAVer:DELay
	:SSAVer:MODE
	:SSAVer:STATe
	:VERSion

	Trigger Subsystem
	:ABORt
	:INITiate:CONTinuous[:ALL]
	:INITiate[:IMMediate][:ALL]
	:TRIGger:OUTPut:POLarity
	:TRIGger[:SEQuence]:SLOPe
	:TRIGger[:SEQuence]:SOURce
	:TRIGger[:SEQuence][:IMMediate]

	Unit Subsystem (:UNIT)
	:POWer

	Amplitude Modulation Subsystem
	:AM[1]|2...
	:AM:INTernal:FREQuency:STEP[:INCRement]
	:AM:MODE
	:AM[1]|2:EXTernal[1]|2:COUPling
	:AM[1]|2:EXTernal[1]|2:IMPedance
	:AM[1]|2:INTernal[1]:FREQuency:ALTernate
	:AM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:AM[1]|2:INTernal[1]:SWEep:RATE
	:AM[1]|2:INTernal[1]:SWEep:TRIGger
	:AM[1]|2:INTernal[1]|2:FREQuency
	:AM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:AM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:AM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:AM[1]|2:SOURce
	:AM[1]|2:STATe
	:AM[1]|2:TYPE
	:AM[1]|2[:DEPTh]:EXPonential
	:AM[1]|2[:DEPTh][:LINear]
	:AM[1]|2[:DEPTh][:LINear]:TRACk
	:AM[:DEPTh]:STEP[:INCRement]

	Correction Subsystem ([:SOURce]:CORRection)
	:FLATness
	:FLATness:LOAD
	:FLATness:PAIR
	:FLATness:POINts?
	:FLATness:PRESet
	:FLATness:STORe
	[:STATe]

	Frequency Subsystem ([:SOURce])
	:FREQuency:FIXed
	:FREQuency:MODE
	:FREQuency:MULTiplier
	:FREQuency:OFFSet
	:FREQuency:OFFSet:STATe
	:FREQuency:REFerence
	:FREQuency:REFerence:STATe
	:FREQuency:STARt
	:FREQuency:STOP
	:FREQuency[:CW]
	:PHASe:REFerence
	:PHASe[:ADJust]
	:ROSCillator:SOURce
	:ROSCillator:SOURce:AUTO

	Frequency Modulation Subsystem ([:SOURce])
	:FM[1]|2...
	:FM:INTernal:FREQuency:STEP
	:FM[1]|2:EXTernal[1]|2:COUPLing
	:FM[1]|2:EXTernal[1]|2:IMPedance
	:FM[1]|2:INTernal[1]:FREQuency:ALTernate
	:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:FM[1]|2:INTernal[1]:SWEep:RATE
	:FM[1]|2:INTernal[1]:SWEep:TRIGger
	:FM[1]|2:INTernal[1]|2:FREQuency
	:FM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:FM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:FM[1]|2:SOURce
	:FM[1]|2:STATe
	:FM[1]|2[:DEViation]
	:FM[1]|2[:DEViation]:TRACk

	List/Sweep subsystem ([:SOURce])
	:LIST:DIRection
	:LIST:DWELl
	:LIST:DWELl:POINts
	:LIST:DWELl:TYPE
	:LIST:FREQuency
	:LIST:FREQuency:POINts
	:LIST:MANual
	:LIST:MODE
	:LIST:POWer
	:LIST:POWer:POINts
	:LIST:TRIGger:SOURce
	:LIST:TYPE
	:LIST:TYPE:LIST:INITialize:FSTep
	:LIST:TYPE:LIST:INITialize:PRESet
	:SWEep:DWELl
	:SWEep:POINts

	Low Frequency Output Subsystem ([:SOURce]:LFOutput)
	:AMPLitude
	:FUNCtion[1]:FREQuency:ALTernate
	:FUNCtion[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:FUNCtion[1]:SWEep:RATE
	:FUNCtion[1]:SWEep:TRIGger
	:FUNCtion[1]|2:FREQuency
	:FUNCtion[1]|2:SHAPe
	:FUNCtion:NOISe
	:FUNCtion[1]|2:SHAPe:RAMP
	:SOURce
	LF Out softkeys:LF Out Off On;low frequency output subsystem keys:LF Out Off On

	Phase Modulation subsystem
	:PM[1]|2...
	:PM:INTernal:FREQuency:STEP[:INCRement]
	:PM[1]|2:BANDwidth|BWIDth
	:PM[1]|2:EXTernal[1]|2:COUPling
	:PM[1]|2:EXTernal[1]|2:IMPedance
	:PM[1]|2:INTernal[1]:FREQuency:ALTernate
	:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent
	:PM[1]|2:INTernal[1]:SWEep:RATE
	:PM[1]|2:INTernal[1]:SWEep:TRIGger
	:PM[1]|2:INTernal[1]|2:FREQuency
	:PM[1]|2:INTernal[1]|2:FUNCtion:NOISe
	:PM[1]|2:INTernal[1]|2:FUNCtion:RAMP
	:PM[1]|2:INTernal[1]|2:FUNCtion:SHAPe
	:PM[1]|2:SOURce
	:PM[1]|2:STATe
	:PM[1]|2[:DEViation]
	:PM[1]|2[:DEViation]:TRACk
	:PM[:DEViation]:STEP[:INCRement]

	Power Subsystem ([:SOURce])
	:POWer:ALC:BANDwidth|BWIDth
	:POWer:ALC:BANDwidth|BWIDth:AUTO
	:POWer:ALC:LEVel
	:POWer:ALC:SEARch
	:POWer:ALC:SOURce
	:POWer:ALC:SOURce:EXTernal:COUPling
	:POWer:ALC[:STATe]
	:POWer:ATTenuation
	:POWer:ATTenuation:AUTO
	:POWer:MODE
	:POWer:REFerence
	:POWer:REFerence:STATe
	:POWer:STARt
	:POWer:STOP
	:POWer[:LEVel][:IMMediate]:OFFSet
	:POWer[:LEVel][:IMMediate][:AMPLitude]

	Pulse Modulation Subsystem ([:SOURce])
	:PULM:INTernal[1]:DELay
	:PULM:INTernal[1]:DELay:STEP
	:PULM:INTernal[1]:FREQuency
	:PULM:INTernal[1]:PERiod
	:PULM:INTernal[1]:PERiod:STEP[:INCRement]
	:PULM:INTernal[1]:PWIDth
	:PULM:INTernal[1]:PWIDth:STEP
	:PULM:SOURce
	:PULM:SOURce:INTernal
	:PULM:STATe

	SCPI Command Compatibility
	:SYSTem:IDN
	8340B/41B Compatible Commands (firmware ³ C.01.21)
	836xxB/L Compatible SCPI Commands
	8373xB and 8371xB Compatible SCPI Commands

	Index

