Errata

Title & Document Type: 8753E Network Analyzer Service Guide

Manual Part Number: 08753-90374

Revision Date: February 1999

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

www.valuetronics.com

Service Guide HP 8753E Network Analyzer

Printed in USA

HP part number: 08753-90374 Supersedes October 1998 Printed in USA February 1999

Notice.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Network Analyzer Documentation Set

The Installation and Quick Start Guide familiarizes you with the network analyzer's front and rear panels, electrical and environmental operating requirements, as well as procedures for installing, configuring, and verifying the operation of the analyzer.

The User's Guide shows how to make measurements, explains commonly-used features, and tells you how to get the most performance from your analyzer.

The Quick Reference Guide provides a summary of selected user features.

The HP-IB **Programming** and Command Reference Guide provides programming information for operation of the network analyzer under HP-IB control.

The HP BASIC Programming Examples Guide provides a tutorial introduction using BASIC programming examples to demonstrate the remote operation of the network analyzer.

The System **Verification** and Test

Guide provides the system verification and performance tests and the Performance Test Record for your analyzer.

Contents

1.	Service Equipment and Analyzer Options	
	Table of Service Test Equipment 1-	-1
	Principles of Microwave Connector Care	-5
	Analyzer Options Available	7
	Option 1D5, High Stability Frequency Reference	7
	Option 002, Harmonic Mode	-7
	Option 006, 6 GHz Operation	-7
	Option 010, Time Domain	.7
	Option 011, Receiver Configuration	-7
	Option 075,750 Impedance	-8
	Option 1DT, Delete Display	-8
	Option 1CM, Rack Mount Flange Kit Without Handles 1-	-8
	Option 1CP, Rack Mount Flange Kit With Handles 1-	8
	Service and Support Options	.9
	Option W32	.9
	Option $W34$	-9
r	System Varification and Darformance Tests	
4.	System Specification and refformance lesis	.1
	Instrument Specifications	$\frac{1}{2}$
	System Varification Procedure	$\frac{2}{2}$
	Derformance Tests	2
	How to Confirm Derformance to System Specifications	3
	How to Confirm Derformance to Instrument Specifications	3
	Certificate of Calibration	- <u></u> Δ
	Sections in This Chapter 2	-5
	Derformance Test Decord	6
	System Varification Cycle and Kit Pa cartification	.7
	UD 9752E System Varification	8
	Initialization	0
	Magurament Calibration 21	1
	Device Varification 21	1 //
		. +

In Case of Difficulty	2-17
1. Test Port Output Frequency Range and Accuracy	2-18
In Case of Difficulty	2-20
2. External Source Mode Frequency Range	2-21
InCaseofDifficulty	2-23
3. Test Port Output Power Accuracy	2-24
In Case of Difficulty	2-26
4. Test Port Output Power Range and Linearity	2-27
In Case of Difficulty	2-29
5. Minimum R Channel Level	2-31
In Case of Difficulty	2-33
6. Test Port Input Noise Floor Level	2-37
Port 1 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 3 kHz)	2-38
Port 1 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 10 Hz)	2-39
Port 2 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 10 Hz)	2-39
Port 2 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 3 kHz)	2-40
Port 2 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz).	2-40
Port 2 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 10 Hz).	2-41
Port 1 Noise Floor Level for 3 GHz to 6 GHz (IF BW = 10 Hz).	2-41
Port 1 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz).	2-41
In Case of Difficulty	2-42
7. Test Port Input Frequency Response	243
Power Meter Calibration for Test Port 1 from 300 kHz to 3 GHz.	2-44
Test Port 2 Input Frequency Response from 300 kHz to 3 GHz	2-47
Power Meter Calibration on Port 2 from 300 kHz to 3 GHz	2-48
Test Port 1 Input Frequency Response from 300 kHz to 3 GHz	249
Power Meter Calibration for Test Port 2 from 3 GHz to 6 GHz.	2-49
Test Port 1 Input Frequency Response from 3 GHz to 6 GHz	2-51
Power Meter Calibration on Test Port 1 from 3 GHz to 6 GHz.	2-52
Test Port 2 Input Frequency Response from 3 GHz to 6 GHz	2-53
In Case of Difficulty	2-53
8. Test Port Crosstalk	2-54
Crosstalk to Test Port 2 from 300 kHz to 3 GHz	2-55
Crosstalk to Test Port 1 from 300 kHz to 3 GHz	2-55
Crosstalk to Test Port 1 from 3 GHz to 6 GHz	2-55
Crosstalk to Test Port 2 from 3 GHz to 6 GHz	2-56
In Case of Difficulty	2-56
9. Calibration Coefficients	2-58
First Full 2-Port Calibration	2-59
Directivity (Forward) Calibration Coefficient	2-61
Source Match (Forward) Calibration Coefficient	2-61

Transmission Tracking (Forward) Calibration Coefficient	. 2-61
Reflection Tracking (Forward) Calibration Coefficient	. 2-61
Load Match (Reverse) Calibration Coefficient	2-61
Transmission Tracking (Reverse) Calibration Coefficient	. 2-62
Second Full 2-Port Calibration	2-62
Load Match (Forward) Calibration Coefficient	2-64
Directivity (Reverse) Calibration Coefficient	2-64
Source Match (Reverse) Calibration Coefficient	2-64
Reflection Tracking (Reverse) Calibration Coefficient	2-64
10. System Trace Noise (Only for Analyzers without Option 006)	2-65
System Trace Noise for A/R Magnitude	2-66
System Trace Noise for A/R Phase	2-66
System Trace Noise for B/R Magnitude	2-66
System Trace Noise for B/R Phase	2-67
In Case of Difficulty	2-67
11 System Trace Noise (Only for Analyzers with Option 006)	2-68
System Trace Noise for A/R Magnitude from 30 kHz to 3 GHz	2-69
System Trace Noise for A/R Magnitude from 3 GHz to 6 GHz.	2-69
System Trace Noise for A/R Phase from 3 GHz to 6 GHz	· 2 07 2-69
System Trace Noise for A/R Phase from 30 kHz to 3 GHz	2-70
System Trace Noise for B/R Magnitude from 30 kHz to 3 GHz	. <u>-</u> 70 2-70
System Trace Noise for B/R Magnitude from 3 GHz to 6 GHz.	2-70
System Trace Noise for B/R Phase from 3 GHz to 6 GHz	2-70
System Trace Noise for B/R Phase from 30 kHz to 3 GHz	2-70
In Case of Difficulty	2-71
12 Test Port Input Impedance	2.71
In Case of Difficulty	2-76
13 Test Port Receiver Magnitude Dynamic Accuracy	2-77
Initial Calculations	2-79
Power Meter Calibration	2-80
Adapter Removal Calibration	2-83
Magner Test Port 2 Magnitude Dynamic Accuracy	2.05
Measure Test Port 1 Magnitude Dynamic Accuracy	2.03
In Case of Difficulty	2-87
14 Test Port Deceiver Magnitude Compression	2.07
The Test 1 of Receiver Magnitude Compression	2.07
Test Port 1 Magnitude Compression	2-90
In Case of Difficulty	2-91 2_01
15 That Dart Deceiver Dage Compression	2-91
Tost Port 2 Phase Compression	2-92 2_03
That Dort 1 Dhase Compression	2-93
	2-94

	In Case of Difficulty	2-94
	16. Test Port Output/Input Harmonics (Option 002 Analyzers	
	without Option 006 Only)	2-95
	Test Port Output Worst Case 2nd Harmonic	2-96
	Test Port Output Worst Case 3rd Harmonic	2-97
	Port 1 Input Worst Case 2nd Harmonic	2-97
	Port 1 Input Worst Case 3rd Harmonic	2-99
	Port 2 Input Worst Case 2nd Harmonic	2-99
	Port 2 Input Worst Case 3rd Harmonic	2-100
	17. Test Port Output/Input Harmonics (Option 002 Analyzers with	
	Option 006 Only)	2-101
	Test Port Output Worst Case 2nd Harmonic	2-102
	Test Port Output Worst Case 3rd Harmonic	2-103
	Port 1 Input Worst Case 2nd Harmonic	2-104
	Port 1 Input Worst Case 3rd Harmonic .	2-105
	Port 2 Input Worst Case 2nd Harmonic	2-105
	Port 2 Input Worst Case 3rd Harmonic .	2-106
	18. Test Port Output Harmonics (Analyzers without Option 002)	2-107
	Procedure	2-108
2a.	Performance Test Record For Analyzers with a Frequency Pange of 30 kHz to 3 GHz	
	Tor Analyzers with a Frequency Range of 50 Kitz to 5 Gitz	2 a -1
2b.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz	2a-1 2b-1
2b.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants	2a-1 2b-1
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E	2a-1 2b-1 3-2
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions	2a-1 2b-1 3-2 3-5
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44)	2a-1 2b-1 3-2 3-5 3-7
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45)	2a-1 2b-1 3-2 3-5 3-7 3-8
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 48)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 47)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 47) Power Sensor Calibration Factor Entry	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 47) Power Sensor Calibration Factor Entry IF Amplifier Correction Constants (Test 51)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12 3-16
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 48) RF Output Power Correction Constants (Test 47) Power Sensor Calibration Factor Entry IF Amplifier Correction Constants (Test 51) ADC Offset Correction Constants (Test 52)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12 3-16 3-17
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 48) RF Output Power Correction Constants (Test 47) Power Sensor Calibration Factor Entry IF Amplifier Correction Constants (Test 51) ADC Offset Correction Constants (Test 52) Sampler Magnitude and Phase Correction Constants (Test 53)	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12 3-16 3-17 3-18
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 48) RF Output Power Correction Constants (Test 47) Power Sensor Calibration Factor Entry IF Amplifier Correction Constants (Test 51) ADC Offset Correction Constants (Test 52) Sampler Magnitude and Phase Correction Constants (Test 53) Power Sensor Calibration Factor Entry	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12 3-16 3-17 3-18 3-19
2b. 3.	Performance Test Record For Analyzers with a Frequency Range of 30 kHz to 6 GHz Adjustments and Correction Constants Post-Repair Procedures for HP 8753E A9 Switch Positions Source Default Correction Constants (Test 44) Source Pretune Default Correction Constants (Test 45) Analog Bus Correction Constants (Test 46) Source Pretune Correction Constants (Test 48) Source Pretune Correction Constants (Test 47) Power Sensor Calibration Factor Entry IF Amplifier Correction Constants (Test 51) ADC Offset Correction Constants (Test 52) Sampler Magnitude and Phase Correction Constants (Test 53) Power Sensor Calibration Factor Entry Determine the Insertion Loss of the Cable at 1 GHz	2a-1 2b-1 3-2 3-5 3-7 3-8 3-9 3-10 3-11 3-12 3-16 3-17 3-18 3-19 3-20

Cavity Oscillator Frequency Correction Constants (Test 54)	3-28
Spur Search Procedure with a Filter	3-30
Spurs Search Procedure without a Filter	3-31
Serial Number Correction Constants (Test 55)	3-34
Option Numbers Correction Constants (Test 56)	3-36
Initialize EEPROMs (Test 58)	3-37
EEPROM Backup Disk Procedure	3-38
Correction Constants Retrieval Procedure	3-40
Loading Firmware	3-41
Loading Firmware into an Existing CPU	3-41
In Case of Difficulty	3-42
Loading Firmware into a New CPU	3-43
In Case of Difficulty	3-43
Fractional-N Frequency Range Adjustment	3-45
Frequency Accuracy Adjustment	3-48
Instruments with Option 1D5 Only	3-51
In Case of Difficulty	3-51
High/Low Band Transition Adjustment	3-52
Fractional-N Spur Avoidance and FM Sideband Adjustment	3-54
Source Spur Avoidance Tracking Adjustment	3-58
Unprotected Hardware Option Numbers Correction Constants	3-60
Sequences for Mechanical Adjustments	3-62
How to Load Sequences from Disk	3-62
How to Set Up the Fractional-N Frequency Range Adjustment	3-63
How to Set Up the High/Low Band Transition Adjustments	3-63
How to Set Up the Fractional-N Spur Avoidance and FM Sideband	
Adjustment	3-64
Sequence Contents	3-64
Sequence for the High/Low Band Transition Adjustment	3-64
Sequences for the Fractional-N Frequency Range Adjustment .	3-65
Sequences for the Fractional-N Avoidance and FM Sideband	
Adjustment	3-66
Start Troubleshooting Here	
Assembly Replacement Sequence	4-2
Having Your Analyzer Serviced	4-2
Step 1. Initial Observations	4-3
Initiate the Analyzer Self-Test	4-3
Step 2. Operator's Check	4-4
	4-4
Procedure	4-4

4.

Step 3. HP-IB Systems Check	4-6
If Using a Plotter or Printer	4-7
If Using an External Disk Drive .	4-7
Troubleshooting Systems with Multiple Peripherals	48
Troubleshooting Systems with Controllers	4-8
Step 4. Faulty Group Isolation	4-9
Power Supply	4-10
Check the Rear Panel LEDs	4-10
Check the A8 Post Regulator LEDs	4-10
Digital Control	4-11
Observe the Power Up Sequence	4-11
Verify Internal Tests Passed	4-12
Source	4-13
Phase Lock Error Messages	413
Check Source Output Power	4-13
No Oscilloscope or Power Meter? Try the ABUS	4-15
Receiver	4-16
Observe the A and B Input Traces	4-16
Receiver Error Messages	4-17
Faulty Data	4-17
Accessories	4-18
Accessories Error Messages	4-18
5. Power Supply Troubleshooting	
Assembly Replacement Sequence	5-2
Simplified Block Diagram	5-3
Start Here	54
Check the Green LED and Red LED on A15	54
Check the Green LEDs on A8	5-5
Measure the Post Regulator Voltages	5-5
If the Green LED of the A15 Is not ON Steadily	5-7
Check the Line Voltage, Selector Switch, and Fuse	5-7
If the Red LED of the A15 Is ON	5-8
Check the A8 Post Regulator	5-8
Verify the A15 Preregulator	5-9
Check for a Faulty Assembly	5-11
Check the Operating Temperature	5-13
Inspect the Motherboard	5-13
If the Green LEDs of the A8 are not all ON	5-14
Remove AS, Maintain A15W1 Cable Connection	5-14
Check the A8 Fuses and Voltages	5-14

Remove the Assemblies	5-15
Briefly Disable the Shutdown Circuitry	5-10 5-18
	5 10
Charle the Europe and Isolate AQ	5 20
The Translashing the second isolate A8	5-20
Fan Iroublesnooling	5-22
Fan Speeds	5-22
Check the Pan Voltages	5-22
Short A8TP3 to Ground	5-22
Intermittent Problems	5-23
6. Digital Control Troubleshooting	
Digital Control Group Block Diagram	6-2
Assembly Replacement Sequence	6-3
CPU Troubleshooting (A9)	64
A9 CC Switch Positions	6-4
Checking A9 CPU Red LED Patterns	6-5
Display Troubleshooting (A2, A18, A19, A27)	6-7
Evaluating your Display	6-7
Backlight Intensity Check	6-8
Red Green or Blue Pixels Specifications	6-9
Dark Pixels Specifications	6-10
Newton's Rijs	6-10
Troubleshooting a White Display	6-12
Troubleshooting a Black Display	6-12
Troubleshooting a Display with Color Problems	6-12
Front Panel Troubleshooting (A1 A 2)	6-13
Check Front Panel L EDs After Preset	6-13
Identify the Stuck Key	6-14
	6-16
Test Using a Controller	6-16
Pun the Internal Diagnostic Tests	6 17
It the Foult Is Intermittant	6_10
Peneet Tost Function	6.10
	6 10
	0-19

7.	Source Troubleshooting
	Assembly Replacement Sequence
	Before You Start Troubleshooting
	Power
	1. Source Default Correction Constants (Test 44)
	2. RF Output Power Correction Constants (Test 47)
	3. Sampler Magnitude and Phase Correction Constants (Test 53)
	Phase Lock Error
	Phase Lock Loop Error Message Check
	A4 Sampler/Mixer Check
	A3 Source and All Phase Lock Check
	YO Coil Drive Check with Analog Bus
	YO Coil Drive Check with Oscilloscope
	A12 Reference Check
	Analog Bus Method
	Oscilloscope Method
	100 kHz Pulses
	PLREF Waveforms
	REF Signal At A11TP9
	High Band REF Signal
	Low Band REF Signal
	FN LO at A12 Check
	4 MHz Reference Signal
	2ND LO Waveforms
	90 Degree Phase Offset of 2nd LO Signals in High Band 7
	In-Phase 2nd LO Signals in Low Band
	A12 Digital Control Signals Check
	L ENREF Line
	L HB and L LB Lines
	A13/A14 Fractional-N Check
	Fractional-N Check with Analog Bus
	A14 VCO Range Check with Oscilloscope
	A14 VCO Exercise
	A14 Divide-by-N Circuit Check
	A14-to-A13 Digital Control Siials Check
	H MB Line
	A7 Pulse Generator Check
	A7 Pulse Generator Check with Spectrum Analyzer
	Rechecking the A13/A14 Fractional-N
	A7 Pulse Generator Check with Oscilloscope
	All Phase Lock Check

	Phase Lock Check with PLL DIAG	7-36
	Phase Lock Check by Signal Examination	7-36
	Source Group Troubleshooting Appendix	7-38
	Troubleshooting Source Problems with the Analog Bus	7-38
	Phase Lock Diagnostic Tools	7-38
	Phase Lock Error Messages	7-38
	Phase Lock Diagnostic Routines	7-39
	Broadband Power Problems	7-39
8. I	Receiver Troubleshooting	
	Assembly Replacement Sequence	8-2
	Receiver Failure Error Messages	8-3
	Check the A and B Inputs	8-4
	Troubleshooting When All Inputs Look Bad	8-6
	Run Internal Tests 18 and 17	8-6
	Check 2nd LO	8-6
	Check the 4 MHz REF Signal	8-7
	Check A10 by Substitution or Signal Examination	8-8
	Troubleshooting When One or More Inputs Look Good	8-11
	Check the 4 kHz Signal	8-11
	Check the Trace with the Sampler Correction Constants Off	8-12
	Check 1st LO Signal at Sampler/Mixer	8-14
	Check 2nd LO Signal at Sampler/Mixer	8-14
0	A accession Tranklash a ding	
9. <i>I</i>	Accessories Troubleshooting	0.2
		9-2
	Inspect the Accessories	9-3
	Inspect the Iest Port Connectors and Calibration Devices	9-5
	Coble Test	9-5
	Valle Test	9-5
	verify shorts and Opens	9-0
10.	Service Key Menus and Error Messages	
	Service Key Menus.	10-1
	Error Messages	10-1
	Service Key Menus Internal Diagnostics	10-2
	Tests Menu	10-3
	Test Ontions Menu	10-5
	Self Diagnose Softkey	10-7
	Test Descriptions	10-7
	Internal Tests	10-7
		- V I

External Tests	10-11
System Verification Tests	10-12
Adjustment Tests	10-13
Display Tests	10-15
Test Patterns	10-16
Service Key Menus - Service Features	10-18
Service Modes Menu	10-18
Service Modes More Menu	10-21
Analog Bus	10-22
Description of the Analog Bus	10-22
The Main ADC	10-23
The Frequency Counter	10-23
Analog In Menu	10-24
Analog Bus Nodes	10-26
A3 Source	10-26
A10 Digital IF	10-33
All Phase Lock	10-34
A12 Reference	10-40
A14 Fractional-N (Digital)	1043
PEEK/POKE Menu	1046
Firmware Revision Softkey	0-47
HP-IB Service Mnemonic Definitions	0-48
Invoking Tests Remotely	1048
Analog Bus Codes	1049
Error Messages	10-50
11. Error Terms	
Error Terms Can Also Serve a Diagnostic Purpose	11-1
Full Two-Port Error-Correction Procedure	11-3
Error Term Inspection	11-8
If Error Terms Seem Worse than Typical Values	11-9
Uncorrected Performance	11-9
Error Term Descriptions	11-10
Directivity (EDF and EDR)	11-11
Description	11-11
Significant System Components	11-11
Affected Measurements	11-11
Source Match (ESF and ESR)	1-12
Description	11-12
Significant System Components	1-12
Affected Measurements	1-12

Reflection Tracking (ERF and ERR)	11-13
Description	11-13
Significant System Components	11-13
Affected Measurements	11-13
Isolation (Crosstalk, EXF and EXR)	11-14
Description	11-14
Significant System Components	. 11-14
Affected Measurements	11-14
Load Match (ELF and ELR).	11-15
Description	11-15
Significant System Components	11-15
Affected Measurements	11-15
Transmission Tracking (ETF and ETR)	11-16
Description	11-16
Significant System Components	. 11-16
Affected Measurements	11-16
12. Theory of Operation	
How the HP 8753E Works	12-1
The Built-In Synthesized Source	12-2
The Source Step Attenuator	12-2
The Built-In Test Set	12-3
The Receiver Block	12-3
The Microprocessor	12-3
Required Peripheral Equipment	12-3
A Close Look at the Analyzer's Functional Groups	12-4
Power Supply Theory	12-5
A15 Preregulator	12-5
Line Power Module	12-6
Preregulated Voltages	12-6
Regulated +5 V Digital Supply	12-6
Shutdown Indications: the Green LED and Red LED	12-6
A8 Post Regulator	12-7
Voltage Indications: the Green LEDs	12-7
Shutdown Circuit	12-7
Variable Pan Circuit and Air Flow Detector	12-7
Display Power	12-8
Probe Power	12-8
Digital Control Theory	12-8
Al Front Panel	12-10
A2 Front Panel Processor	12-10

A9 CPU/A10 Digital IF	12-10
	12-10
Main RAM	12-11
EEPROM	12-11
Digital Signal Processor	12-11
A18 Display	12-11
A19 GSP	12-12
A27 Inverter	12-12
A16 Rear Panel	12-12
Source Theory Overview	12-14
A14/A13 Fractional-N	12-14
A12 Reference	12-14
A7 Pulse Generator	12-15
All Phase Lock	12-15
A3 Source	12-15
Source Super Low Band Operation	12-15
Source Low Band Operation	12-16
Source High Band Operation	12-19
Source Operation in other Modes/Features	12-22
Frequency Offset	12-22
Harmonic Analysis (Option 002)	12-22
External Source Mode	12-23
Tuned Receiver Mode	12-25
Signal Separation	12-26
The Built-In Test Set	12-26
A21 and A22 Test Port Couplers	12-26
A23 LED Front Panel	12-26
A24 Transfer Switch	12-26
A25 Test Set Interface	12-26
Receiver Theory	12-28
A4/A5/A6 Sampler/Mixer	12-29
The Sampler Circuit in High Band .	12-29
The Sampler Circuit in Low Band or Super Low Band	12-29
The 2nd LO Signal	12-29
The Mixer Circuit	12-30
A10 Digital IF	12-30

13. Replaceable Parts

	Replacing an Assembly	13-2
	Rebuilt-Exchange Assemblies	13-3
	Ordering Information	13-3
	Replaceable Part Listings	13-5
	Major Assemblies, Top	13-6
	Major Assemblies, Bottom	13-8
	Cables, Top	13-10
	Cables, Bottom	13-12
	Cables, Front	13-14
	Cables, Rear	13-16
	Cables, Source	13-18
	Front Panel Assembly, Outside	13-20
	Front Panel Assembly, Inside	13-22
	Rear Panel Assembly	13-24
	Rear Panel Assembly. Option 1D5	13-26
	Hardware, Top	13-28
	Hardware, Bottom	13-30
	Hardware. Front	13-32
	Hardware. Test Set Deck	13-34
	Hardware, Disk Drive Support	13-36
	Hardware, Memory Deck	13-38
	Hardware. Preregulator	13-40
	Chassis Parts. Outside	1342
	Chassis Parts. Inside	1344
	Miscellaneous	1346
14.	Assembly Replacement and Post-Repair Procedures	
	Replacing an Assembly	14-2
	Procedures described in this chapter	14-3
		144
	Tools Required	14-4
	Removal	144
	Replacement	144
	Covers	14-6
	Tools Required	14-6
	Removing the top cover	14-6
	Removing the side covers	146
	Removing the bottom cover	14-6
	Front Panel Assembly	14-8
	Tools Required	148

Removal	14-8
Replacement	14-8
Front Panel Keyboard and Interface Assemblies (Al, A2)	14-10
Tools Required	14-10
Removal	14-10
Replacement	14-10
Display Lamp and Inverter Assemblies (A18, A27)	14-12
Tools Required	14-12
Removal	14-12
Replacement	14-13
Rear Panel Assembly	1416
Tools Required	14-16
Removal	14-16
Replacement	14-17
Rear Panel Interface Board Assembly (A16)	14-20
Tools Required	14-20
Removal	14-20
Replacement	14-20
A3 Source Assembly	14-22
Tools Required	1422
Removal	1422
Replacement	14-24
A4, Å5, A6 Samplers and A7 Pulse Generator	1426
Tools Required	14-26
Removal	14-26
Replacement	14-28
AS, Å10 , All, A12 , A13 , A14 Card Cage Boards	14-30
Tools Required	1430
Removal	14-30
Replacement	14-30
A9 CPU Board	14-32
Tools Required	14-32
Removal	14-32
Replacement	14-32
A9BT1 Battery	14-36
Tools Required	14-36
Removal	14-36
Replacement	14-36
A15 Preregulator	14-38
Tools Required	14-38
Removal	1438

Replacement	14-38
A17 Motherboard Assembly	14-40
Tools Required	14-40
Removal	14-40
Replacement	14-43
A19 Graphics Processor	1444
Tools Required	1444
Removal	1444
Replacement	1444
A20 Disk Drive Assembly	1446
Tools Required	14-46
Required Diskette	1446
Preliminary Instructions	14-46
Install the replacement disk drive	14-48
Test the disk-eject function, and adjust if required.	1448
Reinstall the covers.	1449
A21. A22 Test Port Couplers	14-50
Tools Required	14-50
Removal	14-50
Replacement	14-50
A23 LED Board	14-52
Tools Required	14-52
Removal	14-52
Replacement	14-52
A24 Transfer Switch	14-54
Tools Required	14-54
Removal	14-54
Replacement	14-54
A25 Test. Set Interface	1456
Tools Required	1456
Removal	1456
Renlacement	1456
A26 High Stability Frequency Reference (Ontion 1D5) Assembly	14-58
Tools Required	14-58
Removal	14-58
Replacement	14-58
Bl Fan Assembly	14-60
Tools Required	14-60
Removal	14-60
Renlacement	1460
Post-Repair Procedures for HP 8753E	1462
Replacement	1460 1462

15. Safety and Licensing

Notice	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
Certification																				
warranty																				
Assistance																				
Shipment for Service .				•																
Safety Symbols	•	•			•					•										•
Instrument Markings								•												•
Safety Considerations .				•	•															•
Safety Earth Ground .				•	•															•
Before Applying Power		•		•	•	•	•	•	•		•		•		•		•	•	•	•
servicing																				
General				•																•
Compliance with Germa	n	F	T	Z	Er	nis	ssi	on	S	R	eq	uir	en	ne	nts	ş.				•
Compliance with Germa	ın	N	No	ise	e .	Re	qu	ir	em	ner	ıts									

Index

Figures

2-1.	System Verification Test Setup	2-10
2-2.	Connections for Measurement Calibration Standards	2-12
2-3.	Transmission Calibration Setup	2-13
2-4.	Connections for the 20 dB Verification Device	2-14
2-5.	Connections for the 50 dB Verification Device	2-15
2-6.	Mismatch Device Verification Setup 1	2-15
2-7.	Mismatch Device Verification Setup 2	2-16
2-8.	Test Port Output Frequency Range and Accuracy Test Setup	2-19
2-9.	External Source Mode Frequency Range Test Setup	2-22
2-10.	Source Output Power Accuracy Test Setup	2-25
2-11.	Test Port Output Power Range and Accuracy Test Setup	2-28
2-12.	Minimum R Channel Level Test Setup	2-32
2-13.	Flexible RF Cable Location	2-34
2-14.	Connections for Substituting the R Sampler (A4)	2-35
2-15.	Setup for Checking the R Sampler (A4)	2-36
2-16.	Source Input Noise Floor Test Setup	2-38
2-17.	Setup for Power Meter Calibration on Test Port 1	2-44
2-18.	Test Port 2 Input Frequency Response Test Setup	2-47
2-19.	Setup for Power Meter Calibration on Test Port 2	2-48
2-20.	Test Port 1 Input Frequency Response Test Setup	2-49
2-21.	Setup for Power Meter Calibration on Test Port 2	2-50
2-22.	Setup for Test Port 1 Input Frequency Response	2-51
2-23.	Setup for Power Meter Calibration on Test Port 1	2-52
2-24.	Test Port 2 Input Frequency Response Test Setup	2-53
2-25.	Test Port Crosstalk Test Setup	2-54
2-26.	HP 8753E Bottom View	2-57
2-27.	First Full 2-Port Calibration Test Setup	2-59
2-28.	Transmission Calibration Test Setup	2-60
2-29.	Second Full 2-Port Calibration Test Setup	2-62
2-30.	Transmission Calibration Test Setup	2-63
2-31.	System Trace Noise Test Setup	2-65
2-32.	System Trace Noise Test Setup	2-68

2-33. S11 l-Port Cal Test Setup	2-73
2-34. Test Port 2 Input Impedance Test Setup	2-74
2-35. S22 1-Port Cal Test Setup	2-75
2-36. Test Port 1 Input Impedance Test Setup	2-76
2-37. Power Meter Calibration for Magnitude Dynamic Accuracy	2-81
2-38. Full 2-Port Calibration with Adapter Removal	2-83
2-39. Magnitude Dynamic Accuracy Measurement	2-85
240. Test Port Magnitude Compression Test Setup	2-90
2-41. Test Port Phase Compression Test Setup	2-93
242. Test Port Output Harmonics Test Setup	2-96
2-43. Receiver Harmonics Test Setup	2-98
2-44. Test Port Output Harmonics Test Setup	2-102
245. Receiver Harmonics Test Setup	2-104
246. Test Port Output Harmonics Test Setup	2-109
3-1. A9 Correction Constants Switch	3-6
3-2. RF Output Correction Constants Test Setup for the HP 8753E.	3-14
3-3. First Connections for Insertion Loss Measurement	3-20
34. Second Connections for Insertion Loss Measurement	3-21
3-5. Connections for Sampler Correction Routine	3-22
3-6. Connections for Sampler Correction at 6 GHz	3-23
3-7. Connections for Sampler Correction at Port 2	3-24
3-8. Connections for Sampler Correction at Port 2 for 6 GHz	3-25
3-9. Connections for the Second Through Cable	3-25
3-10. Setup for Cavity Oscillator Frequency Correction Constant	
Routine	3-29
3-11. Typical Display of Spurs with a Filter	3-30
3-12. Typical Display of Four Spurs without a Filter	3-31
3-13. Target Spur Is Fourth in Display of Five Spurs	3-32
3-14. Target Spur Is Almost Invisible	3-33
3-15. Location of the FN VCO TUNE Adjustment	3-46
3-16. Fractional-N Frequency Range Adjustment Display	346
3-17. Frequency Accuracy Adjustment Setup	3-49
3-18. Location of the VCXO ADJ Adjustment	3-50
3-19. High Stability Frequency Adjustment Location	3-51
3-20. High/Low Band Transition Adjustment Trace	3-53
3-21. High/Low Band Adjustment Locations	3-53
3-22. Fractional-N Spur Avoidance and FM Sideband Adjustment Setun	3-55
3-23. Location of API and 100 kHz Adjustments	3-56
3-24. Location of All Test Points and A3 CAV ADI Adjustments	3-58
3-25. Display of Acceptable versus Excessive Spikes	3-59
4-1. Preset Sequence	4-3

4-2. Troubleshooting Organization	4-9
4-3. A15 Prereguiator LEDs	4-10
44. kont Panel Power Up Sequence	4-11
4-5. Equipment Setup for Source Power Check	. 4-14
4-6. ABUS Node 16: 1 V/GHz	. 415
4-7. Equipment Setup	4-16
4-8. Typical Measurement Trace	4-17
4-9. HP 8753E Overall Block Diagram	. 4-19
5-1. Power Supply Group Simplified Block Diagram	5-3
5-2. Location of A15 Diagnostic LEDs	5-4
5-3. A8 Post Regulator Test Point Locations	5-5
5-4. Removing the Line Fuse	5-7
5-5. Power Supply Cable Locations	5-9
5-6. A15W1 Plug Detail	5-11
5-7. Front Panel Probe Power Connector Voltages	5-20
5-8. Power Supply Block Diagram	5-25
6-1. Digital Control Group Block Diagram	6-2
6-2. Switch Positions on the A9 CPU	6-5
6-3. CPU LED Window on Rear Panel	6-6
6-4. Backlight Intensity Check Setup	6-9
6-5. Newtons Rings.	6-11
6-6. Preset Sequence	6-13
7-1. Basic Phase Lock Error Troubleshooting Equipment Setup	74
7-2. Jumper Positions on the A9 CPU	7-5
7-3. Sampler/Mixer to Phase Lock Cable Connection Diagram	. 7-7
74. Waveform Integrity in SRC Tune Mode	. 7-9
7-5. Phase Locked Output Compared to Open Loop Output in SRC	
Tune Mode.	7-9
7-6. 1 V/GHz at Analog Bus Node 16 with Source PLL Off	. 7-11
7-7. YO- and YO+ Coil Drive Voltage Differences with SOURCE PLL	
OFF	7-12
7-8. Sharp 100 kHz Pulses at A13TP5 (any frequency)	. 7-16
7-9. High Band REF Signal (≥ 16 MHz CW) .	. 7-17
7-10. REF Signal at A11TP9 (5 MHz CW)	7-18
7-11. Typical FN LO Waveform at A12J1	7-19
7-12. 4 MHz Reference Signal at A12TP9 (Preset)	. 7-20
7-13. 90 Degree Phase Offset of High Band 2nd LO Signals (≥16 MHz	
$C\hat{W}$)	7-21
7-14. In-Phase Low Band 2nd LO Signals (14 MHz CW)	7-22
7-15. L ENREF Line at A12P2-16 (Preset)	7-23
7-16. Complementary L HB and L LB Signals (Preset)	7-24
-	

7-17. 10 MHz HI OUT Waveform from A14J1	7-26
7-18. 25 MHz HI OUT Waveform from A14J1	7-26
7-19. 60 MHz HI OUT Waveform from A14J1	7-27
7-20. LO OUT Waveform at A14J2	7-28
7-21. A14 Generated Digital Control Signals	7-30
7-22. H MB Signal at A14P1-5 (Preset and 16 MHz to 31 MHz Sweep).	7-31
7-23. Pulse Generator Output	7-32
7-24. High Quality Comb Tooth at 3 GHz	7-33
7-25. Stable HI OUT Signal in FRACN TUNE Mode	7-34
7-26. Typical 1st IF Waveform in FRACN TUNE/SRC TUNE Mode	7-35
7-27. FM Coil – Plot with 3 Point Sweep	7-37
8-1. Equipment Setup	8-4
8-2. Typical Good Trace	8-5
8-3. 4 MHz REF Waveform	8-7
8-4. Digital Data Lines Observed Using L INTCOP as Trigger	8-10
8-5. Digital Control Lines Observed Using L INTCOP as Trigger	8-10
8-6. 2nd IF (4 kHz) Waveform	8-12
8-7. Typical Trace with Sampler Correction On and Off	8-13
9-1. Typical Return Loss Traces of Good and Poor Cables	9-5
9-2. Typical Smith Chart Traces of Good Short (a) and Open (b)	9-7
10-1. Internal Diagnostics Menus	10-2
10-2. A9 CPU Switch Positions	10-8
10-3. Service Feature Menus	10-18
104. Analog Bus Node 1	10-27
10-5. Analog Bus Node 2	10-28
10-6. Analog Bus Node 3	10-29
10-7. Analog Bus Node 4	10-30
10-8. Analog Bus Node 6	10-31
10-9. Analog Bus Node 7	10-32
10-10. Analog Bus Node 14	10-35
10-11. Analog Bus Node 15	10-36
10-12. Analog Bus Node 16	10-37
10-13. Counter Readout Location	10-38
10-14. Analog Bus Node 18	10-39
10-15. Analog Bus Node 20	10-40
10-16. Analog Bus Node 23	10-41
10-17. Analog Bus Node 29	1044
10-18. Analog Bus Node 30	1045
10-19. Location of Firmware Revision Information on Display	1047
11-1. Standard Connections for Full Two-Port Error-Correction	11-4
11-2. Typical EDF/EDR without and with Cables	11-11

11-3. Typical ESF/ESR without and with Cables	11-12
114. Typical ERF/ERR without and with Cables	11-13
11-5. Typical EXF/EXR with 10 Hz Bandwidth and with 3 kHz	
Bandwidth	11-14
11-6. Typical ELF/ELR	11-15
11-7. Typical ETF/ETR	11-16
12-1. Simplified Block Diagram of the Network Analyzer System	12-2
12-2. Power Supply Functional Group, Simplified Block Diagram	12-5
12-3. Digital Control Group, Simplified Block Diagram	12-9
12-4. Low Band Operation of the Source	12-17
12-5. High Band Operation of the Source	12-20
12-6. Harmonic Analysis	12-23
12-7. External Source Mode	12-24
12-8. Tuned Receiver Mode	12-25
12-9. Simplified Block Diagram of the Built-in Test Set	12-27
12-10. Receiver Functional Group, Simplified Block Diagram	12-28
13-1. Module Exchange Procedure	13-4
-	

Tables

l-l. Required Tools	1-1
1-2. Service Test Equipment	1-2
1-3. Connector Care Quick Reference	1-6
2-1. Magnitude Dynamic Accuracy Calculations	2-79
3-1. Related Service Procedures	3-2
3-2. PEEK/POKE Addresses	3-60
5-1. A8 Post Regulator Test Point Voltages	5-6
5-2. Output Voltages	5-10
5-3. Recommended Order for Removal/Disconnection	5-12
5-4. Recommended Order for Removal/Disconnection	5-18
6-1. Front Panel Key Codes	6-14
6-2. Internal Diagnostic Test with Commentary	6-18
7-1. Output Frequency in SRC Tune Mode	7-8
7-2. Analog Bus Check of Reference Frequencies	7-13
7-3. A12 Reference Frequencies	7-15
7-4. A12-Related Digitd Control Signals	7-23
7-5. VCO Range Check Frequencies	7-25
7-6. A14-to-A13 Digital Control Siiai Locations	7-30
7-7. 1st IF Waveform Settings	7-35
7-8. All Input Signals	7-36
8-1. Signals Required for A10 Assembly Operation	8-9
8-2. 2nd IF (4 kHz) Sijai Locations	8-11
8-3. 2nd LO Locations	8-14
9-1. Components Related to Specific Error Terms	94
10-1. Test status Terms	10-4
11-1. Calibration Coefficient Terms and Tests	11-7
1 1-2. Uncorrected System Performance	11-9
12-1. Super Low Band Subsweep Frequencies	12-15
12-2. Low Band Subsweep Frequencies	12-18
12-3. High Band Subsweep Frequencies	12-21
12-4. Mixer Frequencies	12-30
13-1. Reference Designations, Abbreviations, and Options	1348
14-1. Related Service Procedures	1462

Service Equipment and Analyzer Options

Table of Service Test Equipment

Table 1-1. Required Tools

T-8, T-10, T-15, T-20, and T-25 TORX screwdrivers Flat-blade screwdrivers-small, medium, and large 5/16-inch open-end wrench (for SMA nuts) 2-mm extended bit allen wrench 3/16, 5/16, and 9/16-inch hex nut drivers 5/16-inch open-end torque wrench (set to 10 in-lb) 2.5-mm hex-key driver Non-conductive and non-ferrous adjustment tool Needle-nose pliers Tweezers Antistatic work mat with wrist-strap

Bequired Equipment	Critical Specifications	Recommended Model	Use*
Spectrum Analyzer	Freq. Accuracy ±7 Hz	HP 8563E	A, T
Spectrum Analyzer		BP 8595E	Р
Frequency Counter	Frequency: 300 kHz - 3 GHz (6 GHz for Option 006)	HP 5350B/51B/52B	Р
Synthesized Sweeper	Maximum spurious input: < -30 dBc Residual FM: <20 kHz	HP 83620A	Р
Oscilloscope	Bandwidth: 100 MHz Accuracy: 10%	any	Т
Digital Voltmeter	Resolution: 10 mV	any	Т
lbol Kit	No substitute	HP part number 0876340023	Т
Power Meter (HP-IB)		HP 436A/437/438A	A, P, T
Power Meter (HP-IB)	Single channel, 437B emulation mode	EPM-441A	A, P, T
Power Sensor	Frequency: 300 kHz-3 GHz, 500	HP 8482A	A, P, T
Power Sensor (for Option 006)	Frequency: 3 GHz-6 GHz	HP 8481A	A, P, T
Power Sensor	Frequency: 303 kHz-3 GHz, 760	HP 8483A Opt. H03	A, P
Photometer		Tektronix J16	А
Photometer Probe		Tektronix56603	А
Light Occluder		Tektronix 016030640	А
Printer		HP ThinkJet, DeskJet, LaserJet	Р
Floppy Disk	3.5-inch	HP 92192A (box of 10)	А
Calibration Kit 7 mm, 600	No substitute	HP 85031B	Р
Calibration Bit N-Type, 600	No substitute	HP 85032B	Р
Calibration Bit Type-N, 75	No substitute	HP 85036B	Р
Verification Kit 7 mm	No substitute	HP 85029B	Р
Low Pass Filter	>50 dB @ 2.06 Hz and passband that includes 800 MHz	HP P/N 9135-0198	А
Step Attenuator	No substitute	HP 8496A Opt. 001, H18	P
• P - Performance Tests A - Adjustment T - Troubleshooting			

Table 1-2. Service Test Equipment

Bequired Equipment	Critical Specifications	Becommended Model	Use
Attenuators (tied):	Return loss: ≥32 dB APC-7 20 dB (2)	HP 8492A Opt. 020	Р, Т
Attenuators (tied):	Type-N 20 dB (2)	HP 8491A Opt. 020	P, T
Power splitter	2-Way, 50Ω	BP 11667A	Р, Т
Minimum Loss Pad	Type-Ν, 50Ω to 75Ω	HP 11852B	P, T, A
Adapter	APC-7 to Type-N (f)	HP 11524A	A, P
Adapter (2)	APC-7 to Type-N (m)	HP 11525A	A, P
Adapter	APC-7 to 3.6 nun (m)	HP P/N 1250-1746	A, P
Adapter	APC-7 to 3.6 mm (f)	HP P/N 1250-1747	A, P
Adapter	BNC to Alligator Clip	HP P/N 8120-1292	А
Adapter	APC-3.5 (m) to Type-N (f)	HP P/N 1250-1750	A, P
Adapter	APC-3.5 (f) to Type-N (f)	HP P/N 1250-1745	A, P
Adapter	BNC (m) to Type-N (f)	HP P/N 1250-1477	Р
Adapter	Type-N (f) to Type-N (f)	HP P/N 1250-0777	Р
RF Cable (2 each)	24-inch, APC-7	HP P/N 8120-4779	A, P
RF Cable Bet	APC-7, 500	HP 11857D	A, P
RF Cable	24-inch, APC-7, 500 (2)	HP P/N 8120-4779	P, A
RF Cable	24-inch, Type-N, 75Ω (2)	HP P/N 8120-2408	A, P
RF Cable	24-inch, Type-N, 500 (3)	HP P/N 8120-4781	A, P
RF Cable Bet	Type-N, 50Ω	HP 11851B	P, A
HP-IB Cable		HP 10833A/B/C/D	А
Coax Cable	BNC	HP P/N 8120-1840	А
Coax cable	BNC (m) to BNC (m), 600	HP 10503A	А
 P - Performance Tests A - Adjustment T - Troubleshooting 			

Table 1-2. Service Test Equipment (2 of 3)

Required Equipment	critical Specifications	Recommended Model	Use
Antistatic wrist Strap		HP P/N 9300-1367	A, T, P
Antistatic wrist strap cord		HP P/N 9300-0980	A, T, P
Static-control Table Mat and Earth Ground Wire		HP P/N 9300-0797	А, Т, Р
Non-Metalic Adjustment Tool		HP P/N 8830-0024	А
BNC Alligator Clip Adapter		HPP/N 8120-1292	А
BNC-to-BNC Cable		HP P/N 8120-1840	A
^{\$} P - Performance Tests A - Adjustment T - Troubleshooting			

Table 1-2. Service Test Equipment (3 of 3)

Principles of Microwave Connector Care

Proper connector care and connection techniques are critical for accurate, repeatable measurements.

Refer to the calibration kit documentation for connector care information. Prior to making connections to the network analyzer, **carefully** review the information about inspecting, cleaning, and gaging connectors.

Having good connector care and connection techniques extends the life of these devices. In addition, you obtain the most accurate measurements.

This type of information is typically located in Chapter 3 of the calibration kit manuals

For additional connector care instruction, contact your local Hewlett-Packard Sales and Service Office about course numbers HP 85050A + 24A and HP 85050A + 24D.

See the following table for quick reference tips about connector care.

Handling and Storage			
Do	Do Not		
Keep connectors clean	Touch mating-plane surfaces		
Extend sleeve or connector nut	Set connectors contact-end down		
Use plastic end-caps during storage			
VisualInspection			
Do	Do Not		
Inspect all connectors carefully	Use a damaged connector-ever		
Look for metal particles, scratches, and dents			
Connector Cleaning			
Do	Do Not		
Try compressed air first	Use any abrasives		
Use isopropyl alcohol	Get liquid into plastic support beads		
Clean connector threads			
Gaging Connectors			
Do	Do Not		
Clean and zero the gage before use	Use an out-of-spec connector		
Use the correct gage type			
Use correct end of calibration block			
Gage all connectors before first use			
MakinConnections			
Do	Do Not		
Align connectors carefully	Apply bending force to connection		
Make preliminary connection lightly	Over tighten preliminary connection		
Turn only the connector nut	Twist or screw any connection		
Use a torque wrench for final connect	Tighten past torque wrench 'break" point		

Table 1-3. Connector Care Quick Reference

Analyzer Options Available

Option 1D5, High Stability Frequency Reference

This option offers ± 0.05 ppm temperature stability from 0 to 60° C (referenced to 25° C).

Option 002, Harmonic Mode

This option provides measurement of second or third harmonics of the test device's fundamental output signal. Frequency and power sweep are supported in this mode. Harmonic frequencies can be measured up to the **maximum** frequency of the receiver. However, the fundamental frequency may not be lower than 16 MHz.

Option 006, 6 GHz Operation

This option extends the **maximum** source and receiver frequency of the analyzer to 6 GHz.

Option 010, Time Domain

This option displays the time domain response of a network by computing the inverse Fourier transform of the frequency domain response. It shows the response of a test device as a function of time or distance. Displaying the reflection coefficient of a network versus time determines the magnitude and location of each discontinuity. Displaying the transmission coefficient of a network versus time determines the characteristics of individual transmission paths Time domain operation retains all accuracy inherent with the correction that is active in of such devices as SAW **filters,** SAW delay lines, RF cables, and RF antennas.

Option 011, Receiver Configuration

This option **allows** front panel access to the R, A, and B samplers and receivers. The transfer switch, couplers, and bias tees have been removed. Therefore, external accessories are required to make most measurements

Option 075, 75Ω Impedance

This option offers 75 ohm impedance bridges with type-N test port connectors.

Option **1DT,** Delete Display

This option removes the built-in flat panel display, allowing measurement results to be viewed with an external VGA monitor only.

Option 1CM, Rack Mount Flange Kit Without Handles

This option is a rack mount kit containing a **pair** of flanges and the necessary hardware to mount the instrument, with handles detached, in an equipment rack with 482.6 mm (19 inches) horizontal spacing.

Option 1CP, Rack Mount Flange Kit With Handles

This option is a rack mount kit containing a pair of flanges and the necessary hardware to mount the instrument with handles attached in an equipment rack with 482.6 mm (19 inches) spacing.

Service and Support Options

The analyzer automatically includes a three-year warranty for repair at a Hewlett-Packard facility.

The following service and support options are also available. Contact your local sales or service office.

Option W32

This option provides three years of return to HP calibration service.

Option W34

This option provides three years of return to HP Standards Compliant Calibration.
System Verification and Performance Tests

The performance of the HP 8753E network analyzer is specified in two ways:

System Specifications:

Specifies warranted performance of the *measurement* system when making error-corrected S-parameter measurements. The measurement system includes the analyzer, test cables, and calibration kit. The System Verification Procedure is used to **confirm** performance of the measurement system to the System **Specifications**.

Instrument Specifications:

Specifies the network analyzer's output and input behavior and its uncorrected measurement port characteristics. Performance tests are used to confirm performance of the analyzer to the Instrument Specifications.

System Specifications

System Specifications, also called Measurement Port Specifications, are described in Chapter 7 of the *HP 8753E* User's *Guides*. They specify warranted performance of the entire *measurement system* when making error-corrected S-parameter measurements The measurement system includes the analyzer, test cables, and calibration kit. System Specifications are expressed in two ways:

- graphs of measurement uncertainty versus reflection and transmission coefficients
- residual errors of the measurement system-the *corrected* Measurement Port Characteristics

System Specifications, **confirmed** by the System Verification Procedure, are applicable when the measurement system is used to make error-corrected S-parameter measurements

Instrument Specifications

Instrument specifications comprise the following sections and tables in Chapter 7, "Specifications and Measurement Uncertainties," of the HP 8753E User's Guide:

- all specifications in the section "Instrument Specifications"
- Table 7-3 "Measurement Port Characteristics (uncorrected) for HP 8753E(50Ω) with 7-mm Test Ports"
- **Table** 7-7 "Measurement Port Characteristics (uncorrected) for HP 8753E (75Ω) with 7-mm Test Ports"

These specifications apply when the analyzer is used to make measurements **other than** error-corrected S-parameter measurements An example would be the measurement of amplifier gain compression. In such cases, the analyzer's output and input behavior-such as source power, receiver accuracy, and receiver linearity-are important and are covered by Instrument Specifications.

System Verification Procedure

The System **Verification** Procedure tests the network analyzer measurement system, as **defined** above, against the System **Specifications**. If conllrmation is successful, the measurement system is capable of making S-parameter measurements to the accuracy specified by the graphs of measurement uncertainty. An outline of the System Verification Procedure follows:

- The measurement system is calibrated with the calibration kit to be used for future measurements The measurement system's systematic errors are determined by this procedure.
- The S-parameters of verification-kit test-devices are measured with error correction applied.
- These measurements are compared to measurement data stored on a unique, serial-numbered data disk included with the verification **kit**.
- The measurement system passes the System Verification Procedure if the measurements of the test devices differ from the measurement data on the data disk by less than specified test limits. The test limits account for the specified accuracy of the measurement system and the measurement uncertainties attributed to the stored data for the test devices.

Note Calibration kits are different from verification kits. *Calibration* kits are used to determine the systematic errors of a network analyzer measurement system. *Verification* kits are used to confirm system specifications and are not used to generate error-correction. For example, the HP 85031B is a 7-mm calibration kit, but the HP 85029B is a 7-mm verification kit.

Performance Tests

Performance tests are used to **confirm** analyzer performance against the Instrument **Specifications**. If **confirmation** is successful, the analyzer meets the Instrument **Specifications** as **defined** above. If the calibration kit to be used for measurements is also **certified**, successful completion of the Performance Tests also ensures that the network analyzer measurement system meets the System Specifications.

How to **Confirm** Performance to System Specifications

- Complete the System Verification Procedure in this chapter using a certified verification kit, or
- Complete all of the performance tests and certify (or re-certify) the calibration kit to be used for future measurements. This alternative **verifies** both the System Specifications and the Instrument Specifications for the analyzer.

How to Confirm Performance to Instrument Specifications

• Complete the Performance Tests

Certificate of Calibration

Hewlett-Packard will issue a Certificate of Calibration for the product upon successful completion of System **Verification** or completion of the Performance Tests. The Certificate of Calibration will include a *System Attachment* if the System Verification Procedure is used to **confirm** the System **Specifications**. If the Performance Tests are used to **confirm** Instrument Specifications, the **Certificate** of Calibration will not include a System Attachment. The equipment and measurement standards used for the tests must be **certified** and must be traceable to recognized standards.

Note If you have a measurement application that does not use all of the measurement capabilities of the analyzer, you may ask your local Hewlett-Packard Customer Service Center to verify only a subset of the **specifications.** However, this creates the possibility of making inaccurate measurements if you then use the analyzer in an application requiring additional capabilities.

Sections in This Chapter

System Verification

Performance Tests

- 1. Test Port Output Frequency Range and Accuracy
- 2. External Source Mode kequency Range
- 3. Test Port Output Power Accuracy
- 4. Test Port Output Power Range and Linearity
- 5. Minimum R Channel Level
- 6. Test Port Input Noise Floor Level
- 7. Test Port Input Frequency Response
- 8. Test Port Crosstalk
- 9. Calibration Coefficients
- 10. System Trace Noise (Only for Analyzers without Option 006)
- 11. System Trace Noise (Only for Analyzers with Option 006)
- 12. Test Port Input Impedance
- 13. Test Port Receiver Magnitude Dynamic Accuracy
- 14. Test Port Receiver Magnitude Compression
- 15. Test Port Receiver Phase Compression
- 16. **Test** Port Output/Input Harmonics (Option 002 Analyzers *without* Option 006 only)
- 17. Test Port Output/Input Harmonics (Option 002 Analyzers *with* Option 006 only)
- 18. Test Port Output Harmonics (Analyzers without Option 002)

Performance **Test** Record

Find and use the appropriate "Performance **Test** Record" in the following subchapters:

- Performance Test Record for 30 kHz to 3 GHz
- Performance Test Record for 30 kHz to 6 GHz

System Verification Cycle and Kit Re-certification

Hewlett-Packard recommends that you verify your network analyzer measurement system every six months. Hewlett-Packard also suggests that you get your verification kit re-certified annually. Refer to *HP 85029B 7-mm Verification Kit Operating and Service Manual* for more information.

Note	The system verification procedures can also apply to analyzers
	with Option 075 (75 ohm analyzers) if minimum loss pads and
	type-N (m) to APC-7 adapters are used.

Check to see how the **verification** kit floppy disk is labeled:

- If your verification disk is labeled HP 8753D Verification Data Disk, or HP 8753D & HP 8753E Verification Data Disk, you may proceed with the system verification.
- If your **verification** disk is not labeled as indicated above, you may send your HP **85029B 7-mm verification** kit to the nearest service center for **recertification**, which includes a data disk that you can use with the HP 8753E.

HP 8753E System Verification

Equipment Required

Calibration Kit, 7-mm	HP 85031B
Verification Kit, 7-mm	.HP 85029B
Test Port Extension Cable Set, 7-mm	HP 11857D
Printer	Jet/LaserJet

Additional Equipment Required for Option 075 Analyzers

Minimum Loss Pad (2), 50 Ω to 75 Ω .	HP 11852B
Adapter (2), APC-7 to Type-N (m)	HP 11525A

Analyzer warmup time: 1 hour

This system verification consists of three separate procedures:

- 1. Initialization
- 2. Measurement Calibration
- 3. Device Verification

Initialization

1. Clear all internal memory.

Caution This will erase **all** instrument states that may be stored in internal memory.

Perform the following steps to save any instrument states that are stored in internal memory to a floppy disk.

- a. Press Save/Recall) SELECT DISK INTERNAL MEMORY RETURN.
- b. Select an instrument state and press RECALL STATE.
- C. Press SELECT DISK INTERNAL DISK RETURN SAVE STATE.
- d. If the instrument state **file** was not saved to disk with the same name that it had while in internal memory, you may wish to rename the **file**.

Press FILE UTILITIES RENAME FILE enter the desired name, and press **DONE**.

e. Repeat steps a through d for each instrument state that you wish to save.

To clear allinternal memory, press (System) SERVICE MENU PEEK/POKE RESET MEMORY (Preset). 2. Connect the equipment as shown in **Figure 2-1**. Let the analyzer warm up for one hour

sg61e

Figure 2-1. System Verification Test Setup

- 3. While the equipment is warming up, review the "Connector Care Quick Reference" information in Chapter 1. Good connections and clean, undamaged connectors are **critical** for accurate measurement results.
- 4. Insert the verification kit disk into the **analyzer** disk drive.
- 5. Press (Preset) (Save/Recall) SELECT DISK INTERNAL DISK .
- 6. If you want a printout of the verification data for all the devices, press System SERVICE MENU TEST OPTIONS RECORD ON.
- Note If you switch on the record function, you *CANNOT* switch it off during the verification procedure.
 - 7. Position the paper in the printer so that **printing** starts at the top of the **page**.

- 8. If you have difficulty with the printer:
 - If the interface on your printer is HP-IB, verify that the printer address is set to 1 (or change the setting in the analyzer to match the printer).
 - If the interface on your printer is serial or parallel, be sure that you selected the printer port and the printer type correctly (refer to the HP **8753E Network Analyzer** User's **Guide** for more information on how to perform these tasks).

9. Press (System) SERVICE MENU TESTS SYS VER TESTS EXECUTE TEST.

10. The analyzer displays Sys Ver **Init** DONE; the initialization procedure is complete.

Caution **DO NOT** press (Preset or **recall** another instrument state. You must use the instrument state that you loaded during the initialization procedure.

Measurement Calibration

- 11. Press Cal CAL KIT SELECT CAL KIT CAL KIT:7mm RETURN RETURN CALIBRATE MENU FULL 2-PORT.
- 12. Press ISOLATION OMIT ISOLATION.
- 13. Press REFLECTION.
- 14. Connect the "open" end of the open/short combination (supplied in the calibration kit) to reference test port 1, as shown in Figure 2-2.

Figure 2-2. Connections for Measurement Calibration Standards

sa62e

- 15. Press FORWARD: OPEN
- 16. When the analyzer finishes measuring the standard, connect the "short" end of the open/short combination to reference test port 1.

17. Press FORWARD: SHORT .

18. When the analyzer **finishes** measuring the standard, connect the 50 ohm termination (supplied in the calibration kit) to reference test port 1.

19. Press FORWARD : LOAD .

20. When the analyzer **finishes** measuring the standard, connect the "open" end of the open/short combination to reference test port 2.

21. Press REVERSE OPEN.

22. When the analyzer **finishes** measuring the standard, connect the "short" end of the open/short combination to reference test port 2.

23. Press REVERSE: SHORT .

24. When the analyzer **finishes** measuring the standard, connect the 50 ohm termination to reference test port 2.

25. Press REVERSE: LOAD.

2-12 System Verification and Performance Tests

26. When the analyzer finishes measuring the standard, press **STANDARDS** DONE.

The analyzer briefly displays COMPUTING CAL COEFFICIENTS.

27. Connect the test port cables as shown Figure 2-3.

sg63e

Figure 2-3. Transmission Calibration Setup

- 28. Press TRANSMISSION DO BOTH FWD + REV.
- 29. Press DONE 2-PORT CAL.
- **30. Press** (Save/Recall) **SELECT** DISK **INTERNAL MEMORY RETURN SAVE** STATE to save the calibration into the analyzer internal memory.
- 31. When the analyzer finishes saving the instrument state, press SELECT DISK INTERNAL DISK.

Device Verification

32. Press System SERVICE MENU TESTS 28 XI EXECUTE TEST.

33. At the prompt, connect the 20 **dB** attenuator (supplied in the verification kit) as shown in Figure 2-4.

34. Press **CONTINUE** to run the test:

- If you switched OFF the record function, you have to press **CONTINUE** after each S-parameter measurement.
- If you switched ON the record function, the analyzer measures all S-parameters (magnitude and phase) without pausing. Also, the analyzer only displays and prints the PASS/FAIL information for the S-parameter measurements that are valid for system verification.

sg64e

Figure 2-4. Connections for the 20 dB Verification Device

35. When the analyzer fmishes all the measurements, connect the 50 dB attenuator (supplied in the **verification** kit), as shown in **Figure** 2-5.

Figure 2-5. Connections for the 50 dB Verification Device

36. Press () [29 x1 EXECUTE TEST CONTINUE.

37. When all measurements are complete, replace the verification device with the verification mismatch, as shown in Figure 2-6. Be sure that you connect Port A of the verification mismatch to reference test port 1.

sg66e

Figure 2-6. Mismatch Device Verification Setup 1

38. Press RETURN TESTS 30 x1 EXECUTE TEST CONTINUE.

39. When the analyzer finishes all the measurements, connect the mismatch verification device, as shown in Figure 2-7. Notice that Port B is now connected to reference test port 1.

sg67e

Figure 2-7. Mismatch Device Verification Setup 2

40. Press RETURN TESTS 31 (x1) EXECUTE TEST CONTINUE.

41. You have completed the system verification procedure when the analyzer displays Ver Def 4 DONE.

In Case of **Difficulty**

1. Inspect all connections.

Caution **DO** NOT disconnect the cables from the analyzer test ports. Doing so **WILL INVALIDATE** the calibration that you have done earlier.

- 2. Press (<u>Save/Recall</u> <u>SELECT DISK</u> <u>INTERNAL MEMORY</u> <u>RETURN</u>. Using the front panel knob, highlight the title of the full 2-Port calibration that you have done earlier, then press **RECALL STATE**.
- 3. Repeat the "Device Verification" procedure.
- 4. If the analyzer still fails the test, check the measurement calibration as follows:
 - a. Press [preset).
 - b. Recall the calibration by pressing Save/Recall SELECT DISK INTERNAL MEMORY RETURN.
 - c. Use the front panel knob to highlight the calibration you want to recall and press RECALL STATE.
 - d. Connect the short to reference test port 1.
 - e. Press (Meas) Refl: FWD S11 (A/R) (Menu) TRIGGER MENU CONTINUOUS.
 - f. Press (Scale Ref) SCALE/DIV (.05) x1).
 - g. Check that the trace response is 0.00 ± 0.05 dB.
 - h. Disconnect the short and connect it to reference test port 2.
 - i. Press Meas Refl: REV S22(B/R).
 - j. Check that the trace response is 0.00 ± 0.05 dB.
 - k. If any of the trace responses are out of the specified limits, repeat the "Measurement Calibration" and "Device Verification" procedures.
- 5. Refer to Chapter 4, "Start Troubleshooting Here," for more troubleshooting information.

1. **Test** Port Output Frequency Range and Accuracy Specifications

Frequency Range	Frequency Accuracy ¹
30 kHz to 3 GHz	±10 ppm
3 GHz to 6 GHz ²	±10 ppm

1 At 25° C \pm 5° C.

2 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.

Required Equipment

kequency Counter (30 kHz to 500 MHz)	HP 5350B/51B/52B
Frequency Counter (500 MHz to 6 GHz)	HP 5350B/51B/52B
Cable, 500 Type-N, 24-inch	
Adapter, APC-3.5 (f) to Type-N (f)	HP P/N 1250-1745
Adapter, APC-7 to Type-N (f)	HP P/N 11524A
Adapter, Type-N (f) to BNC (m)	HP P/N 1250-1477

Additional equipment needed for an HP 8753E with Option 075

Analyzer warmup time: 30 minutes

Perform this test to verify the frequency accuracy of the HP 8753E over its entire operating frequency range.

1. Connect the equipment as shown in Figure 2-8.

Figure 2-8. Test Port Output Frequency Range and Accuracy Test Setup

2. Press (Preset) [Menu) CW FREQ.

- 3. Press 30 k/m and write the frequency counter reading on the "Performance Test Record."
- 4. Repeat step 3 for each instrument frequency listed in the "Performance Test Record."

In Case of **Difficulty**

- 1. If any measured frequency is close to the specification limits, check the time base accuracy of the counter used.
- 2. If the analyzer fails by a significant margin at *all* frequencies (especially if the deviation increases with frequency), the master time base probably needs adjustment. In this case, refer to the "Frequency Accuracy Adjustment" procedure, located in Chapter 3, "Adjustments and Correction Constants." The "Fractional-N Frequency Range Adjustment" also affects frequency accuracy.
- 3. Refer to Chapter 7, "Source Troubleshooting," for related troubleshooting information.

2. External Source Mode Frequency Range Specifications

Frequency Range 300 kHz to 3 GHz 300 kHz to 6 GHz¹

1 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.

Equipment Required

External Source	HP 83620A
Cable, APC-7, 24-inch	HP P/N 8120-4779
Adapter, APC-3.5 (f) to APC-7	HP P/N 1250-1747
Adapter, APC-3.5 (m) to APC-7	HP P/N 1250-1746

Analyzer warmup time: 30 minutes

Perform this test to verify that the analyzer's reference channel, input R, is capable of phase locking to an external CW signal.

- On the external source, press Preset CW 10 (MHz/μsec) [POWER LEVEL) (-/←)
 (20) GHz/dB(m).
- 2. Connect the equipment as shown in Figure 2-9.

Figure 2-9. External Source Mode Frequency Range Test Setup

- 3. On the network analyzer, press Preset Meas INPUT PORTS R.
- 4. Press System INSTRUMENT MODE EXT SOURCE AUTO (Menu) CW FREQ (10) (M/μ) .
- 5. Check to see if the analyzer is phase locking to the external CW signal:
 - If the analyzer displays any phase lock error messages, write "unlock" in the "Performance Test Record" for the set CW signal.
 - If the analyzer does not display any phase lock error messages, write "lock" in the "Performance **Test** Record" for the set CW signal.
- 6. On the external source, press CW (20 MHz/μ).
- 7. On the analyzer, press 20 M/μ .
- 8. Repeat step 5 through 7 for the other external source CW frequencies listed in the "Performance Test Record."

In Case of **Difficulty**

If the analyzer displayed any phase lock error messages:

- 1. Be sure the external source power is set within 0 to -25 dBm.
- 2. Make sure the analyzer's "Ext Source Auto" feature is selected. In addition, verify that the analyzer is set to measure its input channel R.
- 3. Verify that all connections are tight.

3. Test Port Output Power Accuracy

Specifications

Frequency Range	Test Port Output Power Accuracy ¹
300 kHz to 3 GHz	±1.0 dB
3 GHz to 6 GHz ²	±1.0 dB

1 At 0 dBm and 25° C $\pm 5^{\circ}$ C

2 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.

Equipment Required for 500 Analyzers

Power Meter HP 436.	A/437B/438A
Power Sensor	HP 8482A
Adapter, APC-7 to Type-N (f)	HP 11524A

Additional Equipment Required for Analyzers with Option 006

Equipment Required for 750 Analyzers

Power Meter	 436A/4	437B/438A
Power Sensor	 483A C	Option H03

Analyzer warmup time: 30 minutes

Perform this test to confirm the accuracy of the HP 8753E source output power.

- 1. Zero and calibrate the power meter. For more information of how to perform this task, refer to the power meter operating manual.
- 2. Connect the equipment as shown in Figure 2-10.

Figure 2-10. Source Output Power Accuracy Test Setup

sg610e

3. Press Preset).

Note The factory preset test port power is 0 dBm.

- 4. Press (Menu) CW FREQ (300 (k/m). Set the calibration factor on the power meter for this CW frequency.
- 5. Write the power meter reading on the "Performance Test Record."
- 6. Repeat steps 4 and 5 for each CW frequency listed in the "Performance **Test** Record." For analyzers with Option 006, use the HP **8481A** power sensor for all frequencies above 3 **GHz**.

In Case of Difficulty

- Be sure the source power is switched on. Press Menu POWER. Check the SOURCE PWR softkey; "on" should be highlighted. Otherwise, press SOURCE PWR to switch on the source power.
- 2. Refer to Chapter 7, "Source Troubleshooting," for more troubleshooting information.

4. **Test** Port Output Power Range and Linearity Specifications

Power Range	Power Level Linearity ¹
-15 to +5 dBm	$\pm 0.2 \text{ dB}$
+5 to $+10$ dBm ²	$\pm 0.5 \text{ dB}$
+5 to +8 dBm ³	$\pm 0.5 \text{ dB}$

1 Relative to 0 dBm output level.

2 Applies to instruments not using Option 076.

3 For Option 075 only.

Required Equipment

Power Meter	HP 437B/438A
Power Sensor	HP 8482A
Adapter, APC-7 to Type-N (f)	HP 11524A
Additional Required Equipment for Analyzers with	Option 006
Power Sensor	HP 8481A
Additional Required Equipment for Analyzers with	Option 075
Power Sensor	HP 8483A Option H03
Angluzon warmup time. 1 hour	

Analyzer warmup time: 1 hour

Perform this test to verify the analyzer's test port output power range and power level linearity at selected CW frequencies.

- 1. Zero and calibrate the power meter. Refer to the power meter operating manual for more information on how to do this task.
- 2. On the network analyzer, press **Preset Menu CW FREQ 300 k/m**. Set the power meter calibration factor for this CW frequency.
- 3. Connect the equipment as shown in Figure 2-11.

Figure 2-11. Test Port Output Power Range and Accuracy Test Setup

sg61**1e**

4. On the HP **438A**, press **(REL)**. This sets the current power level for relative power measurement.

5. On the network analyzer, press (Menu) POWER PWR RANGE MAN (-15) x1.

- 6. Write the power meter reading in the "Results Measured" column on the "Performance Test Record."
- 7. Calculate the difference between the analyzer test port power (which appears on the analyzer's display) and the power meter reading. Write the result in the "Power Level Linearity" column on the "Performance Test Record. "
- 8. Repeat steps 5 through 7 for the other power levels listed in the "Performance Test Record."
- 9. After all required power levels have been measured, press () (x1) to reset power to 0 dBm.
- 10. Press Menu CW FREQ 3 G/n.
- 11. Set the power meter calibration factor for this CW frequency and press **REL** to set the reference at this new frequency.
- 12. Press Menu POWER -15 x1.
- 13. Write the power meter reading in the "Results Measured" column on the "Performance Test Record. "
- 14. Calculate the difference between the analyzer test port power and the power meter reading. Write the result in the "Power Level Linearity" column of the "Performance Test Record."
- 15. Repeat steps 11 through 13 for the other power levels listed in the "Performance Test Record."
- 16. Repeat steps 9 through 13 for 6 GHz using 8481A sensor.

In Case of **Difficulty**

1. Ensure that the power meter and power sensor(s) are operating to specifications. Be sure you set the power meter calibration factor for the CW frequency that you are testing.

- 2. Verify that there is power coming out of the analyzer's test port 1. Be sure you did not accidentally switch off **the analyzer's** internal source. If you did so, press Menu POWER SOURCE PWR ON.
- 3. Repeat this performance test.

5. Minimum R Channel Level

Specifications

Frequency Range	Minimum R Channel Level
300 kHz to 3 GHz	<-35 dBm
3 GHz to 6 GHz ¹	<-30 dBm

1 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.

Required Equipment for 509 Analyzers

Adapter, APC-3.5 (m) to APC-7	 HP P/N 1250-1746
Cable, APC-724-inch	 . HP P/N 8120-4779

Required Equipment for 75 ohm Analyzers (Option 075)

Minimum Loss Pad, 500 to 750 ,	HP 11852B
Cable, 50Ω Type-N, 24-inch	
Adapter, APC-3.5 (m) to Type-N (f)	HP P/N 1250-1750

Analyzer warmup time: 1 hour

Perform this test to determine the minimum R channel input power level at which phase lock can be accomplished.

1. Connect the equipment as shown in Figure 2-12.

* DIRECT CONNECTION

sg612e

- 2. Press (Preset) (Meas) INPUT PORTS R.
- 3. Press Menu POWER PWR RANGE MAN POWER RANGES RANGE 4 -55 to -30.
- 4. Press Scale Ref REFERENCE VALUE (-70 x1).
- 5. Press Menu) CW FREQ (300 k/m).
- 6. Press (Menu) POWER (-65 x1).

The analyzer displays the message CAUTION : NO IF FOUND : CHECK ${\tt R}$ INPUT LEVEL.

- 7. Press (f) to increase the test port power by 1 dBm.
- 8. If the analyzer displays a phase lock error **message**, continue increasing the test port power until phase lock is achieved.
- 9. Write the test port power, that is displayed on the analyzer, on the "Performance **Test** Record. "
- 10. Repeat steps 5 through 9 for the other CW frequencies listed in the "Performance Test Record."

2-32 System Verification and Performance **Tests**

In Case of **Difficulty**

1. Check the flexible RF cable (**W8**, as shown in Figure 2-13) between the R sampler assembly (**A4**) and the All phase lock assembly. Make sure it is connected between **A11J1** (PL IF IN) and **1st** IF Out.

Caution **Do not** push cable **W8** down next to the All phase lock assembly.

sg686e

Figure 2-13. Flexible RF Cable Location

- 2. Using an ohmmeter, verify that the RF cable is not open. In addition, examine both the cable connectors-measure the resistance between the cable center pin and the cable connector and make sure it is *not* close to zero.
- 3. Check the R sampler by substituting it with the B sampler (A6).
 - a. Move cable **W8** to the B sampler (A6), as shown in Figure 2-14.

A11

sg6115e

Figure 2-14. Connections for Substituting the **R Sampler (A4)**

4. Connect the equipment as shown in Figure 2-15.

Figure 2-15. Setup for Checking the R Sampler (A4)

5. Repeat the test, but select the B sampler (A6) by pressing Meas INPUT PORTS B in step 2. Use the following specifications:

300 kHz to 3 GHz <-27 dBm 3 GHz to 6 GHz <-22 dBm

- 6. If the analyzer fails the test, replace the All assembly.
- 7. Verify that the **high/low** band adjustments are still within specifications For more information on how to perform this task, refer to the "High/Low Band Transition Adjustment" located in Chapter 3, "Adjustments and Correction Constants"
- 8. Refer to Chapter 7, "Source Troubleshooting," for more troubleshooting information.
6. **Test** Port Input Noise Floor Level **Specifications**

Frequency Range	Test Port	IF Bandwidth	Average Noise Level
300 kHz to 3.0 GHz	Port 1	3 kHz	<i>-82</i> dBm
300 kHz to 3.0 GHz	Port 1	10 Hz	-102 dBm
300 kHz to 3.0 GHz	Port 2	3 kHz	-82 dBm
300 kHz to 3.0 GHz	Port 2	10 Hz	-102 dBm
3.0 GHz to 6.0 GHz ¹	Port 1	3 kHz	-77 dBm
3.0 GHz to 6.0 GHz ¹	Port 1	10 Hz	-97 dBm
3.0 GHz to 6.0 GHz ¹	Port 2	3 kHz	-77 dBm
3.0 GHz to 6.0 GHz ¹	Port 2	10 Hz	-97 dBm

1 Only for analyzer with Option 006 - 30 kHz to 6 GHz range.

Equipment Required for 500 Analyzers

Calibration Kit, 7-mm	. HP 85031B
Equipment Required for 75 ohm Analyzers	
Calibration Kit, Type-N	HP 85036B
Analyzer warmup time: 1 hour	

Perform this test to determine the HP 8753E port 1 and port 2 noise floor levels at the input test ports

Port 1 Noise Floor Level from 300 **kHz** to 3 **GHz** (**IF BW = 3 kHz**)

1. Connect the equipment as shown in Figure 2-16.

sg614e

Figure 2-16. Source Input Noise Floor Test Setup

- 2. Press Preset Avg IFBW (3000 x1) (Menu) POWER (-85) x1 (Start) (300 k/m) (Stop) (3) (G/n).
- 3. Press Meas INPUT PORTS A TESTPORT 2 Format LIN MAG Scale Ref AUTO SCALE .
- 4. Press (Marker Fctn) MARKER MODE MENU STATS ON (Menu) TRIGGER MENU SINGLE.
- 5. When the analyzer **finishes** the sweep, notice the mean value (which appears on the analyzer display).
- 6. Convert the measured linear magnitude mean value to log magnitude, using this equation.

Power (dBm) = 20 * [log&near magnitude mean value)]

- Note Notice that the mean value that is displayed on the analyzer is in μ Units. So, for example, if the displayed value is 62 μ U, the **value** that you would put in the equation is (62 x 10⁶).
 - 7. Write this calculated value on the "Performance Test Record."

Port 1 **Noise** Floor Level from 300 **kHz** to 3 **GHz** (IF BW = 10 Hz)

- 8. Press (Avg) IF BW (10 x1) to change the IF bandwidth to 10 Hz.
- 9. Press (Menu) TRIGGER MENU SINGLE.
- 10. When the analyzer **finishes** the sweep, notice the mean value.
- 11. Convert the measured linear magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [\log_{10}(linear magnitude mean value)]$

12. Write this calculated value on the "Performance Test Record."

Port 2 Noise Floor Level from 300 **kHz** to 3 **GHz** (**IF BW = 10 Hz**)

- 13. Press (Meas) INPUT PORTS B TESTPORT 1 (Format) LIN MAG.
- 14. Press (Menu) TRIGGER MENU SINGLE.
- 15. When the analyzer finishes the sweep, notice the mean value.
- 16. Convert the measured linear magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [\log_{10}(linear magnitude mean value)]$

17. Write this calculated value on the "Performance Test Record."

Port 2 Noise Floor Level from 300 kHz to 3 GHz (IF BW = 3 kHz)

18. Press (Avg) IF BW (3) (k/m) to change the IF bandwidth to 3 kHz.

19. Press (Menu) TRIGGER MENU SINGLE.

- 20. When the analyzer **finishes** the sweep, notice the mean value.
- 21. Convert the measured linear magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [log_{10}(linear magnitude mean value)]$

- 22. Write this calculated value on the "Performance Test Record."
- 23. This completes the **"Test** Port Input Noise Floor Level" procedure if your analyzer does not have Option 006. Otherwise continue with the next section.

Port 2 Noise Floor Level from 3 **GHz** to 6 **GHz** (IF BW = 3 **kHz**)

24. Press Start 3 G/n Stop 6 G/n.

25. Press (Menu) TRIGGER MENU SINGLE .

- 26. When the **analyzer finishes** the sweep, notice the mean value.
- 27. Convert the measured linear magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [log_{10}(linear magnitude mean value)]$

28. Write this calculated value on the "Performance Test Record."

Port 2 Noise **Floor** Level from 3 **GHz** to 6 **GHz** (IF BW = 10 Hz)

29. Press (Avg) IF BW (10) [x1] to change the IF bandwidth to 10 Hz.

- 30. Press (Menu) TRIGGER MENU SINGLE.
- 31. When the analyzer **finishes** the sweep, notice the mean value.
- 32. Convert the measured **linear** magnitude mean **value** to log magnitude, using this equation.

Power $(dBm) = 20 * [log_{10}(linear magnitude mean value)]$

33. Write this calculated value on the "Performance Test Record."

Port 1 Noise Floor Level for 3 **GHz** to 6 **GHz** (IF BW = 10 Hz)

34. Press Meas INPUT PORTS A TESTPORT 2.

35. Press (Menu) TRIGGER MENU SINGLE.

- 36. When the analyzer finishes the sweep, notice the mean value.
- 37. Convert the measured **linear** magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [\log_{10}(linear magnitude mean value)]$

38. Write this calculated value on the "Performance Test Record."

Port 1 Noise Floor Level from 3 GHz to 6 GHz (IF BW = 3 kHz)

39. Press (Avg) IF BW 3 (k/m).

40. Press Menu TRIGGER MENU SINGLE.

- 41. When the **analyzer finishes** the sweep, notice the mean value.
- 42. Convert the measured **linear** magnitude mean value to log magnitude, using this equation.

Power $(dBm) = 20 * [\log_{10}(linear magnitude mean value)]$

43. Write this calculated value on the "Performance Test Record."

In Case of Difficulty

- 1. Perform the "ADC Linearity Correction Constants (Test 52)," located in Chapter 3, "Adjustments and Correction Constants"
- 2. Repeat the **"Test** Port Input Noise Floor Level" procedure.
- 3. Suspect the A10 Digital IF assembly if the analyzer fails both test port input noise floor tests.
- 4. Refer to Chapter 8, "Receiver Troubleshooting," for more troubleshooting information.

7. Test Port Input Frequency Response

Specifications

Frequency Range	Test Port	Inp Frequency	ut Response
300 kHz to 3 GHz	Port 1	±1 d	IB
300 kHz to 3 GHz	Port 2	±1 d	iB
3 GHz to 6 GHz ¹	Port 1	±2 d	IB
3 GHz to 6 GHz	Port 2	±2 c	IB

1 Only for analyzers with Option 006 – 30 kHz to 6 GHz range.

Equipment Required for 500 Analyzers

Power Meter Power Sensor	HP 436A/437B/438A HP 8482A HD D/N 81204770
Adapter, APC-7 to Type-N (f)	
Additional Equipment Required for Analyzers w	vith Option 006
Power Sensor	
Equipment Required for 750 Analyzers	
Power Meter Power Sensor	
Cable, Type-N	HP P/N 8120-2408

Analyzer warmup time: 1 hour

Perform this test to examine the vector sum of **all** test setup error vectors in both magnitude and phase change as a function of frequency.

Power Meter Calibration for Test Port 1 from 300 kHz to 3 GHz

- 1. Zero and calibrate the power meter.
- 2. Connect the equipment as shown in Figure 2-17.

sg615e

Figure 2-17. Setup for Power Meter Calibration on Test Port 1

- 3. Press (Preset) (Start) (300) (k/m).
- 4. Only for Analyzers with Option 006: Press Stop 3 G/n.
- 5. Press (Local) SYSTEM CONTROLLER.
- 6. Press SET ADDRESSES and POWER MTR until the analyzer shows the correct power meter model.
- 2-44 System Verification and Performance Tests

- 7. Press **ADDRESS: P MTR/HPIB**. The default power meter HP-IB address is 13. Make sure it is the same as your power meter HP-IB address. Otherwise, use the analyzer front panel keypad to enter the correct HP-IB address for your power meter.
- 8. Press Menu NUMBER of POINTS 51 x1.
- 9. Press POWER PWR RANGE MAN to turn the auto power range off.
- Note The analyzer displays the **PRm** annotation, indicating that the analyzer power range is set to MANUAL.
- 10. Press **PORT POWER** to uncouple the test port output power.
- 11. Press Cal PWRMTR CAL.
- 12. Press LOSS/SENSR LISTS CAL FACTOR SENSOR A. Refer to the back of the power sensor to locate the different calibration factor values along with their corresponding frequencies.

Note The analyzer's calibration factor sensor table can hold a *maximum* of 12 calibration factor data points

The following **softkeys** are included in the sensor calibration factor entries menu:

SEGMENT	press to select a point where you can use the front panel knob or entry keys to enter a value.
10020	press to edit or change a previously entered value.
D) CHACHAC	press to delete a point from the sensor calibration factor table.
ADD	select this key to add a point into the sensor calibration factor table.
CLEAR LIST	select this key to erase the entire sensor calibration factor table.
DONE	select this key when done entering points to the sensor calibration factor table.

As an example, the following are the keystrokes for entering the first two calibration factor data points for the HP 8482A power sensor (assuming CF% = 96.4 at 100 kHz and CF% = 98.4 at 300 kHz):

- a. From the sensor calibration factor entries menu, press ADD.
- b. Press FREQUENCY 100 (k/m). If you make an entry error, press and re-enter the correct value again.
- c. Press CAL FACTOR 96.4 x1.
- d. Press DONE to terminate the first calibration factor data point entry.
- e. To enter the second cal factor data point, press ADD.
- f. Press FREQUENCY 300 k/m.
- g. Press CAL FACTOR (98.4) x1.
- h. To terminate the second calibration factor data point entry, press DONE.
- i. Press **SEGMENT** and use the front panel knob to scroll through the sensor calibration factors table. Check to be sure all values are entered correctly. If you spot an error, use the front panel knob to point to the data point you want to modify and press **EDIT**.
- 13. Press the appropriate softkeys to create a power sensor calibration factors table.
- 14. Press DONE to exit the sensor calibration factor entries menu.
- 15. Press RETURN ONE SWEEP TAKE CAL SWEEP to start the power meter calibration.

Wait until the analyzer finishes the sweep, then continue with this procedure.

Note The analyzer displays the PC annotation, indicating the power meter calibration is done and the error correction is active.

Test Port 2 Input Frequency Response from 300 kHz to 3 GHz

16. Connect the equipment as shown in Figure 2-18.

sg613e

- 17. Press Meas INPUT PORTS B.
- 18. Press (Scale Ref) SCALE/DIV (1) x1.
- 19. Press Marker MARKER 1 Marker Fctn MKR SEARCH SEARCH: MIN to put marker 1 at the minimum magnitude location of the trace.
- 20. Press Marker MARKER 2 Marker Fctn MKR SEARCH SEARCH: MAX to position marker 2 at the maximum magnitude location of the trace.
- 21. Write the marker 1 or marker 2 value (which appears on the analyzer display), whichever has the larger absolute magnitude, in the "Performance Test Record."

Power Meter Calibration on Port 2 from 300 **kHz** to 3 **GHz** 22. Connect the equipment as shown Figure 2-19.

Figure 2-19. Setup for Power Meter **Calibration** on **Test** Port 2

- 23. Press Meas INPUT PORTS TESTPORT 2
- 24. Press Cal PWRMTR ONE SWEEP TAKE CAL SWEEP to start the power meter calibration for test port 2.
- 25. When the analyzer displays the message **POWER** METER CALIBRATION **SWEEP** DONE, connect the equipment as shown as in Figure 2-20.
- 248 **System** Verification and Performance **Tests**

Figure 2-20. Test Port 1 Input Frequency Response Test Setup

Test Port 1 Input Frequency Response from 300 kHz to 3 GHz 26. Press (Meas) INPUT PORTS A.

- 27. Press (Marker) MARKER 1 (Marker Fctn) MKR SEARCH SEARCH:MIN.
- 28. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH : MAX .
- 29. Write the marker 1 or marker 2 reading, whichever has the larger absolute magnitude, in the " Performance Test Record. "
- 30. This completes the "Test Port Input **Frequency** Response" procedure if your analyzer does not have Option 006. Otherwise continue with the next sections

Power Meter Calibration for Test Port 2 from 3 GHz to 6 GHz

- 31. Replace the power sensor with the HP **8481A**, and then setup the power meter:
 - If the power meter is an HP **438A**, press **LCL**.
 - If the power meter is an HP 437B, press (PRESET/LOCAL].
 - If the power meter is an HP **436A**, cycle the **line** power.
- 32. Connect the equipment as shown in Figure 2-21.

sa613e

Figure 2-21. Setup for Power Meter Calibration on Test Port 2

sq617e

- 33. Press Start 3 G/n Stop 6 G/n.
- 34. Press (Cal) PWRMTR CAL
- ^{35.} Press LOSS/SENSR LISTS CAL FACTOR SENSOR B Repeat step 12 to build a calibration factor sensor table for the HP 8481A power sensor.
- 36. Press **DONE** to exit the sensor calibration factor entries menu.
- 37. To select the HP 8481A power sensor, press USE SENSOR B.
- 38. Press RETURN TAKE CAL SWEEP to start the power meter calibration.

Test Port 1 Input Frequency Response from 3 GHz to 6 GHz

39. When the analyzer **finishes** the calibration sweep, connect the equipment as shown in Figure 2-22.

sg618e

- 40. Press Meas INPUT PORTS A.
- 41. Press Marker MARKER 1 Marker Fctn MKR SEARCH SEARCH: MIN to put marker 1 at the minimum magnitude location of the trace.
- 42. Press Marker MARKER 2 Marker Fctn MKR SEARCH SEARCH: MAX to position marker 2 at the maximum magnitude location of the trace.
- 43. Write the marker 1 or marker 2 reading, whichever has the largest absolute magnitude, in the "Performance Test Record."

Power Meter Calibration on Test Port 1 from 3 GHz to 6 GHz

44. Connect the equipment as shown in Figure 2-23.

sg619e

- 45. Press (Meas) INPUT PORTS TESTPORT 1.
- 46. Press Cal PWRMTR ONE SWEEP TAKE CAL SWEEP to start the power meter calibration for output test port 1.

2-52 System Verification and Performance Tests

Test Port 2 Input Frequency Response from 3 GHz to 6 GHz

47. When the analyzer displays the message POWER METER CALIBRATION SWEEP DONE, connect the equipment as shown as in Figure 2-24.

:g618e

- 48. Press Meas INPUT PORTS B.
- 49. Press (Marker) MARKER 1 (Marker Fctn) MKR SEARCH SEARCH:MIN
- 50. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH : MAX .
- 51. Write the marker 1 or marker 2 reading, whichever has the largest magnitude, in the "Performance Test Record."

In Case of **Difficulty**

- 1. Be sure you have used the correct power sensor for the frequency range.
- 2. Verify that the calibration factors that you have entered for the power sensors are correct.
- 3. Repeat this test with a "known good" through cable.

8. Test Port Crosstalk

Specifications

Frequency Range	Crosstalk ¹
300 kHz to 3 GHz	100 dB
3 GHz to 6 GHz ²	90 dB

- 1 At 25° C ±5° C.
- 2 Only for analyzers with Option 006 30 kHz to 6 GHz range.

Required Equipment for 50 ohm Analyzers

Calibration Kit, 7-mm	HP 85031B
Cable, APC-724-inch	HP P/N 8120-4779

Required Equipment for 750 Analyzers

Calibration Kit, 75 ohm, Type-NHP85036B

Analyzer warmup time: 1 hour

Perform this test to verify the signal leakage between the analyzer's test ports.

1. Connect the equipment as shown in Figure 2-25.

* DIRECT CONNECTION

sg620e

Figure 2-25. Test Port Crosstalk Test Setup

2-54 System Verification and Performance Tests

- 2. Press (Preset) (Menu) POWER (10 x1.
- ^{3.} Press (Avg) IF BW (10 $^{(Xl)}$.

Crosstalk to Test Port 2 from 300 kHz to 3 GHz

- 4. Press Start 300 k/m Stop 3 G/n.
- 5. Press (Meas) Trans: FWD S21 (B/R).
- 6. Press (Scale Ref) REFERENCE VALUE (-100) (x1).
- 7. Press (Menu) TRIGGER MENU SINGLE.
- 8. Press (Marker Fctn) MKR SEARCH SEARCH: MAX .
- 9. Write the marker value (which appears on the analyzer display) in the "Performance Test Record."

Crosstalk to Test Port 1 from 300 kHz to 3 GHz

- 10. Press Meas Trans: REV S12 (A/R).
- 11. Press (Menu) TRIGGER MENU SINGLE.
- 12. Press (Marker Fctn) MKR SEARCH SEARCH: MAX .
- 13. Write the marker value (which appears on the analyzer display) in the "Performance Test Record."
- 14. This completes the "Test Port Crosstalk" performance test if your analyzer does not have Option 006. Otherwise, proceed to the next section.

Crosstalk to Test Port 1 from 3 GHz to 6 GHz

- 15. Press Start 3 G/n Stop 6 G/n.
- 16. Press Menu TRIGGER MENU SINGLE.
- 17. Press (Marker Fctn) MKR SEARCH SEARCH: MAX

18. Write the marker value (which appears on the analyzer display) in the "Performance Test Record. "

Crosstalk to Test Port 2 from 3 GHz to 6 GHz

- 1. Press (Meas) Trans: FWD S21 (B/R).
- 2. Press Menu TRIGGER, MENU SINGLE.
- ^{3.} Press (Marker Fctn) MKR SEARCH SEARCH: MAX
- 4. Write the marker value (which appears on the analyzer display) in the "Performance Test Record."

In Case of **Difficulty**

- 1. Remove the instrument top cover. Using an 8 lb-inch torque wrench, verify that *all* semirigid cables connected to the sampler/mixer assemblies are tight. In addition, tighten any loose screws on the sampler/mixer assemblies (A4/5/6) and the pulse generator assembly (A7).
- 2. Remove the instrument bottom cover. Refer to Figure 2-26. Verify that cables **W1**, **W31** and **W32** are tight.
- 3. Repeat this test.

sg6102e

Figure 2-26. HP 8753E Bottom View

9. Calibration Coefficients

Specifications

Uncorrected ¹	Frequency Range			
Error Terms	300 kHz to 1.3 GHz	1.3 GHz to 3 GHz	3 GHz to 6 GHz ²	
Directivity	35 dB	30 dB	25 dB	
Source Match	16 dB	16 dB	14 dB	
Load Match	18 dB	16 dB	14 dB	
Transmission Tracking	±1.5 dB	±1.5 dB	± 2.5 dB	
Reflection Tracking	±1.5 dB	±1.5 dB	± 2.5 dB	

1 At $25^{\circ} \pm 5^{\circ}$ C, with less than 1° C deviation from the measurement calibration temperature.

2 Only for analyzers with Option 006 - 30 kHz to 6 GHz range.

Equipment Required for 500 Analyzers

Calibration Kit, 7-mm	
Cable, APC-7 , 24-inch	

Equipment Required for 750 Analyzers

Calibration Kit, Type-N	 HP 85036B
Cable, Type-N, 24-inch	 HP P/N 8120-4781

Analyzer warmup time: 30 minutes

Perform this procedure to verify the analyzer uncorrected test port characteristics.

Note The crosstalk calibration coefficients are omitted in this procedure. They are covered in the "Test Port Crosstalk" performance test.

First Full 2-Port Calibration

1. Connect the equipment as shown in Figure 2-27.

sg621e

Figure 2-27. First Full 2-Port Calibration Test Setup

- 2. Press Preset Start 300 k/m.
- 3. Press Cal CAL KIT SELECT CAL KIT CAL KIT:7mm RETURN RETURN CALIBRATE MENU FULL 2-PORT.
- 4. Press ISOLATION OMIT ISOLATION.
- 5. Connect the "open" end of the open/short combination (supplied in the calibration kit) to analyzer test port 1.
- 6. Press REFLECTION FORWARD: OPEN.
- 7. Connect the "short" end of the open/short combination to analyzer test port 1.
- 8. Press FORWARD SHORT.
- 9. Replace the open/short combination with the 50 ohm termination (supplied in the calibration kit).

10. Press FORWARD: LOAD.

11. Connect the "open" end of the open/short combination to the reference test port 2.

12. Press REVERSE: OPEN.

13. Connect the "short" end of the open/short combination to the reference test port 2.

14. Press REVERSE: SHORT.

15. Connect the 50 ohm termination to the reference test port 2.

16. Press REVERSE: LOAD.

17. Whentheanalyzer displays PRESS 'DONE' IF FINISHED WITH **STD(s)**, press **STANDARDS DONE**.

Waitforthemessage COMPUTINGCAL COEFFICIENTS to disappearfrom the analyzer display before proceeding to the next step.

18. Connect the equipment as shown in Figure 2-28.

sg618e

19. Press TRANSMISSION DO BOTH FWD + REV.

20. Press DONE 2-PORT CAL.

Directivity (Forward) Calibration Coefficient

21. Press System SERVICE MENU TESTS (32) (x1) EXECUTE TEST.

- 22. When the analyzer finishes the test, press Marker.
- 23. Using the front panel knob, locate the maximum value of the data trace for the 300 kHz to 1.3 GHz frequency range.
- 24. Write the maximum value in the "Performance Test Record."
- 25. Repeat the previous two steps for the other frequency range(s) listed on the "Performance Test Record."

Source Match (Forward) Calibration Coefficient

26. Press (System) SERVICE MENU TESTS (33 XI) EXECUTE TEST.

27. When the analyzer finishes the test, repeat steps 22 through 25.

Transmission Tracking (Forward) Calibration Coefficient

28. Press (System) SERVICE MENU TESTS (37) (x1) EXECUTE TEST.

29. When the analyzer finishes the test, repeat steps 22 through 25.

Reflection Tracking (Forward) Calibration Coefficient

30. Press System SERVICE MENU TESTS 34 x1 EXECUTE TEST.

31. When the analyzer **finishes** the test, repeat steps 22 through 25.

Load Match (Reverse) Calibration Coefficient

32. Press (System) SERVICE MENU TESTS (42 x1) EXECUTE TEST.

33. When the analyzer finishes the test, repeat steps 22 through 25.

Transmission Tracking (Reverse) Calibration Coefficient

34. Press (System) SERVICE MENU TESTS (43) (x1) EXECUTE TEST.

35. When the analyzer finishes the test, repeat steps 22 through 25.

Second Full 2-Port Calibration

36. Connect the equipment as shown in Figure 2-29.

sg622e

Figure 2-29. Second Full 2-Port Calibration Test Setup

- 37. Press (Preset) (Start) (300 (k/m).
- 38. Press Cal CAL KIT SELECT CAL KIT CAL KIT: 7mm RETURN RETURN CALIBRATE MENU FULL 2-PORT.
- 39. Press ISOLATION OMIT ISOLATION.
- 40. Connect the "open" end of the open/short combination (supplied in the calibration kit) to reference test port 1.
- 41. Press REFLECTION FORWARD: OPEN.
- 42. Connect the "short" end of the open/short combination to reference test port 1.
- 43. Press FORWARD: SHORT.
- 2-62 System Verification and Performance Tests

44. Replace the open/short combination with the 50 ohm termination (supplied in the calibration kit).

45. Press FORWARD: LOAD.

46. Connect the "open" end of the open/short combination to the analyzer test port 2.

47. Press REVERSE: OPEN.

48. Connect the "short" end of the open/short combination to the analyzer test port 2.

49. Press **REVERSE: SHORT**

50. Connect the 50 ohm termination to the analyzer test port 2.

51. Press REVERSE: LOAD.

52. When the analyzer displays PRESS 'DONE' IF FINISHED WITH **STD(s)**, press **STANDARDS DONE**.

Wait for the message COMPUTING CAL COEFFICIENTS to disappear from the analyzer display before proceeding to the next step.

53. Connect the equipment as shown in Figure 2-30.

sg618e

Figure 2-30. Transmission Calibration Test Setup

54. Press TRANSMISSION DO BOTH FWD + REV.

55. Press DONE 2-PORT CAL.

Load Match (Forward) Calibration Coefficient

- 56. Press System SERVICE MENU TESTS 36 XI EXECUTE TEST.
- 57. When the test is done, press (Marker) MARKER 1.
- 58. Using the front panel knob, locate the maximum value of the data trace for the 300 kHz to 1.3 GHz frequency range.
- 59. Write the maximum value on the "Performance Test Record."
- 60. Repeat the previous three steps for the other frequency range(s) listed on the "Performance Test Record."

Directivity (Reverse) Calibration Coefficient

- 61. Press System SERVICE MENU TESTS (38) (x1) EXECUTE TEST.
- 62. When the analyzer finishes the test, repeat steps 57 through 60.

Source Match (Reverse) Calibration Coefficient

- 63. Press (System) SERVICE MENU TESTS (39) x1. At the prompt, press EXECUTE TEST.
- 64. When the analyzer finishes the test, repeat steps 57 through 60.

Reflection Tracking (Reverse) Calibration Coefficient

- 65. Press (System) SERVICE MENU TESTS (40) (x1) EXECUTE TEST.
- 66. When the analyzer finishes the test, repeat steps 57 through 60.

10. System Trace Noise (Only for Analyzers without Option 006)

Frequency Range	Ratio	System Trace Noise (Magnitude ¹)	System Trace Noise (Phase¹)
30 kHz to 3 GHz	A / R	<0.006 dB rms	<0.038° rms
30 kHz to 3 GHz	B/R	<0.006 dB rms	<0.038° rms

1 At + 5 dBm into test port, 3 kHz IF bandwidth, and CW sweep.

Required Equipment for **500** Analyzers Cable, **APC-7**, **24-inch** HP P/N 8120-4779 Required Equipment for **750** Analyzers Cable, **750**, Type-N **24-inch** HP P/N 8120-2408

Analyzer warmup time: 1 hour

Perform this test to measure the system trace noise at a designated frequency in both the A/R and B/R ratioed measurements.

1. Connect the equipment as shown in Figure 2-31.

:g618e

Figure 2-31. System Trace Noise Test Setup

2. Press Preset Menu POWER (5 x1).

- 3. Press RETURN CW FREQ 3 G/n NUMBER of POINTS 1601 x1.
- 4. Press Marker Fctn MARKER MODE MENU STATS ON to activate the instrument's statistic feature.

System Trace Noise for A/R Magnitude

- 5. Press Meas Trans: REV S12 (A/R).
- 6. Press Menu TRIGGER MENU NUMBER of GROUPS (5 x1).
- 7. When the analyzer displays the "Hld" annotation, press (Scale Ref) AUTO SCALE
- 8. Write the **s.dev** (standard deviation) value, which appears on the analyzer display, on the "Performance **Test** Record. "

System Trace Noise for A/R Phase

- 9. Press (Format) PHASE.
- 10. Press Menu TRIGGER MENU NUMBER of GROUPS 5 x1.
- 11. When the analyzer finishes the number of sweeps, press (Scale Ref) AUTO SCALE.
- 12. Write the sdev value on the "Performance Test Record."

System Trace Noise for B/R Magnitude

- 13. Press Meas Trans: FWD S21 (B/R).
- 14. Press (Menu) TRIGGER MENU NUMBER of GROUPS (5 x1).
- 15. When the analyzer **finishes** the number of sweeps, press (Scale Ref) AUTO SCALE.
- 16. Write the sdev value on the "Performance Test Record."

System Trace Noise for B/R Phase

- 17. Press (Format) PHASE .
- 18. Press (Menu) TRIGGER MENU NUMBER of GROUPS 5 x1.
- 19. When the analyzer **finishes** the number of sweeps, press **Scale Ref**
- 20. Write the sdev value on the "Performance Test Record."

In Case of Difficulty

- 1. Perform the "ADC Offset Correction Constants" procedure, located Chapter 3, "Adjustments and Correction Constants. "
- 2. Repeat this performance test.
- 3. Suspect the A10 Digital IF board assembly if the analyzer still fails the test.

11. System Trace Noise (Only for Analyzers with Option 006)

Specifications

Frequency Range	Ratio	System Trace Noise (Magnitude ¹)	System Trace Noise (Phase ¹)
30 kHz to 3 GHz	A/R	<0.006 dB rms	<0.038° rms
30 kHz to 3 GHz	B/R	<0.006 dB rms	<0.038° rms
3 GHz to 6 GHz	A/R	<0.010 dB rms	<0.070° rms
3 GHz to 6 GHz	B/R	<0.010 dB nns	<0.070° rms

1 At + 5 dBm into test port, 3 kHz IF bandwidth, and CW sweep.

Required Equipment

Analyzer warmup time: 1 hour

Perform this test to measure the system trace noise at designated CW frequencies in both the A/R and B/R **ratioed** measurements.

1. Connect the equipment as shown in Figure 2-32.

sg618e

Figure 2-32. System Trace Noise Test Setup

- 2. Press Preset Menu POWER (5 x1 RETURN NUMBER of POINTS (1601) x1).
- 2-68 System Verification and Performance Tests

3. Press Marker Fctn MARKER MODE MENU STATS ON to activate the instrument's statistic feature.

System Trace Noise for A/R Magnitude from 30 kHz to 3 GHz

- 4. Press Meas Trans: REV S12 (A/R).
- 5. Press (Menu) CW FREQ (3) G/n TRIGGER MENU NUMBER of GROUPS (5) x1.
- 6. When the analyzer finishes the number of sweeps, press (Scale Ref) AUTO SCALE.
- 7. Write the sdev (standard deviation) value shown, which appears on the analyzer display, on the "Performance Test Record."

System Trace Noise for A/R Magnitude from 3 GHz to 6 GHz

- 8. Press Menu CW FREQ 6 G/n TRIGGER MENU NUMBER of GROUPS 5 x1.
- 9. When the analyzer finishes the number of sweeps, press (Scale Ref) AUTO SCALE.
- 10. Write the s.dev value, which appears on the analyzer display, on the "Performance Test Record."

System Trace Noise for A/R Phase from 3 GHz to 6 GHz

- 11. Press (Format) PHASE.
- 12. Press Menu TRIGGER MENU NUMBER of GROUPS 5 x1.
- 13. When the analyzer **finishes** the number of sweeps, press **Scale Ref AUTO SCALE**
- 14. Write the **s.dev** value, which appears on the analyzer display, on the "Performance Test Record."

System Trace Noise for A/R Phase from 30 kHz to 3 GHz

- 15. Press Menu CW FREQ 3 G/n TRIGGER MENU NUMBER of GROUPS 5 x1.
- 16. When the analyzer finishes the number of sweeps, press Scale Ref AUTO SCALE.
- 17. Write the s.dev value, which appears on the analyzer display, on the "Performance Test Record."

System Trace Noise for B/R Magnitude from 30 kHz to 3 GHz

- 18. Press Meas Trans: FWD S21 (B/R) (Menu) TRIGGER MENU NUMBER of GROUPS 5 x1.
- 19. When the analyzer finishes the number of sweeps, press Scale Ref AUTO SCALE.
- 20. Write the s.dev value, which appears on the analyzer display, on the "Performance **Test** Record. "

System Trace Noise for B/R Magnitude from 3 GHz to 6 GHz

- 21. Press (Menu) CW FREQ 6 G/n TRIGGER MENU NUMBER of GROUPS 5 x1.
- 22. When the analyzer **finishes** the number of sweeps, press **Scale Ref** AUTO SCALE
- 23. Write the **s.dev** value, which appears on the analyzer display, on the "Performance **Test** Record."

System Trace Noise for B/R Phase from 3 GHz to 6 GHz

- 24. Press (Format) PHASE (Menu) TRIGGER MENU NUMBER of GROUPS (5) x1.
- 25. When the analyzer **finishes** the number of sweeps, press **Scale Ref AUTO SCALE**.
- 26. Write the s.dev value, which appears on the analyzer display, on the "Performance **Test** Record. "
- 2.70 **System** Verification and Performance Tests

System Trace Noise for B/R Phase from 30 kHz to 3 GHz

- 27. Press (Menu) CW FREQ 3 G/n TRIGGER MENU NUMBER of GROUPS 5 x1.
- 28. When the analyzer finishes the number of sweeps, press **Scale Ref** AUTO SCALE.
- 29. Write the **s.dev** value, which appears on the analyzer display, on the "Performance Test Record."

In Case of Difficulty

- 1. Perform the "ADC Offset Correction Constants" procedure, located in Chapter 3, "Adjustments and Correction Constants."
- 2. Repeat this performance test.
- 3. Suspect the A10 Digital IF board assembly if the analyzer still fails the test.

12. Test Port Input Impedance

Specifications

Frequency Range	Test Port Input	Return Loss
300 kHz to 1.3 GHz	Port 1	$I \geq 18 \text{ dB}$
1.3 GHz to 3 GHz	Port 1	≥16 dB
3 GHz to 6 GHz	Port 1	≥14 dB
300 kHz to 1.3 GHz	Port 2	≥18 dB
1.3 GHz to 3 GHz	Port 2	≥16 dB
° 3 GHz to 6 GHz 1	Port 2	$I \geq 14 \text{ dB}$

Required Equipment for 50 ohm Analyzers

Cable, APC-7,24-inch	HP P/N 8120-4779
	HP 65051D
Required Equipment for 75 ohm Analyzers	
Cable, 750 , Type-N, 24-inch	HP P/N 8120-2408
Angle in a survey time 1 hours	

Analyzer warmup time: 1 hour

Perform this test to measure the return loss of each input test port.
1. Connect the equipment as shown in Figure 2-33.

sg623e

Figure 2-33. Sll l-Port Cal Test Setup

- 2. Press (Preset) (AVG) IF BW (3000) x1 (Menu) NUMBER of POINTS (1601) x1.
- 3. Press Start 300 k/m.
- 4. Press Cal CAL KIT SELECT CAL KIT and select the appropriate calibration kit:
 - If your analyzer is 50Ω, press CAL KIT: 7mm.
 - If your analyzer is 75Ω , press CAL KIT: N 75 Ω .
- 5. Press RETURN "RETURN ALCORATE MENU S11 1-PORT.
- 6. Connect an open to reference test port 1, as shown in Figure 2-33.
- 7. Press FORWARD: UPEN.
- 8. When the analyzer displays the prompt CONNECT STD THEN PRESS KEY TO **MEASURE**, connect a short to reference test port 1.
- 9. Press FORWARD: SHORT.
- 10. At the prompt, connect a load to reference test port 1.

11. Press FORWARD: LOAD.

12. When the analyzer displays 'DONE' IF FINISHED WITH CAL, press DONE 1-PORT CAL

13. Press (Save/Recall) SAVE STATE.

14. Connect the equipment as shown in Figure 2-34.

g613e

Figure 2-34. Test Port 2 Input Impedance Test Setup

- 15. Press Marker to turn the analyzer's marker 1 on. Use the front panel knob to locate the maximum value of the data trace for each of the frequency ranges listed in the "Performance Test Record."
- 16. Write these maximum values on the "Performance Test Record."
- 17. Connect the equipment as shown in Figure 2-35.

sg624e

Figure 2-35. S22 l-Port Cal Test Setup

18. Press Cal CALIBRATE MENU S22 1-PORT.

19. At the prompt, connect an open to reference test port 2, as shown in Figure 2-35.

20. Press REVERSE: OPEN .

21. When the analyzer displays the prompt CONNECT STD THEN PRESS KEY TO MEASURE, connect a short to reference test port 2.

22. Press REVERSE: SHORT.

23. At the prompt, connect a load to reference test port 2.

24. Press REVERSE: LOAD.

- 25. When the analyzer displays 'DONE' IF FINISHED WITH CAL, press **DONE 1-PORT CAL**.
- 26. Press (Save/Recall) SAVE STATE to save the 1-Port calibration.
- 27. Connect the equipment as shown in Figure 2-36.

sg618e

Figure 2-36. Test Port 1 Input Impedance Test Setup

- 28. Press Marker to activate the analyzer's marker 1. Use the front panel knob to locate the maximum value of the data trace for each of the frequency ranges listed in the "Performance Test Record."
- 29. Write the maximum values on the "Performance Test Record."

In Case of Difficulty

- 1. Suspect the A10 digital IF board assembly if the analyzer fails *both* test port tests.
- 2. Refer to Chapter 8, "Receiver Troubleshooting," for more troubleshooting information.

13. **Test** Port Receiver Magnitude Dynamic Accuracy **Specifications**

Required Equipment

Power Meter	HP 436A/437B/438A
Step Attenuator, 110 dB	HP 8496A Option 001, H18
(See notes on the following page.) Adapter (2) APC-7 to Type-N (f)	HP 11524A
Adapter, Type-N (f) to Type-N (f)	
Cable (3), 500, Type-N, 24-inch Cable, HP-IB	
Diskette, 3.5 inch	any
Calibration Kit, Type-N, 50 U	11F 00002D
Minimum Loss Pad (2) 500 to 750	HP 11852B
Analuzer warmun time: 1 hour	

Note	The HP 8496A step attenuator (Option 001, H18) comes with a special calibration that supports the measurement uncertainties expressed in the test record for this performance test.		
	The special calibration consists of two measurements The first is a measurement of the attenuation at each step. The data reported for this measurement have the following uncertainties:		
	■ ±0.006 dB from 0 to 40 dB		
	■ ±0.015 dB from >40 to 80 dB		
	■ ±0.025 dB from >80 to 90 dB		
	• $\pm 0.05 dB > 90 dB$		
	The second calibration measurement characterizes match stability between attenuator settings for each attenuator port. The vector difference of S_{11} or (S_{22}) between the reference attenuation step and all the other steps is measured. The magnitude of this difference is certified to be ~0.0316 (>30 dB).		
Note	The HP 8496A used for this test will have known attenuator errors for attenuations up to 100 dB using a test frequency of 30 MHz. The attenuation used as a reference is 0 dB . If the available calibration data is not expressed as attenuation errors, it can be converted to such a form by the following equation:		
	(actual attenuation) $-$ (expected attenuation) = attenuator error		
	Actual attenuation values that are greater than the expected attenuation values will result in positive errors Actual attenuation values that are less than the expected attenuation values will result in negative errors.		

Initial Calculations

- 1. Fill in the attenuator error values (referenced to 0 dB attenuation) in **Table 2-1** by referring to the calibration data for the HP **8496A** step-attenuator. Refer to the note on the previous page.
 - a. **Find** the column in the HP **8496A** attenuation error table that pertains to the attenuation errors for 30 MHz.
 - b. Starting with the "10 **dB**" step in this column, write down the value in the corresponding space in **Table 2-1** for column "B." This value should be placed in the row for the 10 **dB** HP **8496A** setting.
 - c. Continue transferring the remaining values of the HP 8496A attenuation errors to column "B" in Table 2-1.
- 2. In **Table** 2-1, transfer the 10 **dB** error value located within the parenthesis in column **"B"** to each space in column "C."

А	В	С	D	Е	F
			(B – C)		(E – D)
8496A Attn. (dB)	Attn. Error (ref 0 dB)	10 dB Error Value	Attn. Error (ref 10 dB)	Expected Measurement (dB)	Expected Measurement (corrected) (dB)
0	0 dB			10	
10	_()		0 dB	0	
20				- 10	
30				- 20	
40				- 3 0	
50				- 40	
60				- 50	
70				- 6 0	
so				- 70	
90				- 80	

Table 2-1. Magnitude Dynamic Accuracy Calculations

3. The values in column "D" result from changing the reference attenuation of the calibration data of the HP **8496A** to 10 **dB**.

Calculate the attenuation error values for this column by subtracting the values in column "C" from the values in column "B" (B - C = D).

4. The values in column "F" result from correcting the expected measurement value by the amount of attenuator error.

Calculate the values in this column by subtracting the values in column "D" from the values in column "E" (E - D = F).

5. Transfer the values from column "F" in **Table 2-1** to column "F" in the "Performance **Test** Record" for both test ports.

Power Meter Calibration

- 6. Zero and calibrate the power meter. (Refer to the power meter manual for details on this procedure.)
- 7. Connect the equipment as shown in Figure 2-37.

Figure 2-37. Power Meter Calibration for Magnitude Dynamic Accuracy

- 8. Set the HP 8496A to 10 dB.
- 9. Set the following analyzer parameters:

(Preset) (Menu) C	W FREQ 30 M/µ
NUMBER of P	OINTS 51 XI
POWER (-10) x	D
Avg IF BW (10	

- 10. Set up the HP 8753E for power meter calibration:
 - a. Select the HP 8753E as the system controller:

b. Set the power meter's address:

SET ADDRESSES ADDRESS: P MTR/HPIB (13) (x1)

- **c.** Select the appropriate power meter by pressing POWER MTR [] until the correct model number is displayed (HP 436A or HP 438A/437).
- d. Select the cal kit and enter the power sensor calibration data.

the	power sensor	calibration dat	ta for 30	MHz) DONE	
Cal	PURMIR CAL	LOSS/SENSOR	LISTS	CAL FACTOR SENSOR A	(enter
Cal	CAL KIT SE	IBCY: CAL KA	' N500		

11. **Take** a power meter calibration sweep.

12. Verify that the power meter reads approximately -20 dBm.

Adapter Removal Calibration

13. Connect the equipment as shown in the Figure 2-38:

sq6118e

Figure 2-38. Full 2-Port Calibration with Adapter Removal

- 14. Perform a full 2-port error correction with isolation.
- Note When you are performing error-correction for a system that has type-N test port connectors, the softkey menus label the sex of the test port connector-not the calibration standard connector. For example, the label SHORT (F) refers to the short that will be connected to the female *test port*.
- 15. Save the results to disk. Name the file "PORT1."
- 16. Move the adapter to reference test port 1 and perform another **full 2-port** error correction.
- 17. Save the results to disk. Name the file "PORT2."

18. Press Cal MORE ADAPTER REMOVAL RECALL CAL SETS.

- 19. kom the disk directory, choose the file "PORT1" and press RECALL CAL PORT 1.
- 20. When this is complete, choose the file "PORT2" and press **RECALL CAL PORT 2**.
- 21. When complete, press RETURN.
- 22. To enter the adapter delay, press ADAPTER DELAY (.110) G/n (default for type-N adapter 1250-1777). The analyzer display will read 110 ps.
- 23. Press ADAPTER COAX REMOVE ADAPTER.
- 24. Save the results of the new **cal** set.

Measure Test Port 2 Magnitude Dynamic Accuracy

25. Remove the type-N (f) to (f) adapter and connect the equipment as shown in Figure 2-39. Confirm that the step attenuator is set to 10 dB.

*DIRECT CONNECTION

;g661e

Figure 2-39. Magnitude Dynamic Accuracy Measurement

26. To set up the dynamic accuracy measurement, press the following:

MeasTrans:FWD S21 (B/R)(Marker Fctn)MKR MODE MENU STATS ON(Menu)TRIGGER MENU SINGLE

27. Wait for the sweep to finish, then press (Display) DATA \rightarrow MEM DATA/MEM.

28. Set the step attenuator to 0 dB.

29. Press Menu) TRIGGER MENU SINGLE.

- 30. Write the mean value (which appears on the analyzer's display) in the "Test Port Measurement" cohunn of the "Performance Test Record." This column is also labeled "G."
- 31. Repeat steps 28 through 30 for each setting of the step attenuator.
- 32. Calculate dynamic accuracy for each step by using the formula $|\mathbf{G} \mathbf{F}|$. Place these values in the appropriate column of the "Performance Test Record."

Measure Test Port 1 Magnitude Dynamic Accuracy

- 33. Set the step attenuator to 10 dB.
- 34. To set up the dynamic accuracy measurement, press the following:

- $^{35.}$ Wait for the sweep to finish, then press (Display) DATA \rightarrow MEM DATA/MEM.
- 36. Set the step attenuator to 0 dB.
- 37. Press (Menu) TRIGGER MENU SINGLE.
- 38. Write the mean value (which appears on the analyzer's display) in the "Test Port Measurement" **column** of the "Performance Test Record." This column is also labeled "G."
- 39. Repeat steps 36 through 38 for each setting of the step attenuator.
- 40. Calculate dynamic accuracy for each step by using the formula $|\mathbf{G} \mathbf{F}|$. Place these values in the appropriate column of the "Performance Test Record."

In Case of Difficulty

- 1. If the analyzer fails the test at ALL power levels, be sure you followed the recommended attenuator settings as listed in the "Performance Test Record." Repeat this performance test.
- 2. If both test port measured values are out of specifications:
 - a. Recalibrate the power meter.
 - b. Repeat this performance test.

- 3. If the analyzer fails either test port 2 or test port 1 dynamic accuracy at lower power levels:
 - a. Perform the "IF Amplifier Correction Constants" and "ADC Offset Correction Constants" procedures (located in Chapter 3, "Adjustments and Correction Constants").
 - b. Repeat this performance test.
 - c. If it still fails, replace the A10 Digital IF assembly.
 - d. Repeat the two adjustment procedures mentioned in this step and then repeat this performance test.

14. **Test** Port Receiver Magnitude Compression

Specifications

Frequency Range	Test Port	Magnitude ¹
300 kHz to 3 GHz	Port 1	≤0.45 dB
3 GHz to 6 GHz ²	Port 1	≤0.80 dB
300 kHz to 3 GHz	Port 2	≤0.45 dB
3 GHz to 6 GHz ²	Port 2	≤0.80 dB

1 With a 10 Hz IF bandwidth.

2 Only for **analyzers** with Option 006 – 30 kHz to 6 GHz range.

Required Equipment for 509 Analyzers			
Cable, APC-7,24-inch	HP	P/N	8120-4779
Required Equipment for 75 ohm Analyzers			
Cable, 750 , Type-N, 24-inch	HP	P/N	8120-2408

Analyzer warmup time: 1 hour

Perform this test to verify the compression/expansion magnitude levels of the analyzer's test port receiver samplers.

Test Port 2 Magnitude Compression

1. Connect the equipment as shown in Figure 2-40.

sg618e

Figure 2-40. Test Port Magnitude Compression Test Setup

- 2. Press (Preset) (Meas) Trans: FWD S21 (B/R).
- 3. Press (Avg) IF BW (10 x1).
- 4. Press Menu CW FREQ (50 M/μ).
- 5. Press SWEEP TYPE MENU POWER SWEEP START 10 x1.
- 6. Press (Menu) TRIGGER MENU SINGLE.
- 7. At the end of the sweep, press (Scale Ref) AUTO SCALE.
- 8. Press (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 9. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH: MIN.
- 10. Press (Marker) AMODE MENU AREF = 1.
- 11. Write the absolute value of the marker 2 reading in the "Performance Test Record."
- 12. Press Menu CH FREQ 1 G/n.
- 13. Press TRIGGER MENU SINGLE.
- 2-90 System Verification and Performance Tests

- 14. At the end of the sweep, press (Scale Ref) AUTO SCALE.
- 15. Press Marker MARKER AREF=1 Marker Fctn MKR SEARCH SEARCH: MAX .
- 16. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH: MIN.
- 17. Write the absolute value of marker 2 in the "Performance Test Record."
- 18. Repeat steps 12 through 17 for the other frequencies listed for Port 2 on the "Performance Test Record."

Test Port 1 Magnitude Compression

- ^{19.} Press Meas Trans: REV S12 (A/R).
- 20. Press Menu) CW FREQ (50 M/μ).
- 21. Press TRIGGER MENU SINGLE.
- $^{22.}$ At the end of the sweep, press (Scale Ref) AUTO SCALE.
- 23. Press (Marker) MARKER AREF = 1 (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 24. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH: MIN.
- 25. Write the absolute value of the marker 2 reading in the "Measured Value" column of the "Performance Test Record."
- 26. Repeat steps 20 through 25 for the other CW frequencies **listed** for Port 1 in the "Performance Test Record."

In Case of Difficulty

- 1. If the analyzer fails "Test Port 2 Magnitude Compression":
 - a. Repeat this test.
 - b. Replace the A6 B sampler assembly if the analyzer still fails the test.
- 2. If the analyzer fails "Test Port 1 Magnitude Compression":
 - a. Repeat this test.
 - b. Replace the A5 A sampler assembly if the **analyzer still fails** the test.

15. Test Port Receiver Phase Compression Specifications

CW Frequency	Test Port	Phase ¹
300 kHz to 3 GHz	z Port 1	<u>≤</u> 6°
3 GHz to 6 GHz ²	Port 1	≤ 7.5°
300 kHz to 3 GHz	Port 2	<u>≤</u> 6°
3 GHz to 6 GHz ²	Port 2	≤7.5°

1 With 10 Hz IF bandwidth.

2 Only for analyzer with Option 006 - 30 kHz to 6 GHz range.

Required Equipment for 500 Analyzers		
Cable, APC-7, 24-inch	HP P/N	8120-4779
Required Equipment for 75 ohm Analyzers		
Cable, 75 ohm, Type 24-inch	HP P/N	8120-2408
Anglason manus time: 1 hours		

Analyzer warmup time: 1 hour

Perform this test to verify the compression/expansion phase relationships of the analyzer's test port receiver samplers.

Test Port 2 Phase Compression

1. Connect the equipment as shown in Figure 2-41.

sg618e

Figure 2-41. Test Port Phase Compression Test Setup

- 2. Press (Preset) (Meas) Trans: FWD S21 (B/R) (Format) PHASE.
- 3. Press (Avg) IF BW 10 x1,
- 4. Press (Menu) SWEEP TYPE MENU POWER SWEEP START -10 x1.
- 5. Press Menu CW FREQ 50 M/μ .
- 6. Press (Menu) TRIGGER MENU SINGLE.
- 7. At the end of the sweep, press (Scale Ref) AUTO SCALE.
- 8. Press (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 9. Press Marker MARKER 2 Marker Fctn MKR SEARCH SEARCH: MIN.
- 10. Press (Marker) AMODE MENU AREF = 1.
- 11. Write the absolute value of the marker 2 reading in the **"Measured Value"** column of the "Performance Test Record."
- 12. **Repeat** steps 5 to 11 for the other CW frequencies listed for Port 2 in the "Performance Test Record."

Test Port 1 Phase Compression

- 13. Press (Meas) Trans: REV S12 (A/R) (Format) PHASE.
- 14. Press Menu CW FREQ 50 M/μ .
- 15. Press (Menu) TRIGGER MENU SINGLE.

16. At the end of the sweep, press Scale Ref AUTO SCALE

17. Press (Marker) MARKER AREF = 1 (Marker Fctn) MKR SEARCH SEARCH: MAX.

18. Press (Marker) MARKER 2 (Marker Fctn) MKR SEARCH SEARCH: MIN.

- 19. Write the absolute value of the marker 2 reading in the "Measured Value" column of the "Performance Test Record."
- 20. Repeat steps 14 to 19 for the other CW frequencies listed for Port 1 in the "Performance Test Record."

In Case of Difficulty

- 1. If the analyzer fails the "Test Port 2 Phase Compression" test:
 - a. Repeat this test.
 - b. Replace the A6 B sampler assembly if analyzer still fails the test.
- 2. If the analyzer fails the "Test Port 1 Phase Compression" test:
 - a. Repeat this test.
 - b. Replace the A5 A sampler assembly if analyzer still fails the test.

16. Test Port Output/Input Harmonics (Option **002** Analyzers without Option 006 Only)

Specifications

Test Port 1	Harmonic	Limit
output	2nd	<-25 dBc @ + 10 dBm
Output	3rd	<-25 dBc @ + 10 dBm
Input Port 1	2nd	<-15 dBc @ +8 dBm
Input Port 1	3rd	<-30 dBc @ +8 dBm
Input Port 2	2nd	<-15 dBc @ +8 dBm
Input Port 2	3rd	I <-30 dBc @ +8 dBm

Equipment Required for 500 Analyzers

Cable, APC-7, 24-inch	HP P/N 8120-4779
Attenuator (2), 20 dB, APC-7	HP 8492A Option 020
Equipment Required for 75 ohm Analyzers	
Minimum Loss Pad (2)	HP 11852B
Cable, Type-N	HP P/N 8120-2408
Attenuator (2), 20 dB, Type-N	HP 8491A Option 020

Analyzer warmup time: 30 minutes

Perform this test to determine the spectral purity of the HP 8753E input and output test ports

Note The **test** port input **3rd** harmonic specifications are better than the test port output **3rd** harmonic specifications

Test Port Output Worst Case 2nd Harmonic

- 1. Press Preset Menu POWER 10 x1.
- 2. Press Start 16 M/μ Stop 1.5 G/n to set the frequency range.
- 3. Press (Avg) IF BW (10 x1 to set the IF bandwidth to 10 Hz.
- 4. Connect the equipment as shown in Figure 2-42.

Figure 2-42. Test Port Output Harmonics Test Setup

- 5. Press (Meas) Trans: REV S12 (A/R) INPUT PORTS A.
- 6. After one sweep, press (Display) DATA→MEMORY DATA/MEM to normalize the trace.
- 7. Press (System) HARMONIC MEAS HARMONIC SECOND.
- 8. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 9. Press Marker Fctn MKR SEARCH SEARCH MAX.
- 2-96 System Verification and Performance Tests

10. Write the marker 1 value (which appears on the analyzer display) on the "Performance Test Record." This is the worst case test port output **2nd** harmonic

Test Port Output Worst Case 3rd Harmonic

- 11. Press **Stop 1 G**/**n** to change the stop frequency to 1 **GHz**.
- 12. Press (System) HARMONIC MEAS HARMONIC OFF.
- 13. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 14. Press (Scale Ref) AUTO SCALE SCALE/DIV (1) (xl) to get a better viewing of the trace.
- 15. Press (System) HARMONIC MEAS HARMONIC THIRD.
- 16. After one sweep, press Scale Ref AUTO SCALE.
- 17. Press (Marker Fctn) MKR SEARCH SEARCH MAX.
- 18. Write the marker 1 value on the "Performance Test Record."

Port 1 Input Worst Case 2nd Harmonic

19. Connect the equipment as shown in Figure 2-43.

Figure 2-43. Receiver Harmonics Test Setup

- 20. Press (Preset) (Menu) POWER (8) x1).
- 21. Press (Avg) IF BW (10x1).
- 22. Press (Start) (16) (M/μ) (Stop) (1.5) (G/n) to set the frequency range.
- 23. Press (Meas) Trans: REV S12 (A/R) INPUT PORTS A.
- 24. After one sweep, press (Display) DATA $\rightarrow MEMORY$ DATA/MEM to normalize the trace.
- 25. Press (System) HARMONIC MEAS HARMONIC SECOND.
- 26. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 27. Press (Marker Fctn) MKR SEARCH SEARCH MAX.
- 28. Write the marker 1 value (which appears on the analyzer display) on the "Performance Test Record." This is the worst case port 1 input (receiver channel A) 2nd harmonic.

Port 1 Input Worst Case 3rd Harmonic

- 29. Press **Stop 1 G**/**n** to change the stop frequency for measuring the receiver **3rd** harmonic
- 30. Press System HARMONIC MEAS HARMONIC OFF.
- 31. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 32. Press (Scale Ref) AUTO SCALE SCALE/DIV (1) (x1) to get a better viewing of the trace.
- 33. Press (System) HARMONIC MEAS HARMONIC THIRD.
- 34. After one sweep, press (Scale Ref) AUTO SCALE.
- 35. Press Marker Fctn) MKR SEARCH SEARCH MAX.
- 36. Write the marker 1 value on the "Performance Test Record."
- 37. Press (System) HARMONIC MEAS HARMONIC OFF.

Port 2 Input Worst Case 2nd Harmonic

- 38. Press (Stop) 1.5 G/n to set the stop frequency for measuring the 2nd harmonic
- 39. Press (Meas) Trans: FWD S21 (B/R) INPUT PORTS B .
- 40. After one sweep, press (Display) DATA→MEMORY DATA/MEM to normalize the trace.
- 41. Press (System) HARMONIC MEAS HARMONIC SECOND.
- 42. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 43. Press (Marker Fctn) MKR SEARCH SEARCH MAX.
- 44. Write the marker 1 value (which appears on the analyzer display) on the "Performance Test Record." This is the worst case port 2 input (receiver channel B) **2nd** harmonic

Port 2 Input Worst Case 3rd Harmonic

- 45. Press (Stop 1) G/n to change the stop frequency for measuring the receiver 3rd harmonic
- 46. Press (System) HARMONIC MEAS HARMONIC OFF.
- 47. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 48. Press Scale Ref AUTO SCALE SCALE/DIV (1) x1 to get a better viewing of the trace.
- 49. Press (System) HARMONIC MEAS HARMONIC THIRD.
- 50. After one sweep, press (Scale Ref) AUTO SCALE .
- 51. Press (Marker Fctn) MKR SEARCH SEARCH MAX .
- 52. Write the marker 1 value on the "Performance Test Record."

17. **Test** Port Output/Input Harmonics (Option 002 Analyzers with Option 006 Only)

Specifications

Test Port	Harmonic	Limit
Output	2nd	<-25 dBc @ + 10 dBm
Output I	3rd	<-25 dBc @ +10 dBm
Input Port 1	2nd	<-15 dBc @ +8 dBm
Input Port 1	3rd	<-30 dBc @ +8 dBm
I Input Port 2 I	2nd	<-15 dBc @ +8 dBm
I Input Port 2	3rd	<-30 dBc @ +8 dBm

Equipment Required

Cable, APC-7,24-inch	HP P/N 8120-4779
Attenuator (2), 20 dB	HP 8492A Opt 020

Analyzer warmup time: 30 minutes

 $\mathsf{Perform}$ this test to determine the spectral purity of the HP 8753E input and output test ports

Note The test port input **3rd** harmonic specifications are *better* than the test port output **3rd** harmonic specifications.

Test Port Output Worst Case 2nd Harmonic

- 1. Press (Preset) (Menu) POWER (10 x1 to set the test port power to + 10 dBm.
- 2. Press Start (16) M/μ Stop 3 G/n to set the frequency range.
- 3. Press (Avg) IF BW (10 x1) to set the IF bandwidth to 10 Hz.
- 4. Connect the equipment as shown in Figure 2-44.

sg629e

Figure 2-44. Test Port Output Harmonics Test Setup

- 5. Press Meas Trans: REV S12 (A/R) INPUT PORTS A.
- 6. After one sweep, press (Display) DATA---MEMORY DATA/MEM to normalize the trace.
- 7. Press System HARMONIC MEAS HARMONIC SECOND.
- 8. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 9. Press (Marker Fctn) MKR SEARCH SEARCH MAX
- 10. Write the marker 1 value (which appears on the analyzer display) on the "Performance Test Record." This is the worst case test port output **2nd** harmonic
- 2-1 02 System Verification and Performance Tests

Test Port Output Worst Case 3rd Harmonic

- 11. Press **Stop 2 G**/**n** to change the stop frequency to 2 **GHz**.
- 12. Press (System) HARMONIC MEAS HARMONIC OFF.
- 13. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 14. Press Scale Ref AUTO SCALE SCALE/DIV (1) x1 to get a better viewing of the trace.
- 15. Press (System) HARMONIC MEAS HARMONIC THIRD.
- 16. After one sweep, press Scale Ref) AUTO SCALE.
- 17. Press (Marker Fctn) MKR SEARCH SEARCH MAX.
- 18. Write the marker 1 value on the "Performance Test Record."

Port 1 Input Worst Case 2nd Harmonic

19. Connect the equipment as shown in Figure 2-45.

sg630e

Figure 2-45. Receiver Harmonics Test Setup

- 20. Press Preset Menu POWER 8 x1.
- 21. Press (Avg) IF BW (10 x1).
- 22. Press Start (16) M/μ Stop 3 G/n to set the frequency range.
- 23. Press Meas Trans: REV S12 (A/R) INPUT PORTS A.
- 24. After one sweep, press (Display) DATA $\rightarrow MEMORY$ DATA/MEM to normalize the trace.
- 25. Press (System) HARMONIC MEAS HARMONIC SECOND.
- 26. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 27. Press (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 28. Write the marker 1 value (which appears on the analyzer display) on the 'Performance Test Record." This is the worst case port 1 input (receiver channel A) **2nd** harmonic

2-104 System Verification and Performance Tests

Port 1 Input Worst Case 3rd Harmonic

- 29. Press (Stop) (2) (G/n) to change the stop frequency for measuring the receiver 3rd harmonic.
- 30. Press (System) HARMONIC MEAS HARMONIC OFF.
- 31. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 32. Press <u>Scale Ref</u> AUTO SCALE SCALE/DIV [] x1 to get a better viewing of the trace.
- 33. Press (System) HARMONIC MEAS HARMONIC THIRD.
- 34. After one sweep, press Scale Ref) AUTO SCALE.
- 35. Press (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 36. Write the marker 1 value on the "Performance Test Record."
- 37. Press (System) HARMONIC MEAS HARMONIC OFF.

Port 2 Input Worst Case 2nd Harmonic

- 38. Press <u>Stop</u> 3 <u>G/n</u> to set the stop frequency for measuring the 2nd harmonic.
- 39. Press (Meas) Trans: FWD S21 (B/R) INPUT PORTS B.
- 40. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 41. Press System HARMONIC MEAS HARMONIC SECOND.
- 42. After one sweep, press (Scale Ref) AUTO SCALE to get a better viewing of the trace.
- 43. Press (Marker Fctn) MKR SEARCH SEARCH MAX.
- 44. Write the marker 1 value (which appears on the analyzer display) on the "Performance Test Record." This is the worst case port 2 input (receiver channel B) **2nd** harmonic

Port 2 Input Worst Case 3rd Harmonic

- 45. Press (Stop) (2) (G/n) to change the stop frequency for measuring the receiver 3rd harmonic
- 46. Press (System) HARMONIC MEAS HARMONIC OFF.
- 47. After one sweep, press (Display) DATA \rightarrow MEMORY DATA/MEM to normalize the trace.
- 48. Press Scale Ref AUTO SCALE SCALE/DIV [] x1 to get a better viewing of the trace.
- 49. Press System HARMONIC MEAS HARMONIC THIRD.
- 50. After one sweep, press (Scale Ref) AUTO SCALE.
- 51. Press (Marker Fctn) MKR SEARCH SEARCH: MAX.
- 52. Write the marker 1 value on the "Performance Test Record."

18. **Test** Port Output Harmonics (Analyzers without Option 002)

Specifications

Harmonic	Limit, +10dBm source output ¹
2nd	<-25 dBc
3rd	<-25 dBc

1 For HP **8753E** Option 075: + **8 dBm** source output; limits valid for frequencies below 2 **GHz**

Equipment Required for 50 ohm Analyzers

Spectrum analyzer	HP 85953
\hat{C} able, 50 Ω , type-N (m) to type-N (m), 24-inch	HP P/N 81204781
Adapter, APC-7 to type-N (f)	HP 11524A
Adapter, type-N (m) to BNC (f)	HP P/N 1250-1476
Cable, 503, BNC (m)	HP P/N 8120-1840
Additional Equipment Required for 75 ohm Analyzers	

Minimum-loss pad HP 11852B

Equipment warmup time: 30 minutes (network analyzer and spectrum analyzer)

Perform this test to determine the spectral purity of the network analyzer RF source. Use this procedure with HP 8753E network analyzers without Option 002 (harmonic measurement capability).

Procedure

- 1. Calibrate the *spectrum analyzer*:
 - a. Connect the BNC cable between the spectrum analyzer CAL OUT connector and the 508 input. Use the type-N (m) to BNC (f) adapter at the 500 input.
 - b. Press CAL.
 - c. Press CAL YTF and wait for calibration to complete.
 - d. Press CAL FREQ & AMPTD and wait for calibration to complete.
 - e. Press STORE CAL.
 - f. Remove the BNC cable and adapter.
- 2. Connect the equipment as shown in Figure 2-46.

sg6123e

- 3. Set the *network analyzer source* power to + 10 dBm:
 - a. Press PRESET.
 - b. Press MENU).
 - C. Press Power.
 - d. Press 10 x 1. (For 750 analyzers, press 8 x1.)
 - e. Press RETURN.

- 4. Set up the *spectrum analyzer* display:
 - a. Press (SPAN).
 - b. Press 20 MHz).
 - c. Press (BW).
 - d. Press 300 (kHz).
 - e. Press VBW/RBW RATIO.
 - f. Press .03 ENTER.
 - g. Press AMPLITUDE.
 - h. Press REF LVL.
 - i. Press 10 (+dBm).
- 5. Set the *network analyzer* and *spectrum analyzer* to the harmonic frequency. Use the appropriate test record to choose the proper harmonic frequency. Refer to the test record in Section **2a** for 3 **GHz** network analyzers, or the test record in Section **2b** for 6 **GHz** network analyzers.
 - Network Analyzer
 - a. Press CH FREQ.
 - b. Enter the harmonic frequency from the test record. For example, press $100 \text{ M/}\mu$ to set the network analyzer to the second harmonic of the first fundamental frequency in the 3 GHz test record.
 - Spectrum Analyzer
 - c. Press FREQUENCY.
 - d. Enter the harmonic frequency from the test record. For example, press **100** MHz to set the **spectrum** analyzer to the second harmonic of the first fundamental frequency in the 3 GHz or 6 GHz test record.
 - e. Press (MKR →).
 - f. Press MKR \rightarrow CF.
 - g. Press (SGL SWP).
 - h. Press MKR.
 - i. Press MKR A
- 2-110 System Verification and Performance Tests

- 6. Set up the *network analyzer* to output the fundamental frequency:
 - a. Press CH FREQ.
 - b. Enter the fundamental frequency. For example, press $(50 \text{ M/}\mu)$ to enter the **first** fundamental frequency in the 3 **GHz** test record.
- 7. Measure and record the power in the second or third harmonic by taking a single sweep with the *spectrum analyzer*:
 - a. Press (SGL SWEEP).
 - b. Read the MARKER A measurement, and record it in the appropriate row of the test record under Measurement Value (dBc).
- 8. Reset the *spectrum analyzer* marker:

a. Press MKR.

- b. Press MARKER NORMAL .
- 9. Repeat steps 5 through 8 for the remaining second and third harmonic frequencies, and the fundamental frequencies listed in the test record.

Performance Test Record

For Analyzers with a Frequency Range of 30 **kHz** to 3 **GHz**

Note See the next "Performance Test Record" section if your analyzer frequency range is from 30 **kHz** to 6 **GHz** (Option 006).

Calibration Lab Add	drace.		1	Papart Number	
Canoration Lab Add	urcss.		1	Date	
				ast Calibration Date	
				Customer's Name	
				Performed by	
Model HP 8753E					
Serial No			(Option(s)	
Firmware Revision					
Ambient Temperature		_• C Relative Humidity%			
Test Equipment Us	ed:				
Description	Model	Number	r	Frace Number Cal Due Date	
Frequency Counter					
Power Meter					
Power Sensor					
Calibration Kit					
Verification Kit					
Notes/Comments:					
					_

HP 8753E Performance Test Record (1 of 13)

HP 8753E Performance **Test** Record (2 of 13) For 30 **kHz—3 GHz Analyzers**

Iewlett-Packard Company Model HP 8753E		Report Number			
Jerial Number		_ Date			
▶▶ 1. Te	est Port Outpu	at Frequency Range and	Accuracy		
CW Frequencies (MHz)	Min. (MHz)	Results Measured (MHz)	Max. (MHz)	Measurement Uncertainty (MHz)	
0.03	0.0299997		0.030 000 3	f0.000 000 050	
0.3	0.299 997		0.300003	+ 0.000 000 520	
5.0	4.999 950		5.000 050	± 0.000 009	
16.0	15.999 840		16.000 160	1 0.000 028	
31.0	30.999 690		31.000310	$\pm 0.000 054$	
60.999999	60.999 390		61.000 610	± 0.000 106	
121.0	120.998 790		121.001210	$\pm 0.000 \ 207$	
180.0	179.998 200		180.001800	\pm 0.000 307	
310.0	309.995 900		310.003106	± 0.000528	
700.0	699.930 000		700.007000	± 0.001 192	
1300.0	1299.987		1300.013	\pm 0.002 212	
2 000.0	1 999.980		2000.020	$\pm 0.003 403$	
3 000.0	2 999.970		3 000.030	$\pm 0.005 \ 104$	
►► 2	2. External Sc	 purce Mode Frequency R	ange		
Test Frequencies	(GHz)	R	esults		
0.010 0.020 0.100 1.000 2.000 3.000					
3.000					

HP 8753E Performance **Test** Record (3 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Comp	any					
Model HP 8753E Serial Number		Report Number				
		_ Date				
▶ 3. Test Port Output Power Accuracy						
Test Frequencies	Test Port Output Power (dBm)	Specification (dB)	Measured Value (dB)	Measurement Uncertainty (dB)		
Center Frequency						
300 kHz	0	± 1		± 0.465		
20 MHz	0	± 1		± 0.10		
50 MHz	0	± 1		± 0.10		
100 MHz	0	± 1		± 0.10		
200 MHz	0	± 1		± 0.10		
500 MHz	0	• 1		± 0.10		
1 GHz	0	± 1		± 0.13		
2 GHz	0	± 1		± 0.13		
3 GHz	0	± 1		± 0.27		
▶▶4	.Test Port Outr	ut Power Range and L:	inearity			
Test settings	Results Measured (dB)	Power Level Linearity (dB)	Specification (dB)	Measurement Uncertainty (dB)		
XW Frequency = 300 k H	Íz					
- 15			± 0.2	± 0.03		
- 13			± 0.2	± 0.03		
- 11			± 0.2	• 0.03		
- 9			± 0.2	± 0.02		
- 7			± 0.2	± 0.02		
- 5			± 0.2	± 0.02		
- 3			± 0.2			
- 1			± 0.2	± 0.02		
+ 1			± 0.2	± 0.03		
+ 3			± 0.2	± 0.03		
+ 5			± 0.5	± 0.03		

HP 8753E Performance **Test** Record (4 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packarc Company				
Aodel HP 8753E		Report Number		
Jerial Number	erial Number			
▶▶4. Test P	ort Output Pow	er Range and Lineari t	ty (continued)	
Test settings Results Measured (dB)		Power Level Linearity (dB)	Specificati (dB)	n Measurement Uncertainty (dB)
+ 7 + 8 + Q + 10 CW Frequency = 3 GHz - 15 - 13 - 11 - 9 - 7 - 5 - 3 - 1 + 1 + 3 + 5 + 7			$\begin{array}{c} \pm 0.5 \\ \pm 0.5 \\ \pm 0.5 \\ \pm 0.5 \\ \pm 0.2 \\ \pm 0.5 \end{array}$	$\begin{array}{c} \pm 0.03 \\ \pm 0.02 \\ \pm 0.03 \end{array}$
+ 8 +Q + 10			± 0.5 ± 0.6 ± 0.5	± 0.03 ± 0.03 ± 0.03

HP 8753E Performance **Test** Record (5 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard	Company		Report Numbe	er		
Serial Number			Date			
	▶ 5.	Minimum R (Channel Level			
CW Frequency Specification Test Por (dB)			t Power	Meas Unce	urement rtainty (dB)	
300 kHz 3.29 MHz 3.31 MHz 15.90 MHz 16.10 MHz 30.90 MHz 31.10 MHz 1.6069 GHz 1.6071 GHz 3.000 GHz	< -35 < -35			$ \begin{array}{c} \pm 1.0 \\ \end{array} $		
	▶▶ 6. Te	st Port Input N	Noise Floor Lev	/el		
Frequency Range	Test Port	IF Bandwidth	Specification (dBm)	Calculated Value	Measurement Uncertainty	
300 kHz - 3 GHz 300 kHz - 3 GHz 300 kHz - 3 GHz 300 kHz - 3 GHz	Port 1 Port 1 Port 2 Port 2	3 kHz 10 Hz 10 Hz 3 kHz	- 82 - 102 - 102 - 8 2		N/A N/A N/A N/A	

HP 8753E Performance **Test** Record (6 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E		Report Number		
Serial Number		Date		
•	7. Test Po:	rt Input Frequer	ncy Response	
Frequency Range	Test Port	Specification (dB)	Measured Value (dB)	Measurement Uncertainty (dB)
300 kHz—3GHz 300 kHz—3GHz	Port 2 Port 1	± 1 ± 1		0.47
	▶ 8. 1	Test Port Crosst	alk	
Test setting	5	Specification (dB)	Measured Value (dB)	Measurement Uncertainty
Crosstalk to Test I 300 kHz—3GH Crosstalk to Test F 300 kHz—3GH	Port 2 Iz Port 1 Iz	< -100 < -100		N/AN/A

HP 8753E Performance **Test** Record (7 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E		Report Number			
Serial Number		Date			
	▶ 9.Calibration	Coefficient	is.		
Test Description	Frequency Range	Spec. (dB)	Measured Value (dB)	Measurement Uncertainty (dB)	
Forward Direction					
Directivity	300 kHz - 1.3 GHz	≥ 35		± 0.9	
Directivity	1.3 GHz - 3 GHz	≥ 30		± 0.8	
Forward Direction					
Source Match	300 kHz - 1.3 GHz	≥ 16		± 0.2	
Source Match	1.3 GHz - 3 GHz	≥ 16		± 0.2	
Forward Direction					
Trans. Tracking	300 kHz - 1.3 GHz	± 1.5		± 0.006	
Trans. Tracking	1.3 GHz - 3 GHz	± 1.5		± 0.009	
Forward Direction					
Refl. Tracking	300 kHz - 1.3 GHz	• 1.5		± 0.001	
Refl. Tracking	1.3 GHz - 3 GHz	± 1.5		± 0.005	
F&verse Direction					
Load Match	300 kHz - 1.3 GHz	≥ 18		± 0.1	
Load Match	1.3 GHz - 3 GHz	≥ 16		± 0.2	

HP 8753E Performance **Test** Record (8 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Company		Berort Number			
MODEL IIF 8198E		heport Nu			
Serial Number		Date			
	▶ 9. Calibration Coef	ficients (cor	ntinued)		
Test Description	Frequency Range	Spec. (dB)	Measured Value (dB)	Measurement Uncertainty (dB)	
Reverse Direction					
Trans. Tracking	300 kHz - 1.3 GHz	± 1.5		± 0.006	
Trans. Tracking	1.3 GHz - 3 GHz	± 1.5		± 0.009	
Forward Direction					
Load Match	300 kHz - 1.3 GHz	≥ 18		± 0.1	
Load Match	1.3 GHz - 3 GHz	≥ 16		± 0.2	
Reverse Direction					
Directivity	300 kHz - 1.3 GHz	≥ 35		± 0.9	
Directivity	1.3 GHz - 3 GHz	≥ 30		± 0.8	
Reverse Direction					
Source Match	300 kHz - 1.3 GHz	≥ 16		± 0.2	
Source Match	1.3 GHz - 3 GHz	≥ 16		± 0.2	
Reverse Direction					
Refl. Tracking	300 kHz - 1.3 GHz	± 1.5		± 0.001	
Refl. Tracking	1.3 GHz - 3 GHz	± 1.5		± 0.005	

HP 8753E Performance **Test** Record (9 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Compan Model HP 8753E	У	Report Number				
Serial Number		Date				
	▶ 10. System Trace Noise					
CW Frequency (GHz)	Ratio	Specification	Measured Value	Measurement Uncertainty		
3 3 3 3	A/R A/R B/R B/R	< 0.006 dB rms < 0.038° rms < 0.006 dB rms < 0.038° rms		±0.001 dB ±0.01° ±0.001 dB ±0.01°		
	▶ 12. Test	Port Input Impedan	lce	•		
Frequency Range	Test Port	Return Loss (dB)	Specification (dB)	Measurement Uncertainty (dB)		
300 kHz—1.3 GHz 1.3 GHz—3 GHz 300 kHz—1.3 GHz 1.3 GHz—3 GHz	Port 2 Port 2 Port 1 Port 1		≥ 18 ≥ 16 ≥ 18 ≥ 16 ≥ 16	± 1.5 ± 1.5 ± 1.5 ± 1.5 ± 1.5		

HP 8753E Performance **Test** Record (10 of 13) For 30 **kHz—3 GHz** Analyzers

lewlett-Packard (10del HP 8753E	Company			Report Numbe	r	
ierial Number			Date			
••	• 13. Tes	t Port Receiver	: Magnitude Dyr	namic Accuracy		
		G	F	$ \mathbf{G} - \mathbf{F} $		
Test Port Input Power (dBm)	8496A Attn. (dB)	Test Port Measurement (dB)	Expected Measur ement (corrected) (dB)	Dynamic Accuracy (Calculated)	Spec. (dB)	Meas. Uncer. (dB)
Test Port 2						
- 10	0				<u>≤</u> 0.033	± 0.008
- 20 (Rei)	10		0.000		<u>≤0.020</u>	± 0.008
-30	20				≤ 0.031	± 0.008
-40	10				≤ 0.042	± 0.000
– 60	50					± 0.000
— 70	60				<pre></pre>	$\bullet 0.017$
- 8 0	70				< 0.725	± 0.017
-90	80				< 2.097	± 0.017
— loo	90				_ ≤ 5.399	± 0.027
Test Port 1					_	
- 10	0				≤ 0.033	± 0.008
– 20 (Ref)	10		0.000		~0.020	± 0.008
- 30	20				≤ 0.031	± 0.008
-40	30				≤ 0.042	± 0.008
-50	40				≤ 0.057	± 0.008
- 60	50				≤ 0.098	± 0.017
- 70	60				≤ 0.247	± 0.017
- 8 0	/0				≤ 0.725	± 0.017
- 100	80 90				≤ 2.097 ≤ 5.399	± 0.017 ± 0.027

HP 8753E Performance **Test** Record (11 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Company						
Model HP 8753E		Report Number				
Serial Number		Date	Data			
▶ 14.	Test Port Receive	er Magnitude Compre	ession			
CW Frequency	Test Port	Measured Value (dB)	Specification (dB)	Measur ement Uncertainty		
50 MHZ	Port 2		≤ 0.45	N/A		
1 GHz	Port 2		≤ 0.45	N/A		
2 GHz	Port 2		≤ 0.45	N/A		
3 GHz	Port 2		≤ 0.45	N/A		
50 MHz	Port 1		< 0.45	N/A		
1 GHz	Port 1		< 0.45	NIA		
2 GHz	Port 1		< 0.45	N/A		
3 GHz	Port 1		<u>≤</u> 0.45	NIA		
PP .	16. lest Port Rece	elver Phase Compres	sion			
CW Frequency	lestPort	(degrees)	pecificatio (degrees)	n Measur ement Uncertainty		
50 MHz	Port 2		<u>≤</u> 6°	N/A		
1 GHz	Port 2		<u>≤</u> 6°	N/A		
2 GHz	Port 2		≤ 6°	NIA		
3 GHz	Port 2		<u> </u>	N/A		
50 MHz	Port 1		< 6°	NIA		
1 GHz	Port 1		<pre></pre>	N/A		
2 GHz	Port 1		< 6°	N/A		
3 GHz	Port 1			NIA		

HP 8753E Performance **Test** Record (12 of 13) For 30 **kHz—3 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E		Report Number			
Serial Number		Date			
▶ 16. Test Por	rt Output/Input Harmor	nics (Option 002 without	Option 006)		
Test Description	Specification (dBc)	Measurement Value (dBc)	Measurement Uncertainty (dB)		
Test Port output Harmonics 2nd 3rd	≤ 25 ≤ 25		± 1.5 ± 1.5		
Port 1 Input Harmouics 2nd 3rd	$\leq 15 \leq 30$		± 1.5 ± 1.5		
Port 2 Input Harmonics 2nd 3rd	$\leq 15 \leq 30$		± 1.5 ± 1.5		

HP 8753E Option 011 Performance Test Record (13 of 13) For 30 kHz--3 GHz Analyzers

Iewlett-Packard Company Model HP 8753E Jerial Number		Report Number Date		
▶ 18. Tes	st Port Output Har	monics (Analyz	ers without Option 002)
Second Harmonic Frequency	Fundamental Frequency	Specification (dBc)	Measurement Value (dBc)	Measurement Uncertainty (dB)
100 MHz 1.0 GHz 2.4 GHz 3.0 GHz Third Harmonic Frequency 300 MHz 1.2 GHz 2.7 GHz 3.0 GHz	50 MHz 500 MHz 1.2 GHz 1.5 GHz 100 MHz 400 MHz 900 MHz 1 GHz	≤ 25 ≤ 25		\pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6 \pm 1.6

Performance Test Record

For Analyzers with a Frequency Range of 30 kHz to 6 GHz

Note See the previous "Performance Test Record" section if your analyzer frequency range is from 30 kHz to 3 GHz.

	_				
Calibration Lab Add	dress:	Report Number			
		Date			
		Last Calibration Date			
		Customer's Name			
		Performed by			
Model HP 87533 C)ption 006				
Serial No	_	Option(s)			
Firmware Revision					
Ambient Temperatu	ire	_• C Relative Humidity%			
Test Equipment Us	sed:				
Description	Model Number	Trace Number Cal Due Date			
kequency Counter					
Power Meter					
Power Sensor					
Calibration Kit					
Verification Kit					
Notes/Comments:					

HP 8753E Performance Test Record (1 of 15)

HP 8753E Performance **Test** Record (2 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Compar Model HP 8753E Option	1У 006	Report Number			
Serial Number		Date			
▶▶ 1. Te	st Port Outpu	t Frequency Range and .	Accuracy		
Test Frequencies (MHz)	Min. (MHz)	Results Measured (MHz)	Max. (MHz)	Measurement Uncertainty (MHz)	
$\begin{array}{c} 0.03\\ 0.3\\ 0.3\\ 5.0\\ 16.0\\ 31.0\\ 80.999\ 999\\ 121.0\\ 180.0\\ 310.0\\ 700.0\\ 1300.0\\ 2\ 000.0\\ 3\ 000.0\\ 4.0\\ 5.0\end{array}$	0.029999 7 0.299 997 4.999 950 15.999 840 30.999 690 60.999 390 120.998 790 179.998 200 309.995 900 699.930 000 1299.987 1999.980 2 999.970 3.999 960 4.999 950		$\begin{array}{c} 0.0300003\\ 0.300\ 003\\ 5.000\ 050\\ 16.000160\\ 31.000\ 310\\ 61.000610\\ 121.001210\\ 180.001800\\ 310.003100\\ 700.007000\\ 1300.013\\ 2000.020\\ 3000.030\\ 4.000\ 040\\ 5.000050\end{array}$	$\begin{array}{c} \pm \ 0.000000050\\ \pm \ 0.000\ 000\ 520\\ \pm \ 0.000\ 009\\ \pm \ 0.000\ 028\\ \pm \ 0.000\ 054\\ \pm \ 0.000\ 105\\ \pm \ 0.000\ 207\\ \pm \ 0.000\ 207\\ \pm \ 0.000\ 528\\ \pm \ 0.000\ 528\\ \pm \ 0.001\ 192\\ \pm \ 0.002\ 212\\ \pm \ 0.002\ 212\\ \pm \ 0.003\ 403\\ \pm \ 0.005\ 104\\ \pm \ 0.008\ 805\\ \pm \ 0.008\ 506\end{array}$	

HP 8753E Performance **Test** I&cord (3 of 15) For 30 **kHz—6 GHz** Analyzers

Elewlett-Packard Company						
Model HP 8753E Optic	on 006	Report Number				
Serial Number		Date				
•	2. External	Source Mode Fre	quency Range			
Test Frequencie	s (GHz)		Result			
0.010						
0.010						
0.020						
0.100						
2 000						
3 000						
4 000						
5.000						
6.000						
	▶ 3. Test P	ort Output Powe	r Accuracy			
Test Frequency	Test Port Output Power	Specification (dB)	Measured Value (dB)	Measurement Uncertainty (dB)		
300 kHz	0	i 1		± 0.47		
20 MHz	0	i l		± 0.25		
50 MHz	0	i 1		± 0.12		
100 MHz	0	i 1		± 0.12		
200 MHz	0	i 1		± 0.12		
500 MHz	0	± 1		± 0.12		
1 GHz	0	i l		± 0.12		
2 GHz	0	i 1		± 0.15		
3 GHz	0	i l		± 0.15		
4 GHz	0	i 1		± 0.17		
5 GHz	0	i l		± 0.17		
6 GHz	0	i l		± 0.17		

HP 8753E Performance **Test** Record (4 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E Option 006		Report Number				
Serial Number		Date				
▶▶4. Test Port Output Power Range and Linearity						
Test settings	Results Measured (dB)	Power Level Linearity (dB)	Specification (dB)	Mess. Uncert. (dB)		
CW Frequency = 300 kH	Iz					
- 15			± 0.2	± 0.03		
- 13			± 0.2	± 0.03		
- 11			± 0.2	± 0.03		
- 9			± 0.2	± 0.02		
- 7			± 0.2	± 0.02		
- 5			± 0.2	± 0.02		
- 3			± 0.2	± 0.02		
- 1			± 0.2	± 0.02		
+ 1			± 0.2	± 0.03		
+ 3			± 0.2	± 0.03		
+ 5			± 0.5	± 0.03		
+ 7			± 0.5	± 0.03		
+ 8			± 0.5	± 0.03		
+Q			± 0.5	± 0.03		
+ 10			± 0.5	± 0.03		
CW Frequency = 3 GHz	5					
- 15			± 0.2	± 0.03		
- 13			± 0.2	± 0.03		
- 11			± 0.2	± 0.03		
- 9			± 0.2	± 0.02		
- 7			± 0.2	± 0.02		
- 5			± 0.2	± 0.02		
- 3			± 0.2	± 0.02		
- 1			± 0.2	± 0.02		
+ 1			± 0.2	± 0.03		
+ 3			± 0.2	± 0.03		
+ 5			± 0.5	± 0.03		

HP 8753E Performance **Test** Record (5 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company	Hewlett-Packard Company				
Model HP 8753E Option 0	06	Report Number			
Serial Number		Date			
▶▶4.Test Por	t Output Power Ray	ge and Linearity ()ntinued)		
Test settings	Results Measured (dB)	Power Level Linearity (dB)	Specification (dB)	Meas. Uncert. (dB)	
+ 7 + 8 +Q			± 0.5 ± 0.5 ± 0.5	± 0.03 ± 0.03 ± 0.03	
+ 10 CW Frequency = 6 GHz - 15			± 0.5 ± 0.2	± 0.03 ± 0.03	
- 13 - 11 - 9			± 0.2 ± 0.2 ± 0.2	± 0.03 ± 0.03 ± 0.03	
- 7 - 5 - 3			± 0.2 ± 0.2 ± 0.2	± 0.02 ± 0.02 ± 0.02	
- 1 + 1			± 0.2 ± 0.2 ± 0.2	± 0.02 ± 0.02 ± 0.02	
+ 5 + 7			± 0.2 ± 0.5 ± 0.5	± 0.03 ± 0.03 ± 0.03	
+ 8 + 9 + 10			± 0.5 ± 0.5 ± 0.5	± 0.03 ± 0.03 ± 0.03	

HP 8753E Performance **Test** Record (6 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard	Company						
Model HP 8753E (Option 006		Report Numb	er			
Serial Number			Date				
	NN	Minimum D					
	V 0. MINIMUM K Channel Level						
CW Frequency	(dB)	Test Por	rt Power	Meas Unce	rtainty (dB)		
300 kHz	< -35			-	± 1.0		
3.29 MHz	< -35				L 1.0		
3.31 MHz	< -35			4	L 1.0		
15.90 MHz	< -35			-	L 1.0		
16.10 MHz	< -35			E E	L 1.0		
30.90 MHz	< -35			E	L 1.0		
31.10 MHz	< -35			=	E 1.0		
1.6069 GHz	< -35			-	E 1.0		
1.6071 GHz	< -35		<u> </u>	± 1.0			
3.000 GHz	< -35			E	E 2.0		
4.000 GHz	< -30			E I	E 2.0		
5.000 GHz	< -30			E	E 2.0		
6.000 GHZ	< -30			=	<u>E</u> 2.0		
	▶ 6. Te	est Port Input	Noise Floor Lev	vel			
Frequency Range	Test Port	IF Bandwidth	Specification (dBm)	Calculated Value	Measurement Uncertainty		
300 kHz—3GHz	Port 1	3 kHz	- 82		N/A		
300 kHz—3GHz	Port 1	10 Hz	- 102		N/A		
300 kHz—3 GHz	Port 2	10 Hz	- 102		N/A		
300 kHz—3 GHz	Port 2	3 kHz	- 82		N/A		
3 GHz—6 GHz	Port 2	3 kHz	- 77		N/A		
3 GHZ—6 GHZ	Port 2	10 Hz	- 97		N/A		
	Port 1	10 HZ	-97		N/A N/A		
S GHZ-0 GHZ	Port 1	ə kriz	- 11		N/A		
				1			

HP 8753E Performance **Test** Record (7 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E Option 006		Report Number			
Serial Number		Date			
•	7. Test Por	t Input Frequency	y Response		
Frequency Range	Test Port	Specification (dB)	MeasuredValue (dB)	Measurement Uncertainty (dB)	
300 kHz—3 GHz 300 kHz—3 GHz 3 GHz—6 GHz 3 GHz—6 GHz	Port 2 Port 1 Port 1 Port 2	$\begin{array}{c} \pm \ 1 \\ \pm \ 1 \\ \pm \ 2 \\ \pm \ 2 \end{array}$		0.47 0.47 0.17 0.17	
	▶▶ 8. 1	est Port crosstal	k		
Test settings	8	Specification (dB)	Measured Value (dB)	Measurement Uncertainty	
Crosstalk to Test Port 2 300 kHz—3 GHz Crosstalk to Test Port 1 300 kHz—3 GHz Crosstalk to Test Port 1 3 GHz—6 GHz Crosstalk to Test Port 2		< -100 < -100 < -90		N/A N/A N/A	
3 GHz—6 GHz	— i	< -90		N/A	

HP 8753E Performance **Test** Record (8 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E Option 006 Serial Number		Report Number			
	▶▶9.Calibratio	n Coefficien t	1 8		
Test Description	Frequency Ban	ge Spec. (dB)	Measured Value (dB)	Mcasurement Uncertainty (dB)	
Forward Direction Directivity Directivity Directivity	300 kHz—1.3 GHz 1.3 GHz—3 GHz 3 GHz—6 GHz	 ≥ 35 ≥ 30 ≥ 25 		± 0.9 ± 0.8 ± 0.8	
Forward Direction Source Match Source Match Source Match Forward Direction	300 kHz—1.3 GHz 1.3 GHz—3 GHz 3 GHz—6 GHz	$ \geq 16 \\ \geq 16 \\ \geq 14 $		± 0.2 ± 0.2 ± 0.3	
Trans. Tracking Trans. Tracking Trans. Tracking	300 kHz—1.3 GHz 1.3 GHz—3 GHz 3 GHz—6 GHz	± 1.5 ± 1.5 ± 2.5		± 0.006 ± 0.009 ± 0.021	
Forward Direction Refl. Tracking Refl. Tracking Refl. Tracking	300 kHz—1.3 GHz 1.3 GHz—3 GHz 3 GHz—6 GHz	± 1.5 ± 1.5 ± 2.5		$ \begin{array}{c} \pm 0.001 \\ \pm 0.005 \\ \pm 0.020 \end{array} $	
Reverse Direction Load Match Load Match bad Match	300 kHz—1.3 GHz 1.3 GHz—3 GHz 3 GHz—6 GHz	≥ 18 ≥ 16 ≥ 14		± 0.1 ± 0.2 ± 0.2	

HP 8753E Performance **Test** Record (9 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company						
Model HP 8753E Option	006	Report Number				
Serial Number		Date				
	9.Calibration Coef	icients (con	tinued)			
Test Description	Frequency Range	Spec. (dB)	Measured Value (dB)	Measurement Uncertainty (dB)		
Reverse Direction						
Trans. Tracking	300 kHz—1.3 GHz	± 1.5		± 0.006		
Trans. Tracking	1.3 GHz—3 GHz	± 1.5		± 0.009		
Trans. Tracking	3 GHz—6 GHz	± 2.5		± 0.021		
Forward Direction						
Load Match	300 kHz-1.3 GHz	> 18		± 0.1		
Load Match	1.3 GHz—3 GHz	> 16		± 0.2		
Load Match	3 GHz—6 GHz	≥ 14		± 0.2		
F&verse Direction						
Directivity	300 kHz1.3 GHz	<u>></u> 35		± 0.9		
Directivity	1.3 GHz—3 GHz	≥ 30		± 0.8		
Directivity	3 GHz—6 GHz	≥ 25		± 0.8		
Reverse Direction						
Source Match	300 kHz - 1.3 GHz	≥ 16		± 0.2		
Source Match	1.3 GHz - 3 GHz	≥ 16		± 0.2		
Source Match	3 GHz - 6 GHz	≥ 14		± 0.3		
Reverse Direction						
Refl. Tracking	300 kHz - 1.3 GHz	± 1.5		± 0.001		
Refl. Tracking	1.3 GHz - 3 GHz	± 1.5		± 0.005		
Refl. Tracking	3 GHz - 6 GHz	± 2.5		± 0.020		
		1	1			

HP 8753E Performance **Test** Record (10 of 15) For 30 **kHz—6 GHz** Analyzers

Iewlett-Packard Company Aodel HP 8753E Option 006 Jerial Number		Report Number Date			
Frequency	▶ 11. Syste Ratio	tem Trace Noise Measured Specification Measur			
(GHz)		Value		Uncertainty	
3	A/R (Magnitude)		≤ 0.006 dB rms	± 0.001 dB	
б	A/R (Magnitude)		≤ 0.010 dB mls	± 0.001 dB	
6	AIR (Phase)		<u>≤</u> 0.0700 rms	± 0.01 °	
3	A/R (Phase)		≤ 0.038° mls	± 0.01 °	
3	B/R (Magnitude)	\leq 0.006 dB rms \pm 0.001 d			
6	B/R (Magnitude)		≤ 0.010 dB rms	± 0.001 dB	
6	B/R (Phase)		$\leq 0.070^{\circ} \text{ rms}$	± 0.01 °	
3	B/R (Phase)		$\leq 0.038^{\circ}$ rms	± 0.01 °	
	PP 12. lest Port	t input impedanc	e		
Test Description	Test Port	Return Loss (dB)	Specification (dB)	Measurement Uncertainty (dB)	
300 kHz-1.3 GHz	Port 2		> 18	+15	
1.3 GHz—3 GHz	Port 2		> 16	+ 15	
3 GHz—6 GHz	Port 2		≥ 14	± 1.0 ± 1.0	
300 kHz—1.3 GHz	Port 1		≥18	± 1.6	
1.3 GHz-3 GHz	Port 1		≥ 16	± 1.5	
3 GHz—6 GHz	Port 1		≥ 14	± 1.0	

HP 8753E Performance **Test** Record (11 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard	Company						
Model HP 8753E (Option 00	6		Report Numbe	r		
Serial Number				Data			
				Date			
ÞI	▶ 13. Test Port Receiver Magnitude Dynam						
		G	F	$ \mathbf{G} - \mathbf{F} $			
Test Port Input Power (dBm)	8496A Attn. (dB)	Test Port Measurement (dB)	Expected Measurement (corrected) (dB)	Dynamic Accuracy (Calculated)	Spec. (dB)	Meas. Uncer. (dB)	
Test Port 2							
- 10	0				≤ 0.033	± 0.008	
- 20 (Ref)	10		0.000		≤0.020	± 0.008	
- 30	20				≤ 0.031	± 0.008	
- 4 0	30				≤ 0.042	± 0.008	
- 5 0	40				<u>≤</u> 0.057	± 0.008	
- 60	50				≤ 0.098	± 0.017	
- 70	60				≤ 0.247	± 0.017	
- 8 0	70				≤ 0.725	± 0.017	
- 90	80				≤ 2.097	± 0.017	
- 100	90				≤ 6.399	± 0.027	
Test Port 1							
- 10	0				≤ 0.033	± 0.008	
- 20 (Ref)	10		0.000		~0.020	± 0.008	
- 30	20				≤ 0.031	± 0.008	
- 4 0	30				≤ 0.042	± 0.008	
- 5 0	40				≤ 0.057	± 0.008	
- 6 0	50				<u>≤</u> 0.098	± 0.017	
- 70	60				≤ 0.247	± 0.017	
- 80	70				≤ 0.726	± 0.017	
- 90	80				≤ 2.097	± 0.017	
- 100	90				<u>≤</u> 5.399	± 0.027	

HP 8753E Performance **Test** Record (12 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Iodel HP 8753E Option 006		Report Number		
erial Number		Date		
▶▶ 14. Test Port Receiver Magnitude Compression				
CW Frequency	Test Port	Measured Value (dB)	pecification (dB)	Measurement Uncertainty
50 MHz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz	Port 2 Port 2 Port 2 Port 2 Port 2 Port 2 Port 2		$\leq 0.45 \\ \leq 0.80 \\ \leq 0.80 \\ \leq 0.80$	N/A N/A N/A NIA NIA N/A
6 GHz	Port 2		≤ 0.80 ≤ 0.80	NIA
50 MHz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz	Port 1 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1		$\leq 0.45 \\ \leq 0.45 \\ \leq 0.45 \\ \leq 0.45 \\ \leq 0.80 \\ \leq 0.80 \\ \leq 0.80 \\ \leq 0.80$	NIA NIA NIA NIA NIA NIA

HP 8753E Performance **Test** Record (13 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E Option 006 Serial Number >> 15. Test Port Receiv		Report Number Date ver Phase Compression		
cw Frequency	Test Port	Measured Value (degrees)	Specification (degrees)	Measurement Uncertainty
50 MHz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz 50 MHz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz	Port 2 Port 2 Port 2 Port 2 Port 2 Port 2 Port 2 Port 2 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1 Port 1		$\leq 6^{\circ} \leq 6^{\circ} \leq 6^{\circ} \leq 7.50 \leq 7.50 \leq 6^{\circ} \leq 7.50 \leq 7.50 \leq 7.50 \leq 7.5^{\circ}$	NIA NIA N/A N/A N/A N/A N/A N/A NIA N/A N/A N/A N/A

HP 8753E Performance **Test** Record (14 of 15) For 30 **kHz–6 GHz Analyzers**

Hewlett-Packard Company Model HP 8753E Option 006		Report Number		
Serial Number		Date		
▶▶17. Ou	tput/Input Test Port	Harmonics (Option 002 on	ly)	
Test Description	Specification (dBc)	Measurement Value (dBc)	Measurement Uncertainty (dB)	
Test Port output Harmonics 2nd 3rd Port 1 Input Harmonics 2nd 3rd Port 2 Input Harmonics 2nd 3rd 3rd	≤ 25 ≤ 25 ≤ 15 ≤ 30 ≤ 15 ≤ 30		\pm 1.5 \pm 1.5 \pm 1.5 \pm 1.5 \pm 1.5 \pm 1.5 \pm 1.5	

HP 8753E Performance **Test** Record (15 of 15) For 30 **kHz—6 GHz** Analyzers

Hewlett-Packard Company Model HP 8753E Option 006		Report Number			
Serial Number		Date			
▶ 18. T	▶▶ 18. Test Port Output Harmonics (Analyzers without Option 002)				
Second Harmonic Frequency	Fundamental Frequency	Specificatio (dBc)	n Measurement Value (dBc)	Measurement Uncertainty (dB)	
100 MHz 1.0 GHz 2.4 GHz 3.2 GHz 4.0 GHz 5.0 GHz 6.0 GHz Third Harmonic Frequency 300 MHz 1.2 GHz 2.7 GHz 3.3 GHz 4.8 GHz 6.0 GHz	50 MHz 500 MHz 1.2 GHz 1.6 GHz 2.0 GHz 2.5 GHz 3.0 GHz 100 MHz 400 MHz 900 MHz 1.1 GHz 1.6 GHz 2.0 GHz	$\leq 25 \\ \leq 25 \\ $			

Adjustments and Correction Constants

This chapter has the following adjustment procedures:

- **A9** Switch Positions
- □ Source Default Correction Constants (Test 44)
- □ Source **Pretune** Default Correction Constants (Test 45)
- **Analog** Bus Correction Constants (Test 46)
- □ Source Pretune Correction Constants (lest 48)
- □ RF Output Power Correction Constants (Test 47)
- □ IF Amplifier Correction Constants (Test 51)
- □ ADC Offset Correction Constants (Test 52)
- Sampler Magnitude and Phase Correction Constants (Test 53)
- □ Cavity Oscillator Frequency Correction Constants (Test 54)
- □ Serial Number Correction Constants (Test 55)
- Deption Numbers Correction Constants (Test 56)
- □ Initialize **EEPROMs** (Test 58)
- □ EEPROM Backup Disk Procedure
- Decorrection Constants Retrieval Procedure
- Loading Firmware
- Fractional-N Frequency Range Adjustment
- Frequency Accuracy Adjustment
- □ High/Low Band Transition Adjustment
- □ Fractional-N Spur Avoidance and FM Sideband Adjustment
- □ Source Spur Avoidance Tracking Adjustment
- Unprotected Hardware Option Numbers Correction Constants

Post-Repair Procedures for HP 8753E

Table 3-1 lists the additional service procedures which you must perform to ensure that the instrument is working correctly, following the replacement of an assembly. These procedures can be located in either Chapter 2 or Chapter 3.

Perform the procedures in the order that they are listed in the table.

Replaced Assembly	Adjustments/ Correction Constants (Ch. 3)	Verification (Ch. 2)
Al Front Panel Keyboard	None	Service Test 0 Service Test 23
A2 Front Panel Interface	None	Service Test 0 Service Test 23 service Test 12 Tests 66 - 80
A3 Source	A9 Switch Positions Source Def CC (Test 44) Pretune Default CC (Test 45) Analog Bus CC (Test 46) Source Pretune CC (Test 48) RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 53) Cavity Oscillator Frequency CC (Test 54) Source Spur Avoidance Tracking EEPROM Backup Disk	 Test Port Output Frequency Range and Accuracy Test Port Output Power Accuracy Test Port Output Power Range and Linearity Test Port output/Input Harmonics (Option 002 only)
44/A5/A6 Samplers	A9 Switch Positions Sampler Maguitude and Phase CC (Test 53) IF Amplifier CC (Test 51) EEPROM Backup Disk	Minimum R Channel Level (if R sampler replaced) Test Port Crosstalk Test Port Input Frequency Response
A7 Pulse Generator	A9 Switch Positions Sampler Magnitude and Phase CC (Test 53) EEPROM Backup Disk	Test Port Input Frequency Response Test Port Frequency Range and Accuracy
A8 Post Regulator	A9 Switch Positions Cavity Oscillator Frequency CC (Test 54) Source Spur Avoidance Tracking EEPROM Backup Disk	Service Test 0 Check A8 test point voltages

 Table 3-1. Related Service Procedures

Replaced Assembly	Adjustments/ Correction Constants (ch. 3)	Verification (Ch. 2)
A9 CPU (EEPROM Backup Disk Available)	A9 Switch Positions Load Firmware CC Retrieval Serial Number CC (Test 65) Option Number CC (Test 56)	Operator's Check Service Test 21 Service Test 22
A9 CPU (EEPROM Backup Disk Not Available)	A9 Switch Positions Load Firmware Serial Number CC (Test 56) Option Number CC (Test 56) Source Def CC (Test 44) Pretune Default CC (Test 45) Analog Bus CC (Test 46) Cal Kit Default (Test 57) Source Pretune CC (Test 48) RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 63) ADC Linearity CC (Test 62) IF Amplifier CC (Test 51) Cavity Oscillator Frequency CC (Test 54) EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy Test Port Output Power Accuracy Test Port Output Power Range and Linearity Test Port Receiver Dynamic Accuracy Test Port Input Frequency Response
A10 Digital IF	A9 Switch Positions Analog Bus CC (Test 46) Sampler Magnitude and Phase CC (Test 53) ADC Linearity CC (Test 52) IF Amplifier CC (Test 61) EEPROM Backup Disk	Test Port Input Noise Floor Level Test Port Crosstalk System Trace Noise
All Phase Lock	A9 Switch Positions Analog Bus CC (Test 46) Pretune Default CC (Test 45) Source Pretune CC (Test 48) EEPROM Backup Disk	Minimum R Channel Level Test Port Output Frequency Range and Accuracy
A12 Reference	A9 Switch Positions High/Low Band Transition Frequency Accuracy EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy

Table 3-1. Related Service Procedures (2 of 3)
l&placed Assembly	Adjustments/ Correction Constants (ch. 3)	Verification (Ch. 2)
A13 Fractional-N (Analog)	A9 Switch Positions Fractional-N Spur and FM Sideband EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy
A14 Fractional-N (Digital)	A9 Switch Positions Fractional-N Frequency Range Fractional-N Spur Avoidance and FM sideband EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy
A15 Preregulator	None	Self-Test
A16 Rear Panel Interface	None	Internal Test 13, Rear Panel
A17 Motherboard	None	Observation of Display Tests 66 - 80
A18 Display	None	Observation of Display Tests 66 - 80
A19 Graphics System Processor	None	Observation of Display Tests 59 - 80
A20 Disk Drive	none	none
A21 Test Port Coupler	RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 53)	Test Port Crosstalk Test Port Frequency Response
A22 Test Port Coupler	Sampler Magnitude and Phase CC (Test 53) •	Test Port Crosstalk Test Port Frequency Response
A23 Bd Assy LED	none	Self-Test (Chapter 4)
A24 Transfer Switch	none	Test Port Crosstalk
A25 Test Set Interface	none	Self-Test (Chapter 4)
A26 H&h Stability Frequency Reference	Frequency Accuracy Adjustment (Option 1D5)	Test Port Frequency Range and Accuracy
• Hewlett-Packard verifies source output performance on port 1 only. Port 2 source output performance is typical.		

Table 3-1. Related Service Procedures (3 of 3)

A9 Switch Positions

- 1. Remove the power line cord from the analyzer.
- 2. Set the analyzer on its side.
- 3. Remove the two lower-rear comer bumpers from the bottom of the instrument with the **T-10** TORX screwdriver.
- 4. Loosen the captive screw on the bottom cover's back edge, using a T-15 TORX screwdriver.
- 5. Slide the cover toward the rear of the instrument.
- 6. Move the switch as shown in Figure 3-1:
 - Move the A9 switch to the Alter position before you run any of the correction constant adjustment routines. This is the position for altering the analyzer's correction constants.
 - Move the A9 switch to the Normal position, after you have run correction constant adjustment routines. This is the position for normal operating conditions.
- 7. Reinstall the bottom cover, but not the rear bumpers

Figure 3-1. A9 Correction Constants Switch

8. Reconnect the power line cord and switch on the instrument.

Source Default Correction Constants (Test 44)

Analyzer warmup time: 30 minutes.

This internal adjustment routine writes default correction constants for the source power accuracy.

1. Press (Preset) (System) SERVICE MENU TESTS (44) x1 EXECUTE TEST YES.

- 2. Observe the analyzer for the results of the adjustment routine:
 - If the analyzer displays *Source Def DONE, you have completed this procedure.
 - If the analyzer displays *Source Def FAIL, refer to Chapter 7, "Source Troubleshooting. "

Source Pretune Default Correction Constants (Test 45)

Analyzer warmup time: 30 minutes.

This adjustment writes default correction constants for rudimentary phase lock pretuning accuracy.

1. Press (Preset) System SERVICE MENU TESTS (45) x1 EXECUTE TEST YES.

- 2. Observe the analyzer for the results of this adjustment routine:
 - If the analyzer displays Pretune Def DONE, you have completed this procedure.
 - If the analyzer displays FAIL, refer to Chapter 7, "Source Troubleshooting."

Analog Bus Correction Constants (Test 46)

Analyzer warmup time: 30 minutes.

This procedure calibrates the analog bus by using three reference voltages (ground, + 0.37 and +2.5 volts), then stores the calibration data as correction constants in **EEPROMs**.

1. Press (Preset) (System) SERVICE MENU TESTS (46) (x1) EXECUTE TEST YES.

- 2. Observe the analyzer for the results of the adjustment routine:
 - If the analyzer displays **ABUS** Cor DONE, you have completed this procedure.
 - If the analyzer displays **ABUS** Cor FAIL, refer to Chapter 6, "Digital Control Troubleshooting."

Source Pretune Correction Constants (Test 48)

Analyzer warmup time: 30 minutes.

This procedure generates pretune values for correct phase-locked loop operation.

1. Press Preset System SERVICE MENU TESTS (48) (x1) EXECUTE TEST YES.

- 2. Observe the analyzer for the results of this adjustment routine:
 - If the analyzer displays **Pretune** Cor DONE, you have completed this procedure.
 - If the analyzer displays FAIL, refer to Chapter 7, "Source Troubleshooting."

RF Output Power Correction Constants (Test 47)

Required Equipment and Tools

Power Meter	HP 437B or HP 438A
HP-IB Cable	HP 10833A
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797

Additional Required Equipment for 500 Analyzers

Power Sensor	HP 8482A
Power Sensor (for Option 006 analyzers)	HP 8481A
Adapter APC-7 to Type-N (f)	HP 11524A

Additional **Required** Equipment for 750 Analyzers

Power	Sensor		HP	8483A	Option	H03
-------	--------	--	----	-------	--------	-----

Analyzer warmup Time: 30 minutes.

This procedure adjusts several correction constants that can improve the output power level accuracy of the internal source. They are related to the power level, power slope, power slope offset, and the ALC roll-off factors among others.

- 1. If you just completed "Sampler Magnitude and Phase Correction Constants (Test 53)," continue this procedure with step 8.
- 2. Press (Preset) (Local) SYSTEM CONTROLLER .
- 3. Press Local SET ADDRESSES ADDRESS: P MTR/HPIB. The default power meter address is 13. Refer to the power meter manual as required to observe or change its HP-IB address
- 4. Press **POWER MTR:**438A/437 to toggle between the 438A/437 and 436A power meters. Choose the appropriate model number.
- **Note** If you are using the HP **438A** power meter, connect the HP **8482A** power sensor to channel A, and the HP **8481A** power sensor to channel B.

Power Sensor Calibration Factor Entry

- 5. Press System SERVICE MENU TEST OPTIONS LOSS/SENSE LISTS CAL FACTOR SENSOR A to access the calibration factor menu for power sensor A (HP 8482A for a50Ω analyzer, or HP 8483A Option H03 for a 75Ω analyzer).
- 6. Zero and calibrate the power meter and power sensor.
- 7. Build a table of up to 55 points (55 frequencies with their calibration factors). **To** enter each point, follow these steps:

a. Press ADD FREQUENCY.

- b. Input a frequency value and then press the appropriate key (G/n, M/μ , or k/m).
- **C. Press CAL FACTOR** and enter the calibration factor percentage that corresponds to the frequency you entered.

The **cal** factor and frequency values are found on the back of the sensor. If you make a mistake, press — and re-enter the correct value.

- d. Press DONE to complete the data entry for each point.
- Note The following terms are part of the sensor calibration menu: ನ್ರಂ(*ಕ*್ಷಿಣ, ೫ allows you to select a frequency point. allows you to edit or change a previously entered DAD) WW value.)XAXXXXXX allows you to delete a point from the sensor cal factor table. 400 allows you to add a point into the sensor cal factor table. CIRA: DIST allows you to erase the entire sensor cal factor table. allows you to complete the points entry of the ())))))) sensor cal factor table.

- 8. For Option 006 Instruments Only: Press CAL FACTOR SENSOR B to create a power sensor calibration table for power sensor B (HP 8481A), using the softkeys mentioned above.
- 9. Connect the equipment as shown in Figure 3-2.

Figure 3-2. RF Output Correction Constants Test Setup for the HP 8753E

- 10. Press (System) SERVICE MENU TESTS (47) x1.
- 11. Press EXECUTE TEST and YES at the prompt to alter the correction constants.
- 12. Follow the instructions at the prompts and press CONTINUE
- 13. When the analyzer completes the test, observe the display for the results:
 - If you see DONE, press **Preset** and you have completed this procedure.
 - If you see FAIL, re-run this routine in the following order:
 - a. Press-(Preset).
 - b. Repeat the "Source Default Correction Constants (Test 44)" procedure.
 - c. Repeat the "RF' Output Power Correction Constants (Test 47)" procedure.

IF Amplifier Correction Constants (Test 61)

Required Equipment and Tools

Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797

Additional Required Equipment for 50 ohm Analyzers

RF Cable - (500) 24-inch, APC-7 HP P/N 8120-4779

Additional Required Equipment for 750 Analyzers

RF Cable - (750) **24-inch**, Type-N HP P/N 8120-2408

Analyzer warmup Time: 30 minutes.

These correction constants compensate for possible discontinuities of signal greater than -30 \mathbf{dBm} .

- 1. Connect the RF cable from Port 1 to Port 2 of the analyzer.
- 2. Press (Preset) (System) SERVICE MENU TESTS (51) (X1) EXECUTE TEST YES CONTINUE.
- 3. Observe the analyzer for the results of the adjustment routine:
 - If DONE is displayed, you have completed this procedure.
 - If FAIL is displayed, check that the RF cable is **connected** from Port 1 to Port 2. Then repeat this adjustment routine.
 - If the **analyzer** continues to fail the adjustment routine, refer to the "Digital Control Troubleshooting" chapter.

ADC Offset Correction Constants (Test 52)

Analyzer warmup time: 30 minutes.

These correction constants improve the dynamic accuracy by shifting small signals to the most linear part of the ADC quantizing curve.

1. Press Preset System SERVICE MENU TESTS 52 x1 EXECUTE TEST YES.

Note This routine takes about three minutes.

- 2. Observe the analyzer for the results of the adjustment routine:
 - If the analyzer displays ADC Of **s** Cor DONE, you have completed this procedure.
 - If the analyzer displays ADC Of **s** Cor FAIL, refer to the "Digital Control Troubleshooting" chapter.

Sampler Magnitude and Phase Correction Constants (Test 53)

Required Equipment and Tools

Power Meter	HP 437B or HP 438A
HP-IB Cable	HP 10833A
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Mat and Earth Ground Wire	

Additional Required Equipment for 500 Analyzers

Power Sensor	HP 8482A
Power Sensor (for Option 006 analyzers)	HP 8481A
Cable, (509) 24-inch, APC-7 (2)	P/N 81204779
Adapter APC-7 to Type-N(f)	HP 11524A

Additional Required Equipment for 750 Analyzers

Power Sensor	
Cable, (750hi 24-inch, Type-N (2)	

Analyzer warmup time: 30 minutes.

This adjustment procedure corrects the overall flatness of the microwave components that make up the analyzer receiver and test separation sections. This is necessary for the HP 8753E to meet the published test port flatness.

- 1. If you just completed "Source Correction Constants (Test 47)," continue this procedure with step 8.
- 2. Press (Preset) (Local) SYSTEM CONTROLLER .
- **3.** Press Local SET ADDRESSES ADDRESS: P MTR/HPIB. The default power meter address is 13. Refer to the power meter manual as required to observe or change its HP-IB address.
- 4. Press POWER MTR: A38A/437 to toggle between the 438A/437 and 436A power meters. Choose the appropriate model number.
- **Note** If you are using the HP **438A** power meter, connect the HP **8482A** power sensor to channel A, and the HP **8481A** power sensor to channel B.

Power Sensor Calibration Factor Entry

- 5. Press (System) SERVICE MENU TEST OPTIONS LOSS/SENSE LISTS
 CAL FACTOR SENSOR A to access the calibration factor menu for power sensor A (HP 8482A for 500 analyzers, or HP 8483A Option H03 for 75 ohm analyzers).
- 6. Build a table of up to 55 points (55 frequencies with their calibration factors). To enter each point, follow these steps:

a. Press ADD FREQUENCY.

- b. Input a frequency value and then press the appropriate key (G/n, M/μ , or k/m).
- **C.** Press **DONE** and enter the calibration factor percentage that corresponds to the frequency you entered.

The cal factor and frequency values are found on the back of the sensor. If you make a mistake, press \bigcirc and re-enter the correct value.

d. Press DONE to complete the data entry for each point.

Note	The following terms are part of the sensor calibration menu:		
SEGMENT allows you to select a frequency point.			
	EDIT allows you to edit or change a previously entered value.		
	DELETE allows you to delete a point from the sensor cal factor table.		
	ADD allows you to add a point into the sensor cal factor table.		
	CLEAR LIST allows you to erase the entire sensor cal factor table.		
	DONE allows you to complete the points entry of the sensor cal factor table.		

7. For Option 006 Instruments Only: Zero and calibrate the power meter and HP 8481A power sensor. Then press CAL FACTOR SENSOR B to create a power sensor calibration table for power sensor B (HP 8481A), using the softkeys mentioned above.

Determine the Insertion Loss of the Cable at 1 GHz

- 8. Press Preset Meas Trans : FWD S21(B/R).
- 9. Press Center 1 G/n Span 50 M/µ.

10. Press Cal CAL KIT CAL KIT : 7mm RETURN CALIBRATE MENU RESPONSE.

11. Connect the 24 inch cable from Port 1 to Port 2, as shown in Figure 3-3.

sg633e

Figure 3-3. First Connections for Insertion Loss Measurement

- 12. Press THRU and then DONE : RESPONSE when the analyzer is done measuring the through.
- 13. Press (Save/Recall) SAVE STATE to save the calibration that you just made.
- 14. Make the connections as shown in Figure 3-4.

Figure 3-4. Second Connections for Insertion Loss Measurement

15. Press <u>Scale Ref</u> SCALE/DIV <u>1</u> <u>x1</u> <u>Marker</u> <u>MARKER 1</u> <u>1</u> <u>G/n</u>. Record the insertion loss of the second through cable as shown in the upper-right corner of the analyzer display.

Sampler Correction Constants Routine

- 16. Press Preset System SERVICE MENU TESTS 53 x1 EXECUTE TEST and answer YES at the prompt.
- 17. When the analyzer displays CONNECT <3 GHz SENSOR A TO PORT 1, make the connections as shown in Figure 3-5.

sq634e

Figure 3-5. Connections for Sampler Correction Routine

- **18.** Press **CONTINUE** to start the test. This part of the test will take about seven minutes.
 - If the analyzer displays Sampler Cor FAIL, check the following:
 - a. The HP-IB address of your power meter is set at 13. Then rerun this routine ("Sampler Correction Constants Routine").
 - b. The HP **8482A** power sensor is connected to Port 1. Rerun this routine ('Sampler Correction Constants Routine ").
- 19. For Option 006 Instruments Only: When the analyzer displays CONNECT 6 GHz SENSOR B TO PORT 1, make the connections as shown in Figure 3-6. Then press **CONTINUE**. This part of the test will take about 20 seconds.

Figure 3-6. Connections for Sampler Correction at 6 GHz

20. When the analyzer displays CONNECT **<3** GHz SENSOR A TO PORT 2, make the connections as shown in Figure 3-7.

sq635e

Figure 3-7. Connections for Sampler Correction at Port 2

- 21. Press CONTINUE. This part of the test will take about 10 minutes.
- 22. For Option **006** Instruments Only: When the analyzer displays CONNECT 6 GHz SENSOR TO PORT 2, make the connections as shown in Figure 3-8. Then press **CONTINUE**. This part of the test will take about 20 seconds.

Figure 3-8. Connections for Sampler Correction at Port 2 for 6 GHz

23. When the analyzer displays CONNECT PORT **1** TO PORT 2, make the connections of the second through cable (of which you have determined its insertion loss) as shown in **Figure** 3-9.

sg638e

sg637e

Figure 3-9. Connections for the Second Through Cable

24. Press CONTINUE.

- 25. Enter the insertion loss of the through cable (determined in step 15) and press **CONTINUE**. For example, if the insertion loss of the through cable at 1 **GHz** is found to be 0.25 **dB**, then press 1.25) **x1**.
- 26. When the analyzer completes the test, observe the display for the results:
 - If you see Sampler Cor DONE, you have completed this procedure.
 - If you see Sampler Cor FAIL, it is necessary to adjust the sampler gain offset values, which are stored in EEPROM.

A Channel Sampler

a. Access the first address by pressing System SERVICE MENU PEEK/POKE PEEK/POKE ADDRESS (1619001372) (x1).

- **b.** Enter the new value at the accessed address by pressing **POKE** (46) **x1**.
- c. Access the second address by pressing **PEEK/POKE ADDRESS** [1619001373] [x1].
- d. Enter the new value at the accessed address by pressing **POKE** [248] [X1].
- e. Press **Preset**) for the analyzer to use the new values.
- f. Repeat the "Sampler Correction Constants Routine" starting at step 16.
- If the analyzer continues to fail this adjustment routine, refer to Chapter 7, "Source Troubleshooting."

B Channel Sampler

- a. Access the first address by pressing System SERVICE MENU PEEK/POKE PEEK/POKE ADDRESS (1619001374) x1).
- b. Enter the new value at the accessed address by pressing POKE (46) x1.
- c. Access the second address by pressing PEEK/POKE ADDRESS (1619001375)
 (x1).
- d. Enter the new value at the accessed address by pressing POKE (248) (x1).
- e. Press (Preset) for the analyzer to use the new values

- f. Repeat the "Sampler Correction Constants Routine" starting at step 16.
- If the analyzer continues to **fail** this adjustment routine, refer to Chapter 7, "Source Troubleshooting."

R Channel Sampler

- a. Access the first address by pressing (System) SERVICE MENU PEEK/POKE PEEK/POKE ADDRESS (1619001376) (x1).
- **b.** Enter the new value at the accessed address by pressing **POKE** (66) (xl.
- C. Access the second address by pressing PEEK/POKE ADDRESS [1619001377]
- d. Enter the new value at the accessed address by pressing POKE 128 x1.
- e. Press **Preset** for the analyzer to use the new values.
- f. Repeat the "Sampler Correction Constants Routine" starting at step 16.
- If the analyzer continues to **fail** this adjustment routine, refer to Chapter 7, "Source Troubleshooting. "

Cavity Oscillator Frequency Correction Constants (Test 54)

Required Equipment and Tools

Low-pass Filter	HP P/N 91350198
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP PM 9300-0797

Additional Required Equipment for 50 ohm Analyzers

Adapter APC-7 to 3.5 mm (m)	
Adapter APC-7 to 3.5 mm (f)	
RF Cable Set APC-7	

Additional Required Equipment for 750 Analyzers

Adapter APC-3.5 (f) to Type-N (f)	HP P/N 1250-1745
Adapter APC-3.5 (m) to Type-N (f)	
RF Cable Set 503, Type-N	HP 11851B
Minimum Loss Pad 50ohm 75Q (2)	HP 11852B

Analyzer warmup Time: 30 minutes.

The nominal frequency of the cavity oscillator is 2.982 **GHz**, but it varies with temperature. This procedure determines the precise frequency of the cavity oscillator at a particular temperature by identifying a known spur

Note You should perform this procedure with the recommended filter, or a filter with at least 50 **dB** of rejection at 2.9 **GHz**, and a **passband** which includes 800 MHz. The filter makes spur identification substantially faster and more reliable.

With the filter, you need to distinguish between only two spurs, each of which should be 10 dB to 20 dB (3 to 4 divisions) above the trace noise.

Without the filter, you need to **distinguish** the target spur between four or five spurs, each of which may be 0.002 to 0.010 **dB** (invisible to 2 divisions) above or below the trace noise.

Perform the first five steps of the procedure at least once for familiarization before trying to select the target spur (especially if you are not using a filter).

1. Connect the equipment shown in Figure 3-10.

Figure 3-10. Setup for Cavity Oscillator Frequency Correction Constant Routine

2. Press Preset Avg IF BW 3000 x1 System SERVICE MENU TESTS 54 x1 EXECUTE TEST YES.

During this adjustment routine, you will see several softkeys:

CONTINUE	sweeps the current frequency span; you may press it repeatedly for additional sweeps of the current frequency span.
NEXT	sweeps the next frequency span (2 MHz higher).
SELECT	enters the value of the marker (which you have placed on the spur) and exits the routine.
ABORT	exits the routine.

- **3.** Press **CONTINUE** to sweep the first frequency span three times. Each new span overlaps the previous span by 3 MHz (the center frequency increases by 2 MHz; the span is 5 MHz). Therefore, anything visible on the right half of the screen of one set of sweeps will appear on the left half or center of the screen when you press **NEXT**.
- 4. Press **NEXT** repeatedly. Watch the trace on each sweep and try to spot the target spur With the **filter**, the target spur **will** be one of two obvious spurs (see Figure 3-11). Without the **filter** (not recommended), the target spur will be one of four or five less distinct spurs as shown in Figure 3-12 and Figure 3-13. When the center frequency increases to 2994.999 MHz, and you have not "selected" the target spur, Cav Osc Cor FAIL **will** appear on the display.

Figure 3-11. Typical Display of Spurs with a Filter

Spur Search Procedure with a Filter

- 5. Press **EXECUTE**, **TEST YES CONTINUE** and the other softkeys as required to observe and mark the target spur The target spur will appear to the right of a second spur, similar to **Figure 3-1** 1.
- 6. Rotate the front panel knob to position the marker on the spur and then **press SELECT**.

- 7. Observe the analyzer for the results of this adjustment routine:
 - If the analyzer displays Cav Osc Cor DONE, you have completed this procedure.
 - If the analyzer does not display DONE, repeat this procedure.
 - If the analyzer continues not to display DONE, refer to Chapter 7, "Source Troubleshooting. "

Spurs Search Procedure without a Filter

- 8. Press EXECUTE TEST YES CONTINUE and the other softkeys as required to observe and mark the target spur
- 9. The target spur will appear in many variations Often it will be difficult to identify positively; occasionally it will be nearly impossible to identify. Do not hesitate to press **CONTINUE** as many times as necessary to thoroughly inspect the current span.

The target spur **usually** appears as one of a group of four evenly spaced spurs as in Figure 3-12. The target spur is on the right most spur (fourth from the left). On any particular sweep, one, any, or all of the spurs may be large, **small**, visible, invisible, above or below the reference line.

Figure 3-12. Typical Display of Four Spurs without a Filter

On occasion the largest spur appears as one of a group of five evenly spaced spurs as shown in **Figure** 3-13. The target spur is again the fourth from the left (not the fifth, right-most spur).

Figure 3-13. Target Spur Is Fourth in Display of Five spurs

Figure 3-14 shows another variation of the basic four spur pattern: some up, some down, and the target spur itself almost indistinguishable.

Figure 3-14. Target Spur Is Almost Invisible

- 10. Rotate the front panel knob to position the marker on the target spur. Then press **SELECT** and observe the analyzer for the results of the adjustment routine:
 - If the analyzer displays Cav Osc Cor DONE, you have completed this procedure.
 - If the analyzer displays FAIL, refer to Chapter 7, "Source Troubleshooting. "

Serial Number Correction Constants (Test 55)

Analyzer warmup time: 5 minutes.

This procedure stores the analyzer serial number in the A9 CPU assembly **EEPROMS**.

Caution Perform this procedure *ONLY* if the **A9** CPU assembly has been replaced.

1. Record the ten character serial number that is on the HP 8753E rear panel identification label.

2. Press Preset DISPLAY MORE TITLE ERASE TITLE to erase the HP logo.

3. Enter the serial number with an external keyboard or by rotating the front panel knob to position the arrow below each character of the instrument **serial number, and then pressing SELECT LETTER to enter each letter. Enter** a total of ten characters: four digits, one letter, and five **final** digits.

Press BACKSPACE if youmade a mistake.

4. Press **DONE** when you have finished entering the title.

Caution You *CANNOT* correct mistakes after you perform step 5, unless you contact the factory for a clear serial number keyword. Then you must perform the "Options Correction Constants" procedure and repeat this procedure.

5. Press (System) SERVICE MENU TESTS (55) x1 EXECUTE TEST YES.

- 6. Observe the analyzer for the results of the routine:
 - If the analyzer displays the message Serial Cor DONE, you have completed this procedure.
 - If the analyzer does not display DONE, then either the serial number that you entered in steps 3 and 4 did not match the required format or a serial number was already stored. Check the serial number recognized by the analyzer:

a. Press Preset System SERVICE MENU FIRMWARE REVISION.

b. Look for the serial number displayed on the analyzer screen.

- c. Rerun this adjustment test.
- If the analyzer continues to fail this **adjustment** routine, contact your nearest HP sales or service office.

Option Numbers Correction Constants (Test 56)

This procedure stores instrument option(s) information in **A9** CPU assembly **EEPROMs.** You can also use this procedure to remove a serial number, with the **unique** keyword, as referred to in "Serial Number Correction Constant."

- 1. Remove the instrument top cover and record the keyword label(s) that are on the display assembly. Note that *each*keyword is for each option installed in the instrument.
 - If the instrument does not have a label, then contact your nearest Hewlett-Packard sales or service office. Be sure to include the full serial number of the instrument.
- 2. Press (Preset) (Display) MORE TITLE ERASE TITLE.
- 3. Enter the keyword with an external keyboard or by rotating the front panel knob to position the arrow below each character of the keyword, and then pressing **SELECT LETTER** to enter each letter.

Press **BACKSPACE** if you made a mistake.

4. Press DONE when you have finished entering the title.

Caution Do not confuse "I" with "1" or "0" with "0" (zero).

5. Press (System) SERVICE MENU TESTS (56) (x1) EXECUTE TEST YES.

- 6. Observe the analyzer for the results of the adjustment routine:
 - If the analyzer displays Option Cor DONE, you have completed this procedure.
 - If the analyzer has more than one option, repeat steps 2 through 5 to install the remaining options.
 - If the analyzer displays Option Cor FAIL, check the keyword used in step 3 and make sure it is correct. Pay special attention to the letters "I" or "O", the numbers "1" or "O" (zero). Repeat this entire adjustment test.
 - If the analyzer continues to fail the adjustment routine, contact your nearest HP sales or service office.

Initialize EEPROMs (Test 58)

This service internal test performs the following functions:

- Destroys all correction constants and all unprotected options
- Initializes certain EEPROM address locations to zeroes.

Note This routine *will not* alter the serial number or Options 002, 006 and 010 correction constants.

1. Make sure the A9 switch is in the alter position.

2. Press (Preset) (System) SERVICE MENU TESTS (58 x1) (EXECUTE TEST) (YES).

- 3. Restore the analyzer correction constants in the EEPROMs:
 - If you have the correction constants backed up on a disk, perform these steps:
 - a. Place the disk in the analyzer disk drive and press (Save/Recall) SELECT DISK INTERNAL DISK.
 - b. Use the front panel knob to **highlight** the filename that represents your serial number.

c. Press RETURN RECALL STATE (Preset).

- If you don't have the correction constants backed up on a disk, run all the internal service routines in the following order:
 - □ Source Default Correction Constants (Test 44)
 - □ Source Pretune Correction Constants (Test 45)
 - □ Analog Bus Correction Constants (Test 46)
 - □ Source Pretune Correction Constants (Test 48)
 - □ Calibration Kit Default Correction Constants (Test 57)
 - □ ADC Offset Correction Constants (Test 52)
 - □ RF Output Power Correction Constants (Test 47)
 - □ Sampler Magnitude and Phase Correction Constants (Test 53)
 - □ IF Amplifier Correction Constants (Test 51)
 - □ Cavity Oscillator Frequency Correction Constants (Test 54)

EEPROM Backup Disk Procedure

Required Equipment and Tools

3.5-inch Floppy Disk	HP 92192A (box of 10)
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797

The correction constants, that are unique to your instrument, are stored in EEPROM on the **A9** controller assembly. By creating an EEPROM backup disk, you will have a copy of all the correction constant data should you need to replace or repair the **A9** assembly.

- 1. Insert a **3.5-inch** disk into the analyzer disk drive.
- 2. If the disk is not formatted, follow these steps:

a. Press (Save/Recall) FILE UTILITIES FORMAT DISK .

- b. Select the format type:
 - To format a LIF disk, select FORMAT:LIF
 - To format a DOS disk, select FORMAT: DOS.
- C. Press FORMAT INT DISK and answer YES at the query.

3. Press System SERVICE MENU SERVICE MODES MORE STORE EEPR ON Save/Recall ELECT DISK & INTERNAL DISK RETURN SAVE STATE.

- **Note** The analyzer creates a default file **"FILEO"**. The filename appears in the upper-left comer of the display. The file type **"ISTATE(E)"** indicates that the **file** is an instrument-state with EEPROM backup.
- 4. Press FILE UTILITIES RENAME FILE ERASE TITLE. Use the front panel knob and the SELECT LETTER softkey (or an external keyboard) to rename the file "FILEO" TO "N12345" where 12345 represents the last 5 digits of the instrument's serial number. (The first character in the filename must be a letter.) When you are finished renaming the file, press DONE.

- 5. Write the following information on the disk label:
 - analyzer serial number
 - today's date
 - "EEPROM Backup Disk"
Correction Constants Retrieval Procedure

Required Equipment and Tools

EEPROM Backup Disk				
Antistatic Wrist Strap ,	HP	P/N	9300-	-1367
Antistatic Wrist Strap Cord	H	P P/N	9300-	.0980
Static-control Table Mat and Earth Ground Wire	HP	P/N	9300-	0797

By using the current EEPROM backup disk, you can download the correction constants data into the instrument **EEPROMs**.

- 1. Insert the "EEPROM Backup Disk" into the HP 8753E disk drive.
- 2. Make sure the A9 switch is in the Alter position.
- 3. Press (Save/Recall) SELECT DISK INTERNAL DISK. Use the front panel knob to highlight the file "N12345" where N12345 represents the file name of the EEPROM data for the analyzer. On the factory shipped EEPROM backup disk, the filename is FILE1.
- 4. Press RETURN RECALL STATE to download the correction constants data into the instrument EEPROMs.
- 5. Perform "Option Numbers Correction Constant (Test 56)."
- 6. Press **Preset** and verify that good data was transferred to EEPROM by performing a simple measurement.
- 7. Move the **A9** switch back to its Normal position when you are done working with the instrument.

Loading Firmware

Required Equipment and Tools

• Firmware disk for the HP 8753E

Analyzer warmup Time: None required.

The following procedures will load **firmware** for new or existing CPU boards in an HP 8753E network analyzer.

Loading Firmware into an Existing CPU

Use this procedure for upgrading **firmware** in an operational instrument whose CPU board has not been changed.

Caution	Loading firmware will clear all internal memory.
	Perform the following steps to save any instrument states that are stored in internal memory to a floppy disk.
	1. Press (Save/Recall) SELECT DISK INTERNAL MEMORY RETURN.
	2. Select an instrument state and press RECALL STATE .
	3. Press SELECT DISK INTERNAL DISK RETURN SAVE STATE.
	4. If the instrument state file was not saved to disk with the same name that it had while in internal memory, you may wish to rename the file.
	Press FILE UTILITIES RENAME FILE, enter the desired name, and press DONE .
	5. Repeat steps 1 through 4 for each instrument state that you wish to save.

- 1. Turn off the network analyzer.
- 2. Insert the firmware disk into the instrument's disk drive.
- 3. Turn the instrument on. The **firmware** will be loaded automatically during power-on. The front panel **LEDs** should step through a sequence as firmware is loaded. The display will be blank **during** this time.

At the end of a successful loading, the **LEDs** for Channel 1 and **Testport** 1 will remain on and the display **will** turn on indicating the version of **firmware** that was loaded.

In Case of Difficulty

If the firmware did not load successfully, LED patterns on the front panel can help you isolate the problem.

• If the following LED pattern is present, the firmware disk is not for use with your instrument model. Check that the **firmware** disk used was for the HP 8753E.

	LED	Patt	ern		
CH1	CH2	R.	L	Т	8
•	•				

• If any of the following LED patterns are present, the firmware disk may be defective.

СН1	LED CH2	Patte B	ern L	т	s
		•			
	•	•			
•		•			
	•				
			•		
			•		
	•				
		•			•
	•	•			•

• If any other LED pattern is present, the CPU board is defective.

Loading Firmware into a New CPU

Use this procedure to load **firmware** for an instrument whose CPU board has been replaced.

- 1. Turn off the network analyzer.
- 2. Insert the firmware disk into the instrument's disk drive.
- 3. Turn the instrument on. The firmware **will** be loaded automatically during power-on. The front panel **LEDs** should step through a sequence as **firmware** is loaded. The display will be blank during this time.

At the end of a successful loading, the LEDs for Channel 1 and Testport 1 will remain on and the display will turn on indicating the version of firmware that was loaded.

Note After the **firmware** has been loaded, the correction constants must be restored. Refer to **Table 3-1** (2 of 3) to identify the service procedures required to restore (retrieve) or recreate the correction constants.

In Case of Difficulty

- If the **firmware** did not load successfully, LED patterns on the front panel can help you isolate the problem.
 - If the following LED pattern is present, an acceptable firmware filename was not found on the disk. (The desired format for firmware filenames is 8753E_07._02.) Check that the firmware disk used was for the HP 87533.

□ If any of the following LED patterns are present, the **firmware** disk may be defective.

• If any other LED pattern is present, the CPU board is defective.

Note If **firmware** did not load, a red LED on the CPU board will be flashing.

• If the following LED pattern is present on the CPU board, suspect the disk drive or associated cabling:

 $\bullet \quad \bullet \quad \Box \quad \bullet \quad \bullet \quad \Box \quad \Box$

(front of instrument **#**)

Fractional-N Frequency Range Adjustment

Required Equipment and Tools

Non-metallic Adjustment Tool	HP	P/N	8830-0	0024
Antistatic Wrist Strap	HP	P/N	9300-2	1367
Antistatic Wrist Strap Cord	HP	P/N	9300-	0980
Static-control Table Mat and Earth Ground Wire	HP	P/N	9300-0	0797

Analyzer warmup time: 30 minutes

This procedure centers the fractional-N VCO (voltage controlled oscillator) in its tuning range to insure reliable operation of the instrument.

- 1. Remove the right-rear bumpers and right side cover.
- 2. Press (Preset (Display) DUAL CHAN ON System SERVICE MENU ANALOG BUS ON (Menu) NUMBER of POINTS [1] [x1] COUPLED CH OFF.
- Press Start 36 M/µ Stop 60.75 M/µ Menu SWEEP TIME 12.5 k/m Meas
 ANALOG IN Aux Input 29 x1 to observe the "FN VCO Tun" voltage.
- 4. Press Format MORE REAL Scale Ref .6 x1 REFERENCE VALUE .7 x1 to set and scale channel 1. Press Marker to set the marker to the far right of the graticule.
- 5. Press CH2 Menu CW FREQ (31.0001) M/µ SWEEP TIME (12.375) k/m Meas ANALOG IN Aux Input (29) x1 to observe the "FN VCO Tun" voltage.
- 6. Press Format MORE REAL Scale Ref [.2] x1 REFERENCE VALUE 6.77 x1 (Marker) 6 k/m to set channel 2 and its marker.
- 7. Adjust the "FN VCO TUNE" (see Figure 3-15) with a non-metallic tool so that the channel 1 marker is as many divisions above the reference line as the channel 2 marker is below it. (See Figure 3-16.)

sg640e

Figure 3-15. Location of the FN VCO TUNE Adjustment

Figure 3-16. Fractional-N Frequency Range Adjustment Display

- 8. To fine-tune this adjustment, press (Preset) (Menu) CW FREQ (System) SERVICE MENU ANALOG BUS ON SERVICE MODES FRACN TUNE ON to set "FRAC N TUNE" to 29.2 MHz.
- 9. Press Meas ANALOG IN Aux Input (29) x1 (Marker) Format MORE REAL Scale Ref REFERENCE VALUE (7) x1.
- 10. Observe the analyzer for the results of this adjustment:
 - If the marker value is less than 7, you have completed this procedure.
 - If the marker value is greater than 7, readjust **"FN** VCO ADJ" to 7. Then perform steps 2 to 10 to **confirm** that the channel 1 and channel 2 markers are **still** above and below the reference line respectively.
 - If you cannot adjust the analyzer correctly, replace the A14 board assembly.

Frequency Accuracy Adjustment

Required Equipment and Tools

Spectrum Analyzer	HP 8563F
DE Cabla 500 Tupa N 94 in ab	LID D/N 9190 4791
Kr Cable, 504 Type-N, 24-men	······································
Non-metallic Adjustment Tool	HP P/N 8830-0024
Antistatic Wrist Strap . ,	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797
Additional Required Equipment for 500 Analyzers	
Adapter APC-7 to Type-N (f)	HP 11525A
Additional Required Equipment for 750 Analyzers	

Minimum Loss Pad HP 11852B

Analyzer warmup time: 30 minutes.

This adjustment sets the VCXO (voltage controlled crystal oscillator) frequency to maintain the instrument's frequency accuracy.

- 1. Remove the upper-rear bumpers and analyzer top cover
- 2. Connect the equipment as shown in Figure 3-17.

sg641e

Figure 3-17. Frequency Accuracy Adjustment Setup

Note Make sure that the spectrum analyzer and network analyzer references are *not* connected.

- 3. For Option **1D5** Instruments Only: Remove the BNC-to-BNC jumper that is connected between the "EXT REF" and the "10 MHz Precision Reference," as shown in Figure 3-19.
- 4. Set the spectrum analyzer measurement parameters as follows:

FREQUENCY 3 G/n (or 6 G/n for Option 006) Span 60 kHz (or 120 kHz for Option 006) AMPLITUDE REF LVL 10 +dBm

- 5. On the HP 8753E, press Preset Menu CW FREQ 3 G/n (or 6 G/n for Option 006).
- 6. No adjustment is required if the spectrum analyzer measurement is within the following specifications:
 - ±30 kHz for the HP 8753E
 - ±60 kHz for the HP 8753e, Option 006

Otherwise, locate the **A12** assembly (red extractors) and adjust the VCXO ADJ (see **Figure** 3-18) for a spectrum analyzer center frequency measurement within specifications.

7. Replace the **A12** assembly if you are unable to adjust the frequency as specified. Repeat this adjustment test.

sg64d

Figure 3-18. Location of the VCXO ADJ Adjustment

Note To increase the accuracy of this adjustment, the following steps are recommended.

- 8. Replace the instrument covers and wait 10 to 15 minutes in order to allow the analyzer to reach its precise operating temperature.
- 9. Recheck the CW frequency and adjust if necessary.

Instruments with Option 1D5 Only

10. Reconnect the BNC-to-BNC jumper between the "EXT REF" and the "10 MHz Precision Reference" as shown in Figure 3-19.

sg642e

Figure 3-19. High Stability Frequency Adjustment Location

11. Insert a narrow screwdriver and adjust the high-stability frequency reference potentiometer for a **CW** frequency measurement within specification.

In Case of Difficulty

Replace the **A26** assembly if you cannot adjust the **CW** frequency within specification.

High/Low Band Transition Adjustment

Required Equipment and Tools

Analyzer warmup time: 30 minutes.

This adjustment centers the VCO (voltage controlled oscillator) of the A12 reference assembly for high and low band operations.

- 1. Press (Preset) (System) SERVICE MENU ANALOG BUS ON (Start) (11) (M/μ) (Stop) (21) (M/μ) to observe part of both the low and high bands on the analog bus.
- Press Meas ANALOG IN Aux Input (22) x1 (Format) MORE REAL (Display)
 DATA→MEM DATA-MEMORY to subtract the ground voltage from the next measurement.
- 3. Press Meas ANALOG IN Aux Input (23 x1 Marker 11) M/µ.
- 4. Press (Scale 1 x1 and observe the VCO tuning trace:
 - If the left **half** of trace = 0 ±1000 mV and right half of trace = 100 to 200 mV higher (one to two divisions, see Figure 3-20): no adjustment is necessary.
 - If the adjustment is necessary, follow these steps:
 - a. Adjust the VCO tune (see **Figure** 3-21) to position the left half of the trace to 0 ± 125 mV. The variable capacitor, **C85**, has a half-turn tuning range if the **A12** Reference Board is part number 08753-60209, and seven turns if the part number is 08753-60357. Be careful not to overtighten and damage the seven-turn capacitor.
 - b. Adjust the **HBLB** (see Figure 3-21) to position the right **half** of the trace 125 to 175 **mV** (about 1 to 1.5 divisions) higher than the left half.
 - Refer to Chapter 7, "Source Troubleshooting," if you cannot perform the adjustment.

Figure 3-20. High/Low Band Transition Adjustment Trace

Figure 3-21. High/Low Band Adjustment Locations

Fractional-N Spur Avoidance and FM Sideband Adjustment

Required Equipment and Tools

Spectrum Analyzer	НР 8563Е
HP-IB Cable	HP 10833A/B/C/D
RF Cable 50 ohm, Type24-inch	HP P/N 81204781
Cable, 500 Coax, BNC (m) to BNC (m)	
Non-metallic Adjustment Tool	HP P/N 8830-0024
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797

Additional Required Equipment for 509 Analyzers

Adapter APC-7 to Type-N (f)	
-----------------------------	--

Additional Required Equipment for 75 ohm Analyzers

Minimum Loss Pad		1852B
------------------	--	-------

Analyzer warmup time: 30 minutes.

This adjustment minimizes the spurs caused by the API (analog phase interpolator, on the fractional-N assembly) circuits. It **also** improves the sideband characteristics.

- 1. Connect the equipment as shown in Figure 3-22.
- 2. Make sure the instruments are set to their default HP-IB addresses: HP 8753E = 16, Spectrum Analyzer = 18.

sg643e

Figure 3-22. Fractional-N Spur Avoidance and **FM** Sideband Adjustment Setup

3. Set the spectrum analyzer measurement parameters as follows:

Reference Level	0 dBm
Resolution Bandwidth	100 Hz
Center Frequency	676.145105 MHz
Span	2.5 kHz

- 4. On the HP 8753E, press (Preset) (Avg) IF BW (3000) (x1) (Menu) CW FREQ (676.045105) (Μ/μ).
- 5. Adjust the 100 kHz (R77) for a **null** (minimum amplitude) on the spectrum analyzer. The minimum **signal** may, or may not, drop down into the noise floor.

Figure 3-23. Location of API and 100 kHz Adjustments

50694

- 6. On the spectrum analyzer, set the center frequency for 676.051105 MHz.
- 7. On the HP 8753e, press (Menu) CW FREQ (676.048105) (M/μ) .
- 8. Adjust the **API1 (R35)** for a **null** (minimum amplitude) on the spectrum analyzer.
- 9. On the spectrum analyzer, set the center frequency for 676.007515 MHz.
- 10. On the HP 8753E, press (Menu) CW FREQ (676.004515) (M/μ) .
- 11. Adjust the API2 (R43) for a null (minimum amplitude) on the spectrum analyzer.
- 12. On the spectrum analyzer, set the center frequency for 676.003450 MHz.
- 13. On the HP 8753E, press (Menu) CW FREQ (676.00045) (M/ μ).
- 14. Adjust the **API3 (R45)** for a **null** (minimum amplitude) on the spectrum analyzer.
- 3-56 Adjustments and Correction Constants

- 15. On the spectrum analyzer, set the center frequency for 676.003045 MHz.
- 16. On the HP 8753E, press (Menu) CW FREQ (676.000045) (M/μ) .
- 17. Adjust the **API4 (R47)** for a null (minimum amplitude) on the spectrum analyzer.

In Case of Difficulty

18. If this adjustment cannot be performed satisfactorily, repeat the entire procedure. Or else replace the **A13** board assembly.

Source Spur Avoidance Tracking Adjustment

Required Equipment and Tools

BNC Alligator Clip Adapter	HP	P/N	8120-	1292
BNC-to-BNC Cable	.HP	P/N	8120-	-1840
Antistatic Wrist Strap	HP	P/N	9300-	-1367
Antistatic Wrist Strap Cord	HP	P/N	9300-	-0980
Static-control Table Mat and Earth Ground Wire	HP	P/N	9300-	0797

Analyzer warmup time: 30 minutes.

This adjustment optimizes tracking between the YO (YIG **oscillator**) and the cavity **oscillator** when they are frequency offset to avoid spurs. Optimizing YO-cavity **oscillator** tracking reduces potential phase-locked loop problems.

1. Mate the adapter to the BNC cable and connect the BNC connector end to AUX INPUT on the HP 8753E rear panel. Connect the BNC center conductor **alligator-clip** to All **TP10** (labeled ϕ ERR); the shield **clip** to All **TP1** (GND) as shown in **Figure** 3-24.

Figure 3-24. Location of All Test Points and A3 CAV ADJ Adjustments

s a6 10 d

- 2. Press Preset Center 400 M/μ Span 50 M/μ .
- 3. Press System SERVICE MENU ANALOG BUS ON Meas ANALOG IN Aux Input 11 x1.
- 4. Press (Format) MORE REAL (Scale Ref) (10 (k/m) MARKER-REFERENCE.
- 5. To make sure that you have connected the test points properly, adjust the CAV ADJ potentiometer while observing the analyzer display. You should notice a change in voltage.
- 6. Observe the phase locked loop error voltage:
 - If "spikes" are not visible on the analyzer display (see **Figure** 3-25): no adjustment is necessary.
 - If "spikes" are excessive (see Figure 3-25): adjust the CAV ADJ potentiometer (see **Figure** 3-24) on the **A3** source bias assembly to eliminate the spikes.
 - If the "spikes" persist, refer to Chapter 7, "Source Troubleshooting."

Figure 3-25. Display of Acceptable versus Excessive Spikes

Unprotected Hardware Option Numbers Correction Constants

Analyzer warmup Time: None.

This procedure stores the instrument's unprotected option(s) information in **A9** CPU assembly **EEPROMS.**

- 1. Make sure the **A9** switch is in the Alter position.
- 2. Record the installed options that are printed on the rear panel of the analyzer.

3. Press (System) SERVICE MENU PEEK/POKE PEEK/POKE ADDRESS .

- Refer to Table 3-2 for the address of each unprotected hardware option. Enter the address for the specific installed hardware option that needs to be enabled or disabled. Follow the address entry by POKE (1) (x1).
 - . Press **POKE** (-1) (xl, then (Preset) to enable the option;
 - . or, press **POKE** (0 x1, then **Preset**) to disable the option.

Table 3-2. PEEK/POKE Addresses

Hardware Options	PEEK/POKE Address
1D5	1619001529
011	1619001532

5. Repeat steps 3 and 4 for **all** of the unprotected options that you want to enable.

6. After you have entered all of the instrument's hardware options, press the following keys:

(System) SERVICE MENU FIRMWARE REVISION

- 7. View the analyzer display for the listed options
- 8. When you have entered all of the hardware options, return the A9 switch to the Normal position.
- 9. Perform the "EEPROM Backup Disk Procedure" located on page 3-42.

In Case of Difficulty

If any of the installed options are missing from the list, return to step 2 and reenter the missing option(s).

Sequences for Mechanical Adjustments

The network analyzer has the capability of automating tasks through a sequencing function. The following adjustment sequences are available via Access *HP* on the World Wide Web.

- Fractional-N Frequency Range Adjustment (F'NADJ and FNCHK)
- High/Low Band Transition Adjustment (HBLBADJ)
- Fractional-N Spur Avoidance and FM Sideband Adjustment (APIADJ)

You can download these adjustment sequences from the following URL:

http://www.tmo.hp.com/tmo/pia/component_test/PIATop/English/ comptest_support.html

How to Load Sequences from Disk

- 1. Place the sequence disk in the analyzer disk drive.
- 2. Press Local SYSTEM CONTROLLER SEQUENCE MORE LOAD SEQUENCE FROM DISK READ SEQUENCE FILE TITLES.
- 3. Select any or all of the following sequence files by pressing:
 - Select LOAD SEQ APIADJ if you want to load the file for the "Fractional-N Spur Avoidance and FM Sideband Adjustment."
 - Select LOAD SEQ HBLBADJ if you want to load the file for the "High/Low Band Transition Adjustment."
 - Select LOAD SEQ FNADJ and LOAD SEQ FNCHK if you want to load the files for the "Fractional-N Frequency Range Adjustment."

How to Set Up the Fractional-N Frequency Range Adjustment

- 1. Remove the right-rear bumpers and right side cover. This exposes the adjustment location in the sheet metal.
- 2. Press (Preset) SEQUENCE X FNADJ (where X is the sequence number).
- 3. Adjust the **"FN** VCO TUNE" with a non-metallic tool so that the channel 1 marker is as many divisions above the reference line as the channel 2 marker is below it.
- 4. Press (Preset) SEQUENCE X FNCHX (where X is the sequence number).
 - If the marker value is <7, you have completed this procedure.
 - If the marker value is >7, readjust **"FN** VCO TUNE" to 7. Then repeat steps 2,3, and 4 to **confirm** that the channel 1 and channel 2 markers are still above and below the reference line respectively.

How to Set Up the High/Low Band Transition Adjustments

- 1. Press (Preset) SEQ X HBLBADJ (where X is the sequence number).
- 2. Observe the VCO tuning trace:
 - If the left half of trace = 0±1000 mV and right half of trace = 100 to 200 mV higher (one to two divisions): no adjustment is necessary.
 - If the adjustment is necessary, follow these steps:
 - a. Remove the upper-rear bumpers and top cover, using a TORX screwdriver.
 - b. Adjust the VCO tune (A12 C85) to position the left half of the trace to 0 ± 125 mV. This is a very sensitive adjustment where the trace could easily go off of the screen.
 - c. Adjust the HBLB (A12 R68) to position the right half of the trace 125 to 175 mV (about 1 to 1.5 divisions) higher than the left half.

• Refer to Chapter 7, "Source Troubleshooting," if you cannot perform the adjustment.

How to Set Up the Fractional-N Spur Avoidance and FM Sideband Adjustment

- 1. Press (Preset) SEQUENCE X APIADJ (where X is the sequence number).
- 2. Remove the upper-rear comer bumpers and the top cover, using a TORX screwdriver.
- 3. Follow the directions on the analyzer display and make all of the API adjustments.

Sequence Contents

Sequence for the High/Low Band Transition Adjustment

-Sequence HBLBADJ sets the hi-band to low-band switch point.-

```
PRESET

SYSTEM

SERVICE MENU

ANALOG BUS ON

START 11 M/u

STOP 21 M/u

MEAS

ANALOG IN 22 xl (A12 GND)

DISPLAY

DATA > MEM

DATA-MEM

MEAS

ANALOG IN 23 xl (VCO TUNE)

MKR 11 M/u

SCALE/REF .1 xl
```

Sequences for the Fractional-N Frequency Range Adjustment

-Sequence FNADJ sets up A14 (FRAC N Digital) VCO.-

DISPLAY DUAL CHAN ON SYSTEM SERVICE MENU ANALOG BUS ON MENU NUMBER OF POINTS 11 x1 COUPLED CHAN OFF START 36 M/u STOP 60.75 M/u MENU SWEEP TIME 12.5 k/m MEAS ANALOG IN 29 xl (FN VCO TUN) SCALE/REF 0.6 xl REF VALUE -7 xl MKR CH 2 MENU CW FREQ 31.0001 M/u SWEEP TIME 12.375 k/m MEAS ANALOG IN 29 xl (FN VCO TUN) SCALE/REF .2 xl REF VALUE 6.77 xl MKR 6 k/m-Sequence FNCHK check the VCO adjustment.-MENU

CW FREQ 1 G/n SYSTEM SERVICE MENU ANALOG BUS ON SERVICE MODES FRACNTUNEON **MEAS** ANALOG IN 29 x1 **MKR** SCALE/REF REF VALUE 7 xl

Sequences for the Fractional-N Avoidance and FM Sideband Adjustment

-Sequence APIADJ sets up the fractional-N API spur adjustments.-

TITLE SP 2.5K PERIPHERAL HPIB ADDR 18 xl TITLE TO PERIPHERAL WAIT x 0 x1 TITLE AT ODB TITLE TO PERIPHERAL WAIT x 0 x1 TITLE **RM100HZ** TITLE TO PERIPHERAL WAIT x 0 x1 TITLE CF 676.145105MZ TITLE TO PERIPHERAL WAIT x 0 x1 CW FREO 676.045105M/u TITLE ADJ A13 100KHZ SEQUENCE PAUSE TITLE CF 676.048105MZ TITLE TO PERIPHERAL WAIT x 0 x1

TITLE ADJ A13 API1 **SEQUENCE** PAUSE TITLE CF 676.007515MZ TITLE TO PERIPHERAL WATT x 0 x1 CW FREQ 676.004515M/u TITLE ADJ A13 API2 **SEQUENCE** PAUSE TITLE CF 676.003450MZ TITLE TO PERIPHERAL WAIT X 0 x1 CW FREQ 676.000450M/u TITLE ADJ A13 API3 **SEQUENCE** PAUSE TITLE CF 676.003045MZ TITLE TO PERIPHERAL **WAIT** x 0 x1 CW FREQ 676.000045M/u TITLE ADJ A13 API4

Start Troubleshooting Here

The information in this chapter helps you:

- Identify the portion of the analyzer that is at fault.
- Locate the specific troubleshooting procedures to identify the assembly or peripheral at fault.

To identify the portion of the analyzer at fault, follow these procedures:

Step 1. Initial Observations Step 2. Operator's Check

Step 3. HP-IB Systems Check

Step 4. Faulty Group Isolation

Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP 8753E network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants. "
- 5. Perform the necessary performance tests. Refer to Chapter 2, "System Verification and Performance Tests."

Having Your Analyzer Serviced

The HP 8753E has a one year on-site warranty, where available. If the analyzer should fail any of the following checks, call your local HP sales or service office. A customer engineer will be dispatched to service your analyzer on-site. If a customer engineer is not available in your area, follow the steps below to send your analyzer back to HP for repair

- 1. Choose the nearest HP service center. (A table listing of Hewlett-Packard sales or service offices is provided at the end of this guide.)
- 2. Include a detailed description of any failed test and any error message.
- 3. Ship the analyzer, using the original or comparable antistatic packaging materials.

Step 1. Initial Observations

Initiate the Analyzer Self-Test

- 1. Disconnect all devices and peripherals from the analyzer.
- 2. Switch on the analyzer and press Preset.
- 3. Watch for the indications shown in Figure **4-1** to determine if the analyzer is operating correctly.

Figure 4-1. Preset Sequence

■ If the self-test failed, refer to "Step 4. Faulty Group Isolation".

sg644e

Step 2. Operator's Check

Description

The operator's check consists of two **softkey** initiated tests: Port 1 Op **Chk** and Port 2 Op **Chk**.

A short is connected to port 1 (port 2) to reflect **all** the source energy back into the analyzer for an S_{11} (S_{22}) measurement.

The **first** part of Port **1** Op **Chk** checks the repeatability of the transfer switch. An S_{11} measurement is stored in memory and the switch is toggled to port 2 and then back to port 1 where another S_{11} measurement is made. The difference between the memory trace and the second trace is switch repeatability.

The remaining parts of both tests exercise the internal attenuator in 5 dB steps over a 55 dB range.

The resulting measurements must fall within a limit testing window to pass the test. The window size is based on both source and receiver specifications.

The operator's check determines that:

- The source is phase locked across the entire frequency range.
- All three samplers are functioning properly.
- The transfer switch is operational.
- The attenuator steps 5 dB at a time.

Required Equipment and lbols

Short part of the HP 85031B calibration kit

Analyzer warm-up time: 30 minutes.

Procedure

- 1. Disconnect all devices, peripherals, and accessories (including adapters and limiters) from the analyzer.
- 2. To run the test for port 1, press (Preset) PRESET: FACTORY (System) SERVICE MENU TESTS EXTERNAL TESTS.
- 3. The display should show TEST 21 Port 1 Op Chk in the active entry area.
- 4 4 Start Troubleshooting Here

- 4. Press **EXECUTE TEST** to begin the test.
- 5. At the prompt, connect the short to the port indicated. Make sure the connection is tight.

6. Press CONTINUE.

- 7. The test is a sequence of subtests. At the end of the subtests, the test title and result will be displayed. If all tests pass successfully, the overall test status will be PASS. If any test fails, the overall test status will be FAIL.
- 8. To run the test for port 2, press the step (key. The display should show TEST 22 Port 2 Op Chkin the active entry area.
- 9. Repeat steps 4 through 7.
- 10. If both tests pass, the analyzer is about 80% verified. If either test fails, refer to "Step 4. Faulty Group Isolation" in this section, or:
 - a. Make sure that the connection is tight. Repeat the test.
 - b. Visually inspect the connector interfaces and clean if necessary (refer to "Principles of Microwave Connector Care" located in Chapter 1).
 - c. Verify that the short meets published specifications.
 - d. Substitute another short, and repeat the test.
 - e. Finally, refer to the detailed tests located in this section, or fault isolation procedures located in the troubleshooting sections

Step 3. HP-IB Systems Check

Check the analyzer's HP-IB functions with a *known working* passive peripheral (such as a plotter, printer, or disk drive).

- 1. Connect the peripheral to the analyzer using a *good* HP-IB cable..
- 2. Press Local SYSTEM CONTROLLER to enable the analyzer to control the peripheral.
- 3. Then press **SET ADDRESSES** and the appropriate softkeys to verify that the device addresses will be recognized by the analyzer. The factory default addresses are:

Device	HP-IB Address
HP 8753E	16
Plotter port – BP-IB	5
Printer port – BP-IB	1
Disk (external)	0
Controller	21
Power meter – HP-IB	13

Note You may use other addresses with two provisions:

- Each device must have its own address.
- The address set on each device must match the one recognized by the analyzer (and displayed).

Peripheral addresses are often set with a rear panel switch. Refer to the manual of the peripheral to read or change its address.

If Using a Plotter or Printer

1. Ensure that the plotter or printer is set up correctly:

- Power is on.
- Pens and paper loaded.
- Pinch wheels are down.
- Some plotters need to have P1 and P2 positions set.
- 2. Press (Copy) and then PLOT or PRINT MONOCHROME.
 - □ If the result is a copy of the analyzer display, the printing/plotting features are functional in the analyzer. Continue with "Troubleshooting Systems with Multiple Peripherals", "Troubleshooting Systems with Controllers", or the "Step 4. Faulty Group Isolation" section in this chapter.
 - If the result is not a copy of the analyzer display, suspect the HP-IB function of the analyzer. Refer to Chapter 6, "Digital Control Troubleshooting."

If Using an External Disk Drive

- Select the external disk drive. Press Save/Recall SELECT DISK EXTERNAL DISK.
- 2. Verify that the address is set correctly. Press Local SET ADDRESSES ADDRESS: DISK.
- **3.** Ensure that the disk drive is set up correctly:
 - Power is on.
 - An initialized disk in the correct drive.
 - Correct disk unit number and volume number (press Local) to access the **softkeys** that display the numbers; default is 0 for both).
 - With hard disk (Winchester) drives, make sure the configuration switch is properly set (see drive manual).

Press Start 1 Μ/μ Save/Recall SAVE STATE. Then press Preset Save/Recall RECALL STATE.

- If the resultant trace starts at 1 MHz, HP-IB is functional in the analyzer. Continue with "Troubleshooting Systems with Multiple Peripherals", "Troubleshooting Systems with Controllers", or the "Step 4. Faulty Group Isolation" section in this chapter.
- □ If the resultant trace does not start at 1 MHz, suspect the HP-IB function of the analyzer: refer to Chapter 6, "Digital Control Troubleshooting."

Troubleshooting Systems with Multiple Peripherals

Connect any other system peripherals (but not a controller) to the analyzer one at a time and check their functionality. Any problems observed are in the peripherals, cables, or are address problems (see above).

Troubleshooting Systems with Controllers

Passing the preceding checks indicates that the analyzer's peripheral functions are normal. Therefore, if the analyzer has not been operating properly with an external controller, check the following:

- The HP-IB interface hardware is incorrectly installed or not operational. (See "HP-IB Requirements" in the HP 8753E Network Analyzer User's Guide.)
- The programming syntax is incorrect. (Refer to the *HP 8753E Network Analyzer* Programmer's *Guide*.)

If the analyzer appears to **be** operating unexpectedly but has not completely failed, go to "Step 4. Faulty Group Isolation."
Step 4. Faulty Group Isolation

Use the following procedures only if you have read the previous sections in this chapter and you think the problem is in the analyzer. These are simple procedures to verify the four functional groups in sequence, and determine which group is faulty.

The four functional groups are:

- power supplies
- digital control
- source
- receiver

Descriptions of these groups are provided in Chapter 12, "Theory of Operation."

The checks in the following pages must be performed in the order presented. If one of the procedures fails, it is an indication that the problem is in the functional group checked. Go to the troubleshooting information for the indicated group, to isolate the problem to the defective assembly.

Figure 4-2 illustrates the troubleshooting organization.

sg645d

Figure 4-2. Troubleshooting Organization

Power Supply

Check the Rear Panel LEDs

Switch on the analyzer. Notice the condition of the two **LEDs** on the **A15** preregulator at rear of the analyzer. (See Figure 4-3.)

- □ The upper (red) LED should be off.
- □ The lower (green) LED should be on.

Figure 43. A15 Preregulator LEDs

Check the A8 Post Regulator LEDs

Remove the analyzer's top cover. Switch on the power. Inspect the green **LEDs** along the top edge of the **A8** post-regulator assembly.

- •I All green LEDs should be on.
- □ The fan should be audible.

In case of difficulty, refer to Chapter 5, "Power Supply Troubleshooting."

Digital Control

Observe the Power Up Sequence

Switch the analyzer power off, then on. The following should take place within a few seconds:

- On the front panel, observe the following:
 - 1. All six amber LEDs illuminate.
 - 2. The port 2 LED illuminates.
 - 3. The amber **LEDs** go off after a few seconds, except the CH 1 LED. At the same moment, the port 2 LED goes off and the port 1 LED **illuminates**. (See Figure 4-4.)
- The display should come up bright with no irregularity in colors.
- After an initial pattern, five red **LEDs** on the **A9** CPU board should remain off. They can be observed through a small opening in the rear panel.

If the power up sequence does not occur as described, or if there are problems using the front panel keyboard, refer to Chapter 6, "Digital Control Troubleshooting."

sg647e

Figure 4-4. Front Panel Power Up Sequence

Verify Internal Tests Passed

1. Press (Preset) (System) SERVICE MENU TESTS INTERNAL TESTS EXECUTE TEST. The display should indicate:

TEST

- 0 ALL INT PASS
- □ If your display shows the above message, go to step 2. Otherwise, continue with this step.
- □ If phase lock error messages are present, this test may stop without passing or failing. In this case, continue with the next procedure to check the source.
- If you have unexpected results, or if the analyzer indicates a specific test failure, that internal test (and possibly others) have failed; the analyzer reports the first failure detected. Refer to Chapter 6, "Digital Control Troubleshooting."
- □ If the analyzer indicates **failure** but does not identify the test, press to search for the failed test. Then refer to Chapter 6, "Digital Control Troubleshooting." Likewise, if the response to front panel or HP-IB commands is unexpected, troubleshoot the digital control group.
- 2. Perform the Analog Bus test. Press **RETURN** [19 X1] EXECUTE TEST.
 - □ If this test fails, refer to Chapter 6, "Digital Control Troubleshooting."
 - □ If this test passes, continue with the next procedure to check the source.

Source

Phase Lock Error Messages

The error messages listed below are usually indicative of a source failure or improper instrument configuration. (Ensure that the R channel input is receiving at least -35 dBm power). Continue with this procedure.

■ NO IF FOUND: CHECK R INPUT LEVEL

The first IF was not detected during the pretune stage of phase lock.

■ NO PHASE LOCK: CHECK R INPUT LEVEL

The first IF was detected at the pretune stage but phase lock could not be acquired thereafter.

PHASE LOCK LOST

Phase lock was acquired but then lost.

PHASE LOCK CAL FAILED

An internal phase lock calibration routine is automatically executed at power-on, when pretune values drift, or when phase lock problems are detected. A problem spoiled a calibration attempt.

POSSIBLE FALSE LOCK

The analyzer is achieving phase lock but possibly on the wrong harmonic comb tooth.

SWEEP TIME TOO FAST

The fractional-N and the digital IF circuits have lost synchronization.

Check Source Output Power

1. Connect the equipment as shown in Figure 4-5. Be sure that any special accessories, such as limiters, have been disconnected.

Figure 4-5. Equipment Setup for Source Power Check

sq648e

- 2. Zero and calibrate the power meter. Press **Preset** on the analyzer to initialize the instrument.
- **3.** On the analyzer, press (Menu) CW FREQ (300 (k/m) to output a CW 300 kHz signal. The power meter should read approximately 0 dBm.
- 4. Press 16 M/μ to change the CW frequency to 16 MHz. The output power should remain approximately 0 dBm throughout the analyzer frequency range. Repeat this step at 1 and 3 GHz. (For Option 006 include an additional check at 6 GHz.)

If any incorrect power levels are measured, refer to Chapter 7, "Source Troubleshooting."

No Oscilloscope or Power Meter? Try the ABUS

Monitor ABUS node 16.

- 1. Press Preset Start 300 k/m Stop 3 G/n System SERVICE MENU ANALOG BUS ON.
- 2. Meas ANALOG IN Aux Input 16 ×1.
- 3. (Format) MORE REAL (Scale Ref) AUTOSCALE.

The display should resemble Figure 4-6.

Figure 4-6. ABUS Node 16: 1 V/GHz

If any of the above procedures provide unexpected results, or if error messages are present, refer to Chapter 7, "Source Troubleshooting."

Receiver

Observe the A and B Input Traces

1. Connect the equipment as shown in **Figure** 47 below. Be sure that any special accessories, such as limiters, have been disconnected. (The through cable is HP part number 8120-4779.)

sg649e

Figure 4-7. Equipment Setup

- 2. Press (Preset) (Meas) INPUT PORTS A TEST PORT 2 (Scale Ref) AUTO SCALE .
- **3.** Observe the measurement trace displayed by the A input. The trace should have about the same flatness as the trace in Figure 4-8.
- 4. Press Meas INPUT PORTS TEST PORT 1 B.
- 5. Observe the measurement trace displayed by the B input. The trace should have about the same flatness as the trace in **Figure** 4-8.

Figure 4-8. Typical Measurement Trace

If the source is working, but the A or B input traces appear to be in error, refer to Chapter 8, "Receiver Troubleshooting."

The following symptoms may also indicate receiver failure.

Receiver Error Messages

- CAUTION: OVERLOAD ON INPUT A; POWER REDUCED
- CAUTION: OVERLOAD ON INPUT B; POWER REDUCED
- CAUTION: OVERLOAD ON INPUT R; POWER REDUCED

The error messages above indicate that you have exceeded approximately + 14 dBm at one of the test ports. The RF output power is automatically reduced to -85 dBm. The annotation P1 appears in the left margin of the display to indicate that the power trip function has been activated. When this occurs, press Menu POWER and enter a lower power level. Press SOURCE PWR ON to switch on the power again.

Faulty Data

Any trace data that appears to be below the noise floor of the analyzer (-100 dBm) is indicative of a receiver failure.

Accessories

If the analyzer has passed all of the previous checks but is still making incorrect measurements, suspect the system accessories Accessories such as RF or interconnect cables, calibration or verification kit devices, limiters, and adapters can **all** induce system problems

Reconfigure the system as it is normally used and **reconfirm** the problem. Continue **with** Chapter 9, "Accessories Troubleshooting."

Accessories Error Messages

POWER PROBE SHUT DOWN !

The biasing supplies to a front panel powered device **(like** a probe or millimeter module) are shut down due to excessive current draw. Troubleshoot the device.

sa610

www.valuetronics.com

Figure 4-10. HP 8753E OVERALL BLOCK DIAGRAM

Power Supply Troubleshooting

Use this procedure only if you have read Chapter 4, "Start Troubleshooting Here." Follow the procedures in the order given, unless:

- an error message appears on the display, refer to "Error Messages" near the end of this chapter.
- the fan is not working; refer to "Fan Troubleshooting" in this chapter.

The power supply group assemblies consist of the following:

- A8 post regulator
- A15 preregulator

All assemblies, however, are related to the power supply group because power is supplied to each assembly.

Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP 8753E network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants. "
- 5. Perform the necessary performance tests Refer to Chapter 2, "System Verification and Performance Tests "

Simplified Block Diagram

Figure 5-1 shows the power supply group in simplified block diagram form. Refer to the detailed block diagram of the power supply (Figure 5-8) located at the end of this chapter to see voltage lines and specific connector pin numbers.

Figure 5-1. Power Supply Group Simplified Block Diagram

Start Here

Check the Green LED and Red LED on A15

Switch on the analyzer and look at the rear panel of the analyzer. Check the two power supply diagnostic **LEDs** on the **A15** preregulator casting by looking through the holes located to the left of the line voltage selector switch. (See Figure 5-2.)

During normal operation, the bottom (green) LED is on and the top (red) LED is off. If these **LEDs** are normal, then **A15** is 95% verified. Continue to "Check the Green **LEDs** on **A8**".

- □ If the green LED is not on steadily, refer to "If the Green LED of the A15 Is not ON Steadily" in this procedure.
- If the red LED is on or flashing, refer to "If the Red LED of the A15 Is ON" in this procedure.

Figure 5-2. Location of A15 Diagnostic LEDs

Check the Green LEDs on A8

Remove the top cover of the analyzer and locate the **A8** post regulator; use the location diagram under the top cover if necessary. Check to see if the green **LEDs** on the top edge of **A8** are all on. There are eight green **LEDs** (one is not visible without removing the PC board stabilizer).

- □ If all of the green **LEDs** on the top edge of **A8** are on, there is a 95% confidence level that the power supply is verified. Ib **confirm** the last 5% uncertainty of the power supply, refer to "Measure the Post Regulator Voltages" (next).
- □ If any LED on the **A8** post regulator is off or Eashing, refer to "If the Green **LEDs** of the **A8** are not **all** ON" in this procedure.

Measure the Post Regulator Voltages

Measure the DC voltages on the test points of **A8** with a voltmeter. Refer to Figure 5-3 for test point locations and **Table 5-1** for supply voltages and limits.

Figure 5-3. A8 Post Regulator Test Point Locations

TP	Supply	Bange
1	+ 65 V (not used)	+ 64.6 to + 65.4
2	AGND	n/a
3	+ 5 VD	+4.9 to +5.3
4	SDIS	n/a
6	-15 V	-14.4 to -15.6
6	-12.6 VPP (probe power)	-12.1 to -12.8
7	+ 15 V	+ 14.5 to + 15.5
8	+5 VU	+ 5.05 to + 5.35
0	-5.2 V	-5.0 to -5.4
10	+22 V	+21.3 to +22.7
11	+6 V	+5.8 to +6.2

Table 5-1. A8 Post Regulator Test Point Voltages

If the Green LED of the A15 Is not ON Steadily

If the green LED is not on steadily, the line voltage is not enough to power the analyzer.

Check the Line Voltage, Selector Switch, and Fuse

Check the main power line cord, line fuse, line selector switch setting, and actual line voltage to see that they are all correct. **Figure** 5-4 shows how to remove the line fuse, using a small flat-blade screwdriver to pry out the fuse holder. Figure 5-2 shows the location of the line voltage selector switch. Use a small flat-blade screwdriver to select the correct switch position.

If the A15 green LED is still not on steadily, replace A15.

qg652d

Figure 5-4. Removing the Line Fuse

If the Red LED of the A15 Is ON

If the red LED is on or flashing, the power supply is shutting down. Use the following procedures to determine which assembly is causing the problem.

Check the A8 Post Regulator

- 1. Switch off the analyzer.
- 2. Disconnect the cable A15W1 from the A8 post regulator. (See Figure 5-5.)
- 3. Switch on the analyzer and observe the red LED on A15.
 - □ If the red LED goes out, the problem is probably the **A8** post regulator. Continue to "Verify the **A15** Preregulator" to **first** verify that the inputs to **A8** are correct.
 - If the red LED is still on, the problem is probably the A15 preregulator, or one of the assemblies obtaining power from it. Continue with "Check for a Faulty Assembly".

sg6114e

Figure 5-5. Power Supply Cable Locations

Verify the A15 Preregulator

Verify that the A15 preregulator is supplying the correct voltages to the A8 post regulator. Use a voltmeter with a small probe to measure the output voltages of A15W1's plug. Refer to Table 5-2 and Figure 5-6.

 \square If the voltages are not within tolerance, replace **A15**.

□ If the voltages are within tolerance, A15 is verified. Continue to "Check for a Faulty Assembly".

Pin	A15W1P1 (Disconnected) Voltages	A&J2 (Connected) Voltages	A15 Preregulator Label
1	N/C	+68 to +72	N/C
2	+ 125 to + 100	+68 to +72	+ 70 V
3,4	+22.4 to +33.6	+17.0 to +18.4	+ 18 V
5,6	-22.4 to -33.6	-17.0 to -18.4	-18 V
7	N/C	+7.4 to +8.0	N/C
8	+9.4 to +14	+7.4 to $+8.0$	+8 V
9,10	-0.4 to -14	-6.7 to -7.3	-8 V
11	N/C	+24.6 to +28.6	N/C
12	+32 to +48	+24.6 to +28.6	+25 V
IOTE: The + 5 VD supply must be loaded by one or more assemblies at all times , or the other voltages will tot be correct. It connects to the motherboard connector A17J8 Pin 4.			

Table 5-2. Output Voltages

sb6130d

Figure 5-6. A15W1 Plug Detail

Check for a Faulty Assembly

This procedure checks for a faulty assembly that might be shutting down the **A15** preregulator via one of the following lines (also refer to **Figure 5-1**):

- A15W1 connecting to the A8 post regulator
- the + 5 VCPU line through the motherboard
- the +5 VDIG line through the motherboard

Do the following:

- 1. Switch off the analyzer.
- 2. Ensure that A15W1 is reconnected to A8. (Refer to Figure 5-5.)
- 3. Remove or disconnect the assemblies listed in **Table** 5-3 one at a time and in the order shown. The assemblies are sorted from most to least accessible. **Table** 5-3 also lists any associated assemblies that are supplied

by the assembly that is being removed. After each assembly is removed or disconnected switch on the analyzer and observe the red LED on A15.

Note • Always switch off the analyzer before removing or disconnecting assemblies.

- When extensive disassembly is required, refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- Refer to Chapter 13, "Replaceable Parts," to identify specific cables and assemblies that are not shown in this chapter.
- If the red LED goes out, the particular assembly (or one receiving power from it) that allows it to go out is faulty.
- □ If the red LED is still on after you have checked all of the assemblies listed in **Table** 5-3, continue to "Check the Operating Temperature".

Assembly To Remove	Removal or Disconnection Method	Other Assemblies that Receive Power from the Removed Assembly
1. A19 Graphics Processor	Remove from Card Cage	None
2. A14 Frac N Digital	Remove from Card Cage	None
3. A9 CPU	Disconnect W36 (see "Cables, Rear" in Chapter 13)	A20 Disk Drive
4. A16 Rear Panel Interface	Disconnect W27 (see "Cables, Rear" in Chapter 13)	A25 Test Set Interface A24 Transfer Switch A23 LED Front Panel
5. A2 Front Panel Interface	Disconnect W17 (see "Cables, Front" in Chapter 13)	A1 Front Panel Keyboard A18 Display

Table 5-3. Recommended Order for Removal/Disconnection

Check the Operating Temperature

The temperature sensing circuitry inside the A15 preregulator may be shutting down the supply. Make sure the temperature of the open air operating environment does not exceed 55 °C (131 °F), and that the analyzer fan is operating.

- If the fan does not seem to be operating correctly, refer to "Pan Troubleshooting" at the end of this procedure.
- If there does not appear to be a temperature problem, it is likely that A15 is faulty.

Inspect the Motherboard

If the red LED is still on after replacement or repair of A15, switch off the analyzer and inspect the motherboard for solder bridges and other noticeable defects. Use an ohmmeter to check for shorts The +5 VD, +5 VCPU, or +5 VDSENSE lines may be bad. Refer to the block diagram (Figure 5-8) at the end of this chapter and troubleshoot these suspected power supply lines on the A17 motherboard.

If the Green **LEDs** of the **A8** are not all ON

The green LEDs along the top edge of the A8 post regulator are normally on.

Flashing LEDs on A8 indicate that the shutdown circuitry on the A8 post regulator is protecting power supplies from overcurrent conditions by repeatedly shutting them down. This may be caused by supply loading on A8 or on any other assembly in the analyzer.

Remove A8, Maintain A15W1 Cable Connection

- 1. Switch off the analyzer.
- 2. Remove A8 from its motherboard connector, but keep the A15W1 cable connected to A8.
- 3. Short A8TP2 (AGND) (see Figure 5-3) to chassis ground with a clip lead.
- 4. Switch on the analyzer and observe the green LEDs on A8.
 - □ If any green LEDs other than +5 VD are still off or flashing, continue to "Check the **A8 Fuses** and Voltages".
 - If all LEDs are now on steadily except for the +5 VD LED, the A15 preregulator and A8 post regulator are working properly and the trouble is excessive loading somewhere after the motherboard connections at A8. Continue to "Remove the Assemblies".

Check the A8 Fuses and Voltages

Check the fuses along the top edge of **A8**. If any **A8** fuse has burned out, replace it. If it burns out again when power is applied to the analyzer, **A8** or **A15** is faulty. Determine which assembly has failed as follows.

- 1. Remove the A15W1 cable at A8. (See Figure 5-5.)
- 2. Measure the voltages at **A15W1P1** (see F'igure 5-6) with a voltmeter having a small probe.
- 3. Compare the measured voltages with those in Table 5-2.

 \square If the voltages are within tolerance, replace A8.

• If the voltages are not within tolerance, replace A15.

If the green LEDs are now on, the A15 preregulator and A8 post regulator are working properly and the trouble is excessive loading somewhere after the motherboard connections at A8. Continue to "Remove the Assemblies".

Remove the Assemblies

- 1. Switch off the analyzer.
- 2. Install A8. Remove the jumper from A8TP2 (AGND) to chassis ground.
- 3. Remove or disconnect all the assemblies listed below. (See Figure 5-5.) Always switch off the analyzer before removing or disconnecting an assembly.

A10 digital IF All phase lock A12 reference A13 fractional-N analog A14 fractional-N digital A19 graphics processor

- 4. Switch on the analyzer and observe the green LEDs on A8.
 - □ If any of the green **LEDs** are off or flashing, it is not likely that any of the assemblies listed above is causing the problem. Continue to "Briefly Disable the Shutdown Circuitry".
 - □ If **all** green **LEDs** are now on, one or more of the above assemblies may be faulty. Continue to next step.
- **5.** Switch off the analyzer.
- 6. Reinstall each assembly one at a time. Switch on the analyzer after each assembly is **installed**. The assembly that causes the green **LEDs** to go off or flash could be faulty.
- Note It is possible, however, that this condition is caused by the **A8** post regulator not supplying enough current. To check this, reinstall the assemblies in a different order to change the loading. If the same assembly appears to be faulty, replace that assembly. If a different assembly appears faulty, **A8** is most likely faulty (unless both of the other assemblies are faulty).

Briefly Disable the Shutdown Circuitry

In this step, you shutdown the protective circuitry for a short time, and the supplies are forced on (including shorted supplies) with a 100% duty cycle.

Caution Damage to components or to circuit traces may occur if **A8TP4** (SDIS) is shorted to chassis ground for more than a few seconds **while** supplies are shorted.

- 1. Connect A8TP4 (SDIS) to chassis ground with a jumper wire.
- 2. Switch on the analyzer and note the **signal** mnemonics and test points of any **LEDs** that are **off. Immediately** *remove the jumper wire.*
- 3. Refer to the block diagram (Figure 5-8) at the end of this chapter and do the following:
 - Note the mnemonics of any additional signals that may connect to any **A8** test point that showed a **fault** in the previous step.
 - Cross reference all assemblies that use the power supplies whose A8 LEDs went out when A8TP4 (SDIS) was connected to chassis ground.

- Make a list of these assemblies.
- Delete the following assemblies from your list as they have already been verified earlier in this section.

A10 digital IF All phase lock A12 reference A13 fractional-N analog A14 fractional-N digital A19 graphics processor

- 4. Switch off the analyzer.
- 5. Of those assemblies that are left on the list, remove or disconnect them from the analyzer one at a time. Table 5-4 shows the best order in which to remove them, sorting them from most to least accessible. Table 5-4 also lists any associated assemblies that are supplied by the assembly that is being removed. After each assembly is removed or disconnected, switch on the analyzer and observe the LEDs.

Note	 Always switch off the analyzer before removing or disconnecting assemblies.
	■ When extensive disassembly is required, refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
	■ Refer to Chapter 13, "Replaceable Parts", to identify specific cables and assemblies that are not shown in this chapter.

- If all the **LEDs** light, the assembly (or one receiving power from it) that allows them to light is faulty.
- If the LEDs are still not on steadily, continue to "Inspect the Motherboard".

Assembly To Remove	Removal or Disconnection Method	Other Assemblies that Receive Power from the Removed Assembly
1. A3 Source	Remove from Card Cage	None
2. A7 Pulse Generator	Remove from Card Cage	None
3. A4 R Sampler	Remove from Card Cage	None
4. A5 A Sampler	Remove from Card Cage	None
6. A6 B Sampler	F&move from Card Cage	None
6. A9 CPU	Disconnect W35 and W36	A20 Disk Drive
7. A2 Front Panel Interface	Disconnect W17	Al Front Panel Keyboard
8. A16 Rear Panel Interface	Disconnect W27	A25 Test Set Interface A24 Transfer Switch A23 LED Front Panel

 Table 5-4. Recommended Order for Removal/Disconnection

Inspect the Motherboard

Inspect the A17 motherboard for solder bridges and shorted traces. In particular, inspect the traces that carry the supplies whose LEDs faulted when A8TP4 (SDIS) was grounded earlier.

Error Messages

Three error messages are associated with the power supplies functional group. They are shown here.

POWER SUPPLY SHUT DOWN!

One or more supplies on the A8 post regulator assembly is shut down due to one of the following conditions: overcurrent, overvoltage, or undervoltage. Refer to "If the Red LED of the A15 Is ON" earlier in this procedure.

■ POWERSUPPLYHOT

The temperature sensors on the A8 post regulator assembly detect an overtemperature condition. The regulated power supplies on A8 have been shut down.

Check the temperature of the operating environment; it should not be greater than + 55 °C (131 °F). The fan should be operating and there should be at least 15 cm (6 in) spacing behind and all around the analyzer to allow for proper ventilation.

PROBE POWERSHUT DOWN!

The front panel RF probe biasing supplies are shut down due to excessive current draw. These supplies are + 15 VPP and -12.6 VPP, both supplied by the **A8** post regulator. + 15 VPP is derived from the + 15 V supply. -12.6 VPP is derived from the -12.6 V supply.

Refer to Figure 5-7 and carefully measure the power supply voltages at the front panel RF probe connectors.

Figure 5-7. Front Panel Probe Power Connector Voltages

- □ If the correct voltages are present, troubleshoot the probe.
- □ If the voltages are not present, check the + 15 V and -12.6 V green LEDs on A8.
 - If the LEDs are on, there is an open between the A8 assembly and the front panel probe power connectors, Put A8 onto an extender board and measure the voltages at the following pins:

A8P2 pins 6 and 36	-12.6 volts
A8P2 pins 4 and 34	+ 15 volts

• If the LEDs are off, continue with "Check the Fuses and Isolate A8".

Check the Fuses and Isolate A8

Check the fuses associated with each of these supplies near the A8 test points. If these fuses keep burning out, a short exists. Try isolating A8 by removing it from the motherboard connector, but keeping the cable A15W1 connected to A8J2. Connect a jumper wire from A8TP2 to chassis ground. If either the + 15 V or -12.6 V fuse blows, or the associated green LEDs do not light, replace A8.

If the + 15 V and -12.6 V green LEDs light, troubleshoot for a short between the motherboard connector pins XA8P2 pins 6 and 36 (-12.6 V) and the front panel probe power connectors. Also check between motherboard connector pins XA8P2 pins 4 and 34 (+ 15 V) and the front panel probe power connectors.

Fan Troubleshooting

Fan Speeds

The fan speed varies depending upon temperature. It is normal for the fan to be at high speed when the analyzer is just switched on, and then change to low speed when the analyzer is cooled.

Check the Fan Voltages

If the fan is dead, refer to the **A8** post regulator block diagram (**Figure** 5-8) at the end of this chapter. The fan is driven by the + 18 V and -18 V supplies coming from the **A15** preregulator. Neither of these supplies is fused.

The -18 V supply is regulated on A8 in the fan drive block, and remains constant at approximately -14 volts It connects to the A17 motherboard via pin 32 of the A8P1 connector.

The + 18 V supply is regulated on **A8** but changes the voltage to the fan, depending on **airflow** and temperature information. Its voltage ranges from approximately -1.0 volts to + 14.7 volts, and connects to the **A17** motherboard via pin 31 of the **A8P1** connector.

Measure the voltages of these supplies **while** using an extender board to allow access to the PC board connector, **A8P1**.

Short A8TP3 to Ground

If there is no voltage at **A8P1** pins 31 and 32, switch off the analyzer. Remove **A8** from its motherboard connector (or extender board) but keep the cable **A15W1** connected to **A8**. (See **Figure** 5-5.) Connect a jumper wire between **A8TP3** and chassis ground. Switch on the analyzer.

- □ If **all** the green **LEDs** on the top edge of **A8** light (except + 5 VD), replace the fan.
- □ If other green **LEDs** on **A8** do not light, refer to "If the Green **LEDs** of the **A8** are not all ON" **earlier** in this procedure.

Intermittent Problems

PRESET states that appear spontaneously (without pressing **Preset**) typically signal a power supply or **A9** CPU problem. Since the **A9** CPU assembly is the easiest to substitute, do so. If the problem ceases, replace the **A9**. If the problem continues, replace the **A15** preregulator assembly.

www.valuetronics.com

Figure 5-8. Power Supply Block Diagram

Digital Control Troubleshooting

Use this procedure only if you have read Chapter 4, "Start Trouble shooting Here. " $\hfill \label{eq:chapter}$

The digital control group assemblies consist of the following:

- CPU
 - □ **A**9
- Display
 - a A2, A18, A19, A27
- Front Panel
 - □ Al, **A**2
- Digital IF
 - □ **A10**
- Rear Panel Interface

□ A16

Begin with "CPU Troubleshooting," then proceed to the assembly that you suspect has a problem. If you suspect an HP-IB interface problem, refer to "HP-IB Failures," at the end of this chapter.
Digital Control Group Block Diagram

sg6107e

Figure 6-1. Digital Control Group Block Diagram

Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP $8753\mathrm{E}$ network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants "
- 5. Perform the necessary performance tests. Refer to Chapter 2, "System Verification and Performance Tests."

CPU Troubleshooting (A9)

A9 CC Switch Positions

The A9 CC switch must be in the NORMAL position for these procedures. This is the position for normal operating conditions. To move the switch to the NORMAL position, do the following:

- 1. Remove the power line cord from the analyzer.
- 2. Set the analyzer on its side.
- 3. Remove the two comer bumpers from the bottom of the instrument with a T-15 TORX screwdriver.
- 4. Loosen the captive screw on the bottom cover's back edge.
- 5. Slide the cover toward the rear of the instrument.
- 6. Move the switch to the NORMAL position as shown in Figure 6-2.
- 7. Replace the bottom cover and power cord.

Figure 6-2. Switch Positions on the **A9** CPU

Checking A9 CPU Red LED Patterns

The **A9** CPU has five red **LEDs** that can be viewed through a small opening in the rear panel of the analyzer. (See Figure 6-3.) Four **LEDs** are easily viewable. The fifth LED must be viewed by looking to the left at an angle.

1. Cycle the power while observing five red **LEDs**

Cycle the power on the analyzer and observe the five red LEDs. After an initial pattern, the five red LEDs on the A9 CPU board should remain off.

- If the **LEDs** remained off, then proceed to the assembly that you suspect has a problem.
- If the **LEDs** did not remain off, switch off the power and remove the bottom cover for further troubleshooting.

sg651e

Figure 6-3. CPU LED Window on Rear Panel

2. Cycle the power while observing **all** eight red **LEDs**

With the analyzer positioned bottom up, cycle the power and observe the eight red **LEDs** while looking from the front of the instrument.

Note	If firmware did not load, a red LED on the CPU board will be
	flashing. Refer to "Loading Firmware" in Chapter 3.

3. Evaluate results

 If either of the following LED patterns remain, go to "Display Troubleshooting."

•	•	٠	0	٠	٠	•	0
•	٠	•	Ô	٠	٠	Ō	•
(fro	ont o	of in	stru	ımei	nt ∦)	

• If any other LED patterns remain, replace the **A9** CPU after verifying the power supply.

Display Troubleshooting (A2, A18, A19, A27)

This section contains the following information:

- Evaluating your Display
- Troubleshooting a White Display
- Troubleshooting a Black Display
- Troubleshooting a Display with Color Problems

Evaluating your Display

Switch the analyzer off, and then on. The display should be bright with the annotation legible and intelligible. There are four criteria against which your display is measured:

- Background Lamp Intensity
- Green, Red or Blue Stuck Pixels
- Dark Stuck Pixels
- Newtons Rings

Evaluate the display as follows:

- If either the A18 LCD, A19 GSP, A9 CPU or A27 backlight inverter assemblies are replaced, perform a visual inspection of the display.
- If it appears that there is a problem with the display, refer to the troubleshooting information that follows
- If the new display appears dim or doesn't light, see "Backlight Intensity Check, " next.

Backlight Intensity Check

Required Equipment and Tools

Photometer	Tektronix J16
Probe	 Tektronix J6503
LightOccluder	Tektronix 016-0305-00
Antistatic Wrist Strap	HP P/N 9300-1367
Antistatic Wrist Strap Cord	HP P/N 9300-0980
Static-control Table Mat and Earth Ground Wire	HP P/N 9300-0797

Analyzer warmup time: 30 minutes. Photometer warm-up time: 30 minutes.

Note This procedure should be performed with a photometer and only by qualified personnel.

- 1. Press Display MORE ADJUST DISPLAY INTENSITY (100 x1), to set the display intensity at 100%.
- 2. Press <u>Storem</u> SERVICE MENU TESTS 62 x1 EXECUTE TEST CONTINUE set a white screen test pattern on the display.
- 3. Set the photometer probe to NORMAL. Press **POWER** on the photometer to switch it on and allow 30 minutes of warm-up time. Zero the photometer according to the manufacturer's instructions
- 4. Center the photometer on the analyzer display as shown in Figure 6-4.

Figure 6-4. Backlight Intensity Check Setup

Note The intensity levels are read with a display bezel installed.

5. If the photometer registers less than 50 Nits, the display backlight lamp is bad. Refer to the "Replacement Procedures" chapter in the service manual for information on display lamp replacement.

Red, Green, or Blue Pixels Specifications

Red, green, or blue "stuck on" **pixels** may appear against a black background. To test for these dots, press (System) SERVICE MENU TESTS (70 x1) EXECUTE TEST CONTINUE

In a properly working display, the following will not occur:

- complete rows or columns of stuck pixels
- more than 5 stuck pixels (not to exceed a maximum of 2 red or blue, and 3 green)
- 2 or more consecutive stuck pixels
- stuck pixels less than 6.5 mm apart

sg632e

Dark Pixels Specifications

Dark "stuck on" pixels may appear against a white background. To test for these dots, press (System) SERVICE MENU TESTS (66) (x1) EXECUTE TEST CONTINUE.

In a properly working display, the following will not occur:

- more than 12 stuck pixels (not to exceed a maximum of 7 red, green, or blue)
- more than one occurrence of 2 consecutive stuck pixels
- stuck pixels less than 6.5 mm apart

Newton's Rings

To check for the patterns known as Newton's Rings, change the display to white by pressing the following keys:

System SERVICE MENU TESTS 66 x1 EXECUTE TEST CONTINUE

Figure 6-5 illustrates acceptable and non-acceptable examples of Newtons Rings

sb6123d

Figure 6-5. Newtons Rings

Troubleshooting a White Display

If the display is white, the **A27** back light inverter is functioning properly. Connect a VGA monitor to the analyzer.

- If the image on the external monitor is normal, then suspect A2, A18, or the front panel cabling.
- If the image on the external monitor is bad, suspect the A19 GSP or cable W20 (CPU to motherboard).

Troubleshooting a Black Display

- 1. Remove the front panel with the exception of leaving cable $W17~(A2~\mbox{to}~motherboard)$ connected.
- 2. Press (Preset) while checking to see if there is a flash of light.
 - If the light does not flash, suspect the front panel cabling, the display lamp, or the **A27** inverter.

Troubleshooting a Display with Color Problems

- 1. Press Display ADJUST DISPLAY DEFAULT COLORS. If this does not correct the color problems, continue with the next step.
- 2. Run display service test 74 as described in Chapter 10. Confirm that there are four intensities for each color.
 - If the test passes, then continue.
 - If the test fails, then suspect the front panel cabling, A2, A19, or A18.
- 3. Connect a VGA monitor to the analyzer.
 - If the image on the external monitor has the same color problems, then replace the **A19 GSP**.
 - If the image on the external monitor is acceptable, then there must be a missing color bit. Suspect the front panel cabling, A2, A19, or A18.

Front Panel Troubleshooting (Al, A2)

Check Front Panel LEDs After Preset

- 1. Press **Preset** on the analyzer.
- 2. Observe that all front panel LEDs turn on and, within five seconds after releasing Preset, all but the CH1 and Port 1 LED turns off. Refer to Figure 6-6.
 - □ If all the front panel LEDs either stay on or off, there is a control problem between A9 and A1/A2. See "Inspect Cables, " located later in this chapter.
 - If, at the end of the turn on sequence, the channel 1 LED is not on and all HP-IB status **LEDs** are not off, continue with "Identify the Stuck Key".
 - □ If you suspect that one or more **LEDs** have burned out, replace the Al keypad assembly.

Note Port 1 and port 2 LED problems may be caused by the malfunction of the A23 LED board or the A24 transfer switch.

sq644e

Identify the Stuck Key

Match the LED pattern with the patterns in **Table 6-1**. The LED pattern identifies the stuck key. **Free** the stuck key or replace the front panel part causing the problem.

Decimal		L	ED Pati	tern			Key	Front Panel Block
Number	CH1	CH2	R	L	Т	s		
0							Cal	Response
1							3	Entry
2							k/m	Entry
3							Display	Response
4				•			Avg	Response
5							2	Entry
6				•			1	Entry
7					•		softkey 3	Softkey
8							softkey 5	Softkey
9							9	Entry
10							G/n	Entry
11							Chan 1	Active Channel
12							Chan 2	Active Channel
13							8	Entry
14							7	Entry
15							softkey 1	Softkey
16							Stop	Stimulus
17							Save/Recall)	Instrument State
18							Seq	Instrument State
19							Menu	Stimulus
20							Start	Stimulus
21							Copy	Instrument State
22							System	Instrument State
23							softkey 6	Softkey
24		•					Scale Ref	Response
25							6	Entry
							-	

Table 6-1. Front Panel Key Codes

Decimal		L	ED Patt	ern			Key	Front Panel Block
Number	CH1	CH2	R	L	Т	S		
26		٠			٠		(M/μ)	Entry
27		•			•	•	Meas	Response
28		•	•				(Format)	Response
29						٠	б	Entry
30					٠		4	Entry
31				•	•	•	Boftkey 2	Softkey
32	•						Span	Stimulus
33	•					•	æ	Entry
34	•				đ		ENTRY OFF	Entry
35	•				ð	•	Center	Stimulus
36	•			٠			softkey 8	Softkey
37	•			•		•	Ð	Entry
38	•			٠	ð		Local	Instrument State
39	•			٠	٠		softkey 7	Softkey
40-47	lot used							
48		•					Ē	Entry
49		٠				•	Ð	Entry
50		•			ð		$\mathbf{x1}$	Entry
51		•			đ	٠	Marker	Response
52		٠		•			Marker Fctn	Response
53		•		٠		•		Entry
54		•		٠	đ		0	Entry
55		•		•	đ	•	softkey 4	Softkey

 Table 6-1. Front Panel Key Codes (continued)

Inspect Cables

Remove the front panel assembly and visually inspect the ribbon cable that connects the front panel to the motherboard. Also, inspect the interconnecting ribbon cable between Al and A2. Make sure the cables are properly connected. Replace any bad cables.

Test Using a Controller

If a controller is available, write a simple command to the analyzer. If the analyzer successfully executes the command, the problem is either the A2 front panel interface or W17 (A2 to motherboard ribbon cable) is faulty.

Run the Internal Diagnostic Tests

The analyzer incorporates 20 internal diagnostic tests. Most tests can be run as part of one or both major test sequences: **all** internal (test 0) and preset (test 1).

- 1. Press System SERVICE MENU TESTS () (X1) EXECUTE TEST to perform all INT tests.
- 2. Then press 1 ×1 to see the results of the preset test. If either sequence **fails**, press the 1 keys to **find** the **first** occurrence of a FAIL message for tests 2 through 20. See **Table** 6-2 for further troubleshooting information.

Table 6-2. Internal Diagnostic **Test** with Commentary

Test	Sequence	Probable Failed Assemblies[†], Comments and Troubleshooting Hints			
0 All Int		-: Executestests 3-11, 13-16, 20 .			
1 Preset		-: Executes tests 2-11, 14-16. Runs at power-on or preset.			
2 ROM	P,AI	A9: Repeats on fail; refer to "CPU Troubleshooting (A9) " in this chapter to replace ROM or A9.			
3 CMOS RAM	P,AI	A9: Replace A9.			
4 Main DRAM	P,AI	A9: Repeats on fail; replace A9.			
5 DSP Wr/Rd	P,AI	A9: Replace A9.			
6 DSP RAM	P,AI	A9: Replace A9.			
7 DSP ALU	P,AI	A9: Replace A9.			
8 DSP Intrpt	P,AI	A9/A10: Remove A10, rerun test. If fail, replace A9. If paw, replace A10			
9 DIF Control	P,AI	A9/A10: Most likely A9 assembly.			
10 DIF Counter	P,AI	A10/A9/A12: Check analog bus node 17 for 1 MHz. If correct, A12 is verified;suspect A10.			
11 DSP Control	P,AI	A10/A9: Most likely A10.			
12 Fr Pan Wr/Rd		A2/A1/A9: Run test 23. If fail, replace A2. If pass, problem is on bus between A9 and A2 or on A9 assembly.			
13 Rear Panel	AI	A16/A9: Disconnect A16, and check A9J2 pin 48 for 4 MHz clock signal. If OK, replace A16. If not, replace A9.			
14 Post-reg	P,AI	A15/A8/Destination assembly: See Chapter 5, 'Power Supply Troubleshooting."			
15 Frac-N Cont	P,AI	A14: Replace A14.			
16 Sweep Trig	P,AI	A14,A10:Most likely A14.			
17 ADC Lin		A10: Replace A10.			
18 ADC Ofs		A10: Replace A10.			
19 ABUS Test		A10: Replace A10.			
20 FN count	AI	A14/A13/A10: Most likely A14 or A13 , as previous tests check A10 . See Chapter 7, "Source Troubleshooting."			
• P - part of PRESET	sequence; AI -	part of ALL INTERNAL sequence.			
t in decreasing order of	of probability.				

If the Fault Is Intermittent

Repeat Test Function

If the failure is intermittent, do the following:

- 1. Press <u>System</u> <u>SERVICE MENU</u> <u>TEST OPTIONS</u> <u>REPEAT ON</u> to turn on the repeat function.
- 2. Then press RETURN TESTS.
- ³. Select the test desired and press EXECUTE TEST.
- 4. Press any key to stop the function. The test repeat function is explained in Chapter 10, "Service Key Menus and Error Messages "

HP-IB Failures

If you have performed "Step 3. Troubleshooting **HP-IB** Systems" in Chapter 4, "Start Troubleshooting Here," and you suspect there is an HP-IB problem in the analyzer, perform the following test. It checks the internal communication path between the **A9** CPU and the **A16** rear panel. It does not check the HP-IB paths external to the instrument.

Press System SERVICE MENU TESTS 13 X1 EXECUTE TEST.

- If the analyzer fails the test, the problem is likely to be the A16 rear panel.
- □ If the **analyzer** passes the test, it indicates that the **A9** CPU can communicate with the **A16** rear panel with a 50% confidence level. There is a good chance that the **A16** rear panel is working. This is because internal bus lines have been tested between the **A9** CPU and **A16**, and HP-IB signal paths are not checked external to the analyzer.

Source Troubleshooting

Use this procedure only if you have read Chapter 4, "Start Troubleshooting Here." This chapter is divided into two troubleshooting procedures for the following problems:

- Incorrect power levels: Perform the "Power" troubleshooting checks.
- Phase lock error: Perform the "Phase Lock Error" troubleshooting checks.

The source group assemblies consist of the following:

- A3 source
- A4 sampler/mixer
- A7 pulse generator
- A11 phase lock
- A12 reference
- A13 fractional-N (analog)
- A14 fractional-N (digital)

Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP $8753\mathrm{E}$ network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants. "
- 5. Perform the necessary performance tests Refer to Chapter 2, "System **Verification** and Performance **Tests."**

Before You Start Troubleshooting

Make sure **all** of the assemblies are **firmly** seated. Also make sure that input R has a signal of at least -35 **dBm** (about 0.01 Vp-p into 50 ohms) at all times to maintain phase lock.

Power

If the analyzer output power levels are incorrect but no phase lock error is present, perform the following checks in the order given:

For the following checks, make sure that the A9 switch is in the Alter position.

1. Source Default Correction Constants (Test 44)

To run this test, press Preset System SERVICE MENU TESTS 44 X1

EXECUTE TEST. When complete, DONE should appear on the analyzer display. Use a power meter to verify that source power can be controlled and that the power level is approximately correct. If the source passes these checks, proceed with step 2. However, if FAIL appears on the analyzer display, or if the analyzer fails the checks, replace the source.

2. RF Output Power Correction Constants (Test 47)

Follow the instructions for this procedure given in Chapter 3, "Adjustments and Correction Constants." The procedure is complete when DONE appears on the analyzer display. Use a power meter to verify that power levels are now correct. If power levels are not correct, or if the analyzer fails the routine, proceed with step 3.

3. Sampler Magnitude and Phase Correction Constants (Test 53)

Follow the instructions for this procedure given in Chapter 3, "Adjustments and Correction Constants." The procedure is complete when DONE appears on the analyzer display. Next, repeat step 2. If the analyzer fails the routine in step 2, replace the source.

If the analyzer fails the routine in step 3, replace the source.

Phase Lock Error

sg652e

Figure 7-1. Basic Phase Lock Error Troubleshooting Equipment Setup

Troubleshooting tools include the assembly location diagram and phase lock diagnostic tools. The assembly location diagram is on the underside of the instrument top cover. The diagram shows major assembly locations and RF cable connections. The phase lock diagnostic tools are explained in the "Source Group Troubleshooting Appendix" and should be used to troubleshoot phase lock problems The equipment setup shown in Figure 7-1 can be used throughout this chapter.

Phase Lock Loop Error Message Check

Phase lock error messages may appear as a result of incorrect pretune correction constants. To check this possibility, perform the pretune correction constants routine.

The four phase lock error messages, listed below, are described in the "Source Group Troubleshooting Appendix" at the end of this chapter.

- NO **IF FOUND:** CHECK R INPUT LEVEL
- NO PHASE LOCK: CHECK R INPUT LEVEL
- PHASE LOCK CAL FAILED

- PHASE LOCK LOST
- 1. Make sure the A9 CC switch is in the ALTER position:
 - a. Remove the power line cord from the analyzer.
 - b. Set the analyzer on its side.
 - c. Remove the two corner bumpers from the bottom of the instrument with a $T\text{-}15\,\text{TORX}$ screwdriver.
 - d. Loosen the captive screw on the bottom cover's back edge.
 - e. Slide the cover toward the rear of the instrument.
 - f. Move the jumper to the ALT position as shown in Figure 7-2.
 - g. Replace the bottom cover, comer bumpers, and power cord.

sg6106e

Figure 7-2. Jumper Positions on the A9 CPU

2. Switch on the analyzer and press System SERVICE MENU TESTS (46 ∝1) EXECUTE TEST to generate new analog bus correction constants. Then press System SERVICE MENU TESTS (45) ∝1 EXECUTE TEST to generate default pretune correction constants

Press <u>System</u> SERVICE MENU TESTS (48) ×1 EXECUTE TEST YES to generate new pretune correction constants.

- 3. Press (Preset) and observe the analyzer display:
 - a. No error message: restore the **A9** CC jumper to the NRM position. Then refer to "Post-Repair Procedures" in Chapter 14 to verify operation.
 - b. Error message visible: continue with "A4 Sampler/Mixer Check".

A4 Sampler/Mixer Check

The A4, A5, and A6 (R, A and B) sampler/mixers are similar in operation. Any sampler can be used to phase lock the source. Ib eliminate the possibility of a faulty R sampler, follow this procedure.

1. Remove the **W8** cable (Al **1J1** to **A4**) from the R-channel sampler (**A4**) and connect it to either the A-channel sampler (**A5**) or the B-channel sampler (**A6**). Refer to **Figure** 7-3.

Figure 7-3. Sampler/Mixer to Phase Lock Cable Connection Diagram

2. If you connected W8 to:

	A5 ,	press	(Meas)	Refl FWD: S11 (A/R)
U	A 5,	press	(Meas)	Retl FWD: S11 (A/R)

- □ A6, press Meas Refl REV: S22 (B/R)
- 3. Ignore the displayed trace, but check for phase lock error messages. If the phase lock problem persists, the R-channel sampler is *not* the problem.

A3 Source and A11 Phase Lock Check

This procedure checks the source and part of the phase lock assembly. It opens the phase-locked loop and exercises the source by varying the source output frequency with the A11 pretune DAC.

Note	If the analyzer failed internal test 48, default pretune correction
	constants were stored which may result in a constant offset of
	several MHz. Regardless, continue with this procedure.

Note Use a spectrum analyzer for problems above 100 MHz.

- 1. Connect the **oscilloscope** or spectrum analyzer as shown in Figure 7-1. (Set the oscilloscope input impedance to 50 ohms)
- 2. Press <u>Preset</u> <u>System</u> <u>SERVICE MENU</u> <u>SERVICE MODES</u> <u>SRC ADJUST MENU</u> <u>SRC TUNE ON</u> <u>SRC TUNE FREQ</u> to activate the source tune (SRC TUNE) service mode.
- 3. Use the front panel knob or front panel keys to set the pretune frequency to 300 kHz, 30 MHz, and 40 MHz. Verify the signal frequency on the oscilloscope.

Note In SRC TUNE mode, the source output frequency changes in 1 to 2 MHz increments and **should** be 1 to 6 MHz above the indicated output frequency.

4. Check for the frequencies indicated by Table 7-1.

Table 7-1.	Output	Frequency	in	SRC Tune	Mode
-------------------	--------	-----------	----	----------	------

Setting	Observedrequency
300 kHz	1.3 to 6.3 MHz
30 MHz	31 to 36 MHz
40 MHz	41 to 46 MHz

- 5. The signal observed on an **oscilloscope** should be as **solid** as the **signal** in **Figure**7-4.
- 7-8 Source Troubleshooting

Figure 7-4. Waveform Integrity in SRC Tune Mode

6. The signal observed on the spectrum analyzer will appear jittery as in Figure 7-5 (B), not solid as in **Figure** 7-5 (A). This is because in SRC TUNE mode the output is not phase locked.

Figure 7-5. Phase Locked Output Compared to Open Loop Output in **SRC** Tune Mode

- 7. Press Menu POWER to vary the power and check for corresponding level changes on the test instrument. (A power change of 20 dB will change the voltage observed on the oscilloscope by a factor of ten.)
- 8. Note the results of the frequency and power changes:
 - □ If the frequency and power output changes are correct, skip ahead to "A12 Reference Check" located in this chapter.
 - □ If the frequency changes are not correct, continue with "YO Coil Drive Check with Analog Bus".
 - \Box If the power output changes are not correct, check analog bus node 3.
 - a. Press System SERVICE MENU ANALOG BUS ON Meas ANALOG IN Aux Input Format MORE REAL (3) ×1.
 - b. Press (Marker) (2) G/n). The marker should read approximately 434 mU.
 - c. Press Marker 4 G/n. The marker should read approximately 646 mU.

YO Coil Drive Check with Analog Bus

- **Note** If the analog bus is not functional, perform the "YO Drive Coil Check with Oscilloscope" test.
- 1. Press (Preset System) SERVICE MENU ANALOG BUS ON SERVICE MODES SOURCE PLL OFF (Meas) ANALOG IN Aux Input.
- 2. Then press 16 (X1) Format MORE REAL Scale Ref AUTOSCALE. This keystroke sequence lets you check the pretune DAC and the A11 output to the YO coil drive by monitoring the 1 V/GHz signal at analog bus node 16.
- 3. Compare the waveform to Figure 7-6. If the waveform is incorrect, the A11 phase lock assembly is faulty.

Figure 7-6. 1 V/GHz at Analog Bus Node 16 with Source PLL Off.

YO Coil Drive Check with Oscilloscope

- Note Use the large extender board for easy access to the voltage points. The extender board is included with the HP 8753 Tool Kit. See Chapter 13, "Replaceable **Parts**", for part numbers and ordering information.
- 1. Connect **oscilloscope** probes to **A11P1-1** and **A11P1-2**. The YO **coil** drive signal is actually two signals whose voltage difference drives the coil.
- 2. Press (Preset) (System) SERVICE MENU SERVICE MODES SOURCE PLL OFF to operate the analyzer in a swept open loop mode.
- 3. Monitor the two YO coil drive lines In source tune mode the voltage difference should vary from approximately 3.5 to 5.0 volts as shown in Figure 7-7.
 - □ If the voltages are not correct, replace the faulty All assembly.
 - □ If the output **signals** from the All assembly are correct, replace the faulty **A3** source assembly.
 - □ If neither the A11, nor the A3 assembly is faulty, continue with the next check.

sg606s

Figure 7-7. YO- and YO + Coil Drive Voltage Differences with SOURCE **PLL** OFF

A12 Reference Check

The signals are evaluated with **pass/fail** checks. The most efficient way to check the **A12** frequency reference signals is to use the analog bus **while** referring to **Table** 7-2.

Alternatively, you can use an **oscilloscope, while** referring to **Table** 7-3 and **Figure** 7-8 through **Figure** 7-14. If any of the observed **signals** differs from the **figures**, there is a 90% probability that the **A12** assembly is faulty. Either consider the **A12** assembly defective or perform the ***A12** Digital Control Signals Check".

Both of these procedures are described ahead.

Analog Bus Method

- 1. Press (Preset) (System) SERVICE MENU ANALOG BUS ON (Meas) ANALOG IN Aux Input ANALOG BUS to switch on the analog bus and its counter.
- 2. Press (21) (x1) to count the frequency of the 100 kHz signal.
- 3. Press Menu CW FREQ 500 k/m. Verify that the counter reading (displayed on the analyzer next to cnt :) matches the corresponding 100 kHz value for the CW frequency. (Refer to Table 7-2.)
- 4. Verify the remaining CW frequencies, comparing the counter reading with the value in **Table** 7-2:
 - Press 2 Μ/μ.
 - Press 50 (M/µ).

Table 7-2. Analog Bus Check of Reference Frequencies

CW Frequency	Analog Bus Node 21 100 kHz	Analog Bus Node 24 2nd LO	Analog Bus Node 25 PLREF
500 kHz	0.100 MHz	0.504 MHz	0.500 MHz
2 MHz	0.100 MHz	2.007 MHz	2.000 MHz
50 MHz	0.100 MHz	0.996 MHz	1.000 MHz

NOTE: The counter should indicate the frequencies listed in this table to within $\pm 0.1\%$. Accuracy may vary with gate time and signal strength.

- 5. Press **24 ×1** to count the frequency of the **2nd** LO signal.
- 6. Press Menu CW FREQ (500 k/m). Verify that the counter reading matches the corresponding 2nd LO value for the CW frequency. (Refer to Table 7-2.)
- 7. Verify the remaining CW frequencies, comparing the counter reading with the value in **Table** 7-2:
 - Press 2 Μ/μ.
 - Press $(50 \text{ } \text{M}/\mu)$.
- 8. Press 25 X1 to count the frequency of the PLREF signal.
- 9. Press Menu CW FREQ 500 k/m. Verify that the counter reading matches the corresponding PLREF value for the CW frequency. (Refer to Table 7-2.)
- 10. Verify the remaining CW frequencies, comparing the counter reading with the value in **Table** 7-2:
 - Press 2 Μ/μ.
 - Press 50 Μ/μ.
- 11. Check the results.
 - If all the counter readings match the frequencies listed in Table 7-2, skip ahead to "A13/A14 Fractional-N Check".
 - □ If the counter readings are incorrect at the 500 kHz and 2 MHz settings only, go to "FN LO at A12 Check".
 - □ If **all** the counter readings are incorrect at **all** three CW frequencies, the counter may be faulty. Perform the **"Oscilloscope** Method" check of the signals described below. (If the **signals** are good, either the **A10** or **A14** assemblies could be faulty.)

Oscilloscope Method

You need not use the oscilloscope method unless the analog bus is non-functional or any of the signals fail the specifications listed in **Table** 7-2.

If the analog bus is non-functional or the previous check has revealed questionable signals, observe the signal(s) with an oscilloscope. **Table** 7-3 identifies a convenient test point and a plot for the five signals listed.

Mnemonic	Signal Description	Location	See Figure	Analyzer Setting		
FN100kHzREF	100 kHz Reference	A13TP5	Figure 7-8	any		
REF	Phase Lock Reference	A11TP9	Figure 7-9	≥16 MHz CW		
REF	Phase Lock Reference	A11TP9	Figure 7-10	5 MHz CW		
FN LO*	Fractional-N LO	A14J2	Figure 7-11	10 MHz CW		
4MHz REF	4 MHz Reference	A12TP9	Figure 7-12	any		
2ND LO+/-	Second LO	A12P1-2,4	Figure 7-13	≥16 MHz CW		
2ND Lo+/-	Second LO	A12P1-2,4	Figure 7-14	14 MHz CW		
Not an A12 signal, but required for A12 lowband operation.						

 Table 7-3.
 A12
 Reference
 Frequencies

100 kHz Pulses

The 100 kHz pulses are very narrow and typically 1.5 V in amplitude. You may have to increase the oscilloscope intensity to see these pulses. (See Figure 7-8.)

sg610s

Figure 7-8. Sharp 100 kHz Pulses at A13TP5 (any frequency)

PLREF Waveforms

REF Signal At **A11TP9.** REF is the buffered PLREF+ signal. The 1st IF is phase locked to this signal. Use an oscilloscope to observe the signal at the frequencies noted in Figure 7-9 and Figure 7-10.

High Band **REF** Signal. In high band the REF signal is a constant 1 MHz square wave as indicated by Figure 7-9.

Figure 7-9. High Band **REF** Signal (≥16 MHz CW)

Low Band REF **Signal.** In low band this signal follows the frequency of the RF output signal. Figure 7-10 illustrates a 5 MHz CW signal.

Figure 7-10. REF Signal at A11TP9 (5 MHz CW)

- □ If REF looks good, skip ahead to "4 MHz Reference Signal".
- □ If REF is bad in low band, continue with "FN LO at A12 Check".
FN LO at A12 Check

- Use an oscilloscope to observe the FN LO from A14 at the cable end of A14J2. Press (Preset) (System) SERVICE MENU SERVICE MODES
 FRACN TUNE ON to switch on the fractional-N service mode.
- 2. Use the front panel knob to vary the frequency from 30 to 60 MHz. The signal should appear similar to Figure 7-1 1. The display will indicate 10 to 60.8 MHz.
 - If the **FN LO** signal is good, the **A12** assembly is faulty.
 - If the FN LO signal is not good, skip ahead to "A13/A14 Fractional-N Check".

Figure 7-11. Typical FN LO Waveform at A12J1

4 MHz Reference Signal

This reference signal is used to control the receiver. If faulty, this signal can cause apparent source problems because the CPU uses receiver data to control the source. At A12TP9 it should appear similar to Figure 7-12.

Figure 7-12. 4 MHz Reference Signal at A12TP9 (Preset)

2ND LO Waveforms

The 2nd LO signals appear different in phase and shape at different frequencies.

90 Degree Phase Offset of **2nd** LO Signals in High Band. In high band, the **2nd** LO is 996 kHz. As indicated by Figure 7-13, the **2nd** LO actually consists of two signals 90 degrees out of phase.

Figure 7-13. 90 Degree Phase Offset of High **Band 2nd** LO Signals (≥16 MHz CW)

In-Phase **2nd** LO Signals in Low Band. The **2nd** LO signals in low band, as shown in Figure 7-14, are not phase shifted. In low band these signals track the RF output with a 4 kHz offset.

Figure 7-14. In-Phase Low Band 2nd LO Signals (14 MHz CW)

If any of the signals of Table 7-2 are incorrect, the probability is 90% that the A12 assembly is faulty. Either consider the A12 assembly faulty or perform the "A12 Digital Control Signals Check" described ahead.

A12 Digital Control Signals Check

Several digital control signals must be functional for the A12 assembly to operate properly. Check the control lines listed in Table 7-4 with the oscilloscope in the high input impedance setting.

Mnemonic	Signal Description	Location	See Figure	Analyzer Setting
L ENREF	L-Reference Enable	A12P2-6	Figure 7-15	Preset
L HB	L-High Band	A12P2-32	Figure 7-16	Preset
LLB	L-Low Band	A12P1-23	Figure 7-16	Preset

 Table 7-4.
 A12-Related
 Digital Control Signals

L ENREF Line. This is a **TTL** signal. **To** observe it, trigger on the negative edge. In preset state, the signal should show activity similar to Figure 7-15.

Figure 7-15. L ENREF Line at A12P2-16 (Preset)

L HB and L LB Lines. These complementary signals toggle when the instrument switches from low band to high band as illustrated by Figure 7-16.

Figure 7-16. Complementary L HB and L LB Signals (Preset)

If all of the digital signals appeared good, the A12 assembly is faulty

A13/A14 Fractional-N Check

Use the analog bus or an oscilloscope to check the A14 VCO's ability to sweep from 30 MHz to 60 MHz. The faster analog bus method should suffice unless problems are detected.

Fractional-N Check with Analog Bus

- 1. Press (Preset) (System) SERVICE MENU ANALOG BUS ON (Meas) ANALOG IN Aux Input FRAC N to switch on the analog bus and the fractional-N counter.
- 2. Then press (Menu) CW FREQ to set the analyzer to CW mode.
- 3. Set the instrument as indicated in **Table** 7-5 and see whether the VCO generates the frequencies listed.

Instrument Setting	Counter Reading
31 MHz	30±0.030 MHz
60.9999999 MHz	60±0.060 MHz

Table 7-5. **VCO** Range Check Frequencies

- 4. Check the counter reading at the frequencies indicated.
 - If the readings are within the limits specified, the probability is greater than 90% that the fractional-N assemblies are functional. Either skip ahead to the "A7 Pulse Generator Check" or perform the more conclusive "A14 VCO Range Check with Oscilloscope" described below.
 - If the readings fail the specified limits, perform the "A14 VCO Exercise".

A14 VCO Range Check with Oscilloscope

- 1. Remove the **W9** HI OUT cable (A14J1 to A7) from the A7 assembly and connect it to an oscilloscope set for 50 ohm input impedance. Switch on the analyzer.
- 2. Press Preset System SERVICE MENU SERVICE MODES FRACE TUNE ON to activate the FRACE TUNE service mode. See Chapter 10, "Service Key Menus and Error Messages", for more information-on the F'RACE TUNE mode.
- 3. Vary the fractional-N VCO frequency with the front panel knob and check the signal with the oscilloscope. The waveform should resemble **Figure** 7-17, Figure 7-18, and **Figure** 7-19.

If the fractional-N output signals are correct, continue source troubleshooting by skipping ahead to **"A7** Pulse Generator Check".

sg619s

Figure 7-17. 10 MHz HI OUT Waveform from A14J1

sg620s

Figure 7-18. 25 MHz HI OUT Waveform from A14J1

Figure 7-19. 60 MHz HI OUT Waveform from A14J1

A14 VCO Exercise

The nominal tuning voltage range of the VCO is + 10 to -5 volts When the analyzer is in operation, this voltage is supplied by the **A13** assembly. This procedure substitutes a power supply for the **A13** assembly to check the frequency range of the **A14** VCO.

- 1. Switch off the analyzer and remove the A13 assembly.
- 2. Put the A14 assembly on an extender board and switch on the instrument.
- 3. Prepare to monitor the VCO frequency, either by:
 - a. Activating the analog bus and setting the internal counter to the FRACN node, or
 - b. Connecting an oscilloscope to A14J2 (labeled LO OUT) and looking for waveforms similar to Figure 7-20.

Figure 7-20. LO OUT Waveform at A14J2

- 4. Vary the voltage at A14TP14 from + 10 to -5 volts either by:
 - a. Connecting an appropriate external power supply to A14TP14, or
 - b. First jumping the + 15 V internal power supply from **A8TP8** to **A14TP14** and then jumping the -5.2 V supply from **A8TP10** to **A14TP14**.
- 5. **Confirm** that the VCO frequency changes from approximately 30 MHz or less to 60 MHz or more.
- 6. If this procedure produces unexpected results, the A14 assembly is faulty.
- 7. If this procedure produces the expected results, continue with the ***A14** Divide-by-N Circuit Check".

A14 Divide-by-N Circuit Check

Note The A13 assembly should still be out of the instrument and the A14 assembly on an extender board.

- 1. Ground A14TP14 and confirm (as in the A14 VCO Exercise) that the VCO oscillates at approximately 50 to 55 MHz.
- 2. Put the analyzer in CW mode (to avoid **relock** transitions) and activate the F'RACN TUNE service mode.
- 3. Connect an oscilloscope to A14J3 and observe the output.
- 4. With the F'RACN TUNE service feature, vary the frequency from 30 MHz to $_{\rm 60.8\ MHz}$.
- 5. The period of the observed signal should vary from 5.5 μ s to 11 μ s.
 - □ If this procedure produces unexpected results, the A14 assembly is faulty.
 - □ If this procedure produces the expected results, perform the "A14-to-A13 Digital Control Signals Check.".
- 6. Remember to replace the A13 assembly.

A14-to-A13 Digital Control Signals Check.

The A14 assembly generates a TTL cycle start (CST) signal every 10 microseconds. If the VCO is oscillating and the CST signal is not detectable at A14TP3, the A14 assembly is non-functional.

Use the CST signal as an external trigger for the oscilloscope and monitor the signals in **Table** 7-6. Since these **TTL** signals are generated by **A14** to control **A13**, check them at **A13** first. Place **A13** on the large extender board. The signals should look similar to **Figure** 7-21. If these signals are good, the **A13** assembly is defective.

Mnemonic	A13 Location	A14 Location
CST	none	TP3
L FNHOLD	P2-2	P2-2
FNBLAS	P2-5	P2-5
API1	P2-32	P2-32
AP12	P2-3	P2-3
API3	P2-34	P2-34
API4	P2-4	P2-4
API5	P2-35	P2-35
NLATCH	P1-28	P1-58

Table 7-6. A14-to-A13 Digital Control Signal Locations

Figure 7-21. A14 Generated Digital Control Signals

H MB Line. This signal is active during the 16 MHz to 31 MHz sweep. The upper trace of F'igure 7-22 shows relative inactivity of this signal during preset condition. The lower trace shows its status during a 16 MHz to 31 MHz sweep with inactivity during retrace only.

Figure 7-22. H **MB Signal** at **A14P1-5** (Preset and 16 **MHz** to 31 MHz Sweep)

A7 Pulse Generator Check

The pulse generator affects phase lock in high band only. It can be checked with either a spectrum analyzer or an oscilloscope.

A7 Pulse Generator Check with Spectrum Analyzer

1. Remove the A7-to-A6 SMB cable (W7) from the A7 pulse generator assembly. Set the analyzer to generate a 16 MHz CW signal. Connect the spectrum analyzer to the A7 output connector and observe the signal. The A7 comb should resemble the spectral display in Figure 7-23.

Figure 7-23. Pulse Generator Output

2. If the analyzer malfunction relates to a particular frequency or range, look more closely at the comb tooth there. Adjust the spectrum analyzer span and bandwidth as required. Even at 3 GHz, the comb should look as clean as Figure 7-24. For Option 006 instruments at 6 GHz, the comb tooth level should be approximately -46 dBm.

Figure 7-24. High Quality Comb Tooth at 3 GHz

- 3. If the **signal** at the **A7** output is good, check the **A7-to-A4** cable.
- 4. If the signal is not as clean as **Figure** 7-24, observe the HI OUT input signal to the **A7** assembly.
 - a. On the network analyzer, press (System) SERVICE MENU SERVICE MODES PLL AUTO OFF. Otherwise do not readjust the instrument. Remove the A14-to-A7 SMB cable (W9) from the A7 pulse generator assembly (CW \approx 16 MHz).
 - b. Set the spectrum analyzer to a center frequency of 45 MHz and a span of 30 MHz. Connect it to the A14-to-A7 cable still attached to the A14 assembly. Narrow the span and bandwidth to observe the signal closely.
- 5. If the HI OUT signal is as clean as Figure 7-25, the A7 assembly is faulty.

Otherwise, check the A14-to-A7 cable or recheck the A13/A14 fractional-N as described ahead.

Rechecking the A13/A14 Fractional-N

Some phase lock problems may result from phase noise problems in the fractional-N loop. lb troubleshoot this unusual **failure** mode, do the following:

1. Set the network analyzer at 60 MHz in the FRACN TUNE mode.

2. Use a spectrum analyzer, to **examine** the HI OUT signal from the **A14** assembly. The signal should appear as clean as Figure 7-25. The comb shape may vary from pulse generator to pulse generator.

Figure 7-25. Stable HI OUT Signal in FRACN TUNE Mode

A7 Pulse Generator Check with Oscilloscope

Perform this check if a spectrum analyzer is not available.

- 1. Remove the A4-to-A11 SMB cable from the A4 (R) sampler/mixer output. Connect the oscilloscope to the A4 output (1st IF).
- 2. Activate the FRACN TUNE service mode and tune the fractional-N to 50 MHz. Press System SERVICE MENU SERVICE MODES FRACN TUNE ON (50) (M/µ).
- 3. Activate the SRC TUNE service mode of the analyzer and tune the source to 50 MHz. Press SRC TUNE ON SRC TUNE FREQ (50 M/μ).
- 4. Set the SRC TUNE frequency to those listed in Table 7-7 and observe the 1st IF waveforms. They should appear similar to Figure 7-26.
 - □ If the signals observed are proper, continue with "All Phase Lock Check".
 - □ If the signals observed are questionable, use a spectrum analyzer to perform the preceding **"A7 Pulse** Generator Check with Spectrum Analyzer".

Table 7-7. 1st IF Waveform Settings

SEC TUNE	FRACN	Harmonic	lst IF
50 MHz	50 MHz	1	1 to 6 MHz
250 MHz	50 MHz	5	1 to 6 MHz
2550 MHz	50 MHz	51	1 to 6 MHz

sg627s

Figure 7-26. Typical 1st IF Waveform in FRACN TUNE/SRC TUNE Mode

All Phase Lock Check

At this point, the All phase lock assembly appears to be faulty (its inputs should have been verified already). Nevertheless, you may elect to use the phase lock diagnostic routines or check the relevant signals at the assembly itself for confirmation.

Note If external source mode is the only operating mode with phase lock problems, replace the A11 phase lock assembly.

Phase Lock Check with PLL **DIAG**

Refer to "Phase Lock Diagnostic **Tools**" in "Source Group Troubleshooting Appendix" at the end of this chapter for an explanation of the error messages and the diagnostic routines. Follow the steps there to determine in which state the phase lock is lost.

- If NO IF FOUND is displayed, confirm that the analog bus is functional and perform the "Source Pretune Correction Constants (Test 48)" as outlined in Chapter 3, "Adjustments and Correction Constants."
- □ If phase lock is lost in the ACQUIRE state, the A11 assembly is faulty
- □ If phase lock is lost in the TRACK state, troubleshoot source phase lock loop components other than the A11 assembly.

Phase Lock Check by Signal

To confirm that the A11 assembly is receiving the signals required for its proper operation, perform the following steps.

Examination

- 1. Place the A11 assembly on the large extender board.
- 2. Switch on the analyzer and press Preset.
- 3. Check for the signals listed in **Table** 7-8.

Mnemonic	I/O	Access	See Figure	Notes
FM COIL -	0	A11P1-3,33	Figure 7-27	Aids YO COIL in setting YIG. Press $Preset$ Menu NUMBER OF POINTS 3×1 to observe this signal.
REF	Ι	A11TP9	Figure 7-9, Figure 7-10	Observe both low band and high band CW frequencies.
YO COIL +	0	A11P1-2,32	Figure 7-7	Use SOURCE PLL OFF.
YO COIL -	0	A11P1-1,31	Figure 7-7	
1ST IF	Ι	A11 PL IF IN	Figure 7-26	Check for 1 MHz with tee a All jack (not at cable end) ir high band.

 Table 7-8. All Input Signals

Figure 7-27. FM Coil - Plot with 3 Point Sweep

- 4. If any of the input signal is not proper, refer to the overall block diagram in Chapter 4, "Start Troubleshooting Here," as an aid to trouble shooting the problem to its source.
- 5. If any of the output signals is not proper, the A11 assembly is faulty.

Source Group Troubleshooting Appendix

Troubleshooting Source Problems with the Analog Bus

The analog bus can perform a variety of fast checks, However, it too is subject to failure and thus should be tested prior to use. You should have done this in Chapter 4, "Start Troubleshooting Here."

lb use the analog bus to check **any** one of the nodes, **press Preset System SERVICE MENU ANALOG BUS_IN**. Then **press Meas ANALOG IN Aux Input** and enter the analog bus node number followed by **x1**. Refer to "Analog Bus" in Chapter 10, "Service Key Menus and Error Messages", for additional information.

Phase Lock Diagnostic Tools

- error messages
- diagnostic routines

Phase Lock Error Messages

All phase lock error messages can result from improper front panel connections.

NO IF FOUND : CHECK R INPUT LEVEL means no IF was detected during pretune: a source problem. Perform the **"A4** Sampler/Mixer Check".

NO PHASE LOCK : CHECK R INPUT LEVEL means the IF was not acquired after pretune: a source problem. Perform the **"A4** Sampler/Mixer Check", earlier in this chapter.

PHASE LOCK CAL FAILED means that a calculation of **pretune** values was not successful: a source or receiver failure. Perform the "Source **Pretune** Correction Constants" routine as outlined in Chapter 3, "Adjustments and Correction Constants" If the analyzer fails that routine, perform the **"A4** Sampler/Mixer Check".

PHASE LOCK LOST means that phase lock was lost or interrupted before the band sweep ended: a source problem. Refer to "Phase Lock Diagnostic Routines" next to access the phase lock loop diagnostic service routine. Then troubleshoot the problem by following the procedures in this chapter.

Phase Lock Diagnostic Routines

Perform the following steps to determine at what frequencies and bands the phase lock problem occurs

- 1. Press (Preset) (System) SERVICE MENU SERVICE MODES PLL AUTO OFF to switch off the automatic phase-locked loop. Normally, when the phase-locked loop detects lock problems, it automatically aborts the sweep and attempts to recalibrate the pretune cycle. Switching off PLL AUTO defeats this routine.
- 2. Press **PLL DIAG ON** to switch on the phase-locked loop diagnostic service **mode**. In this mode, the phase lock cycle and subsweep number are displayed on the analyzer display. (See "Service modes menu" in Chapter 10, "Service Key Menus and Error Messages", for more information.)
- 3. Press **PLL PAUSE** to pause the phase lock sequence and determine where the source is trying to **tune** when lock is lost.

Refer to "Source theory" in Chapter 12, "Theory of Operation", for additional information regarding band related problems. Then use the procedures in this chapter to check source functions at specific frequencies.

Broadband Power Problems

This section assumes that a power problem exists across the full frequency range, but that no error message is displayed on the analyzer. The problem may affect port 1, port 2, or both. Assemblies in question include:

- A3 source
- A21, A22 directional couplers
- A24 solid-state transfer switch
- any cables from the A3 source to the outputs of port 1 or port 2

Receiver Troubleshooting

Use this procedure only if you have read Chapter 4, "Start Troubleshooting Here." Follow the procedures in the order given, unless instructed otherwise.

The receiver group assemblies consist of the following:

- A4/5/6 sampler/mixer assemblies
- A10 digital IF assembly

Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP $8753\mathrm{E}$ network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants. "
- 5. Perform the necessary performance tests. Refer to Chapter 2, "system Verification and Performance Tests"

Receiver Failure Error Messages

The error messages which indicate receiver group problems may be caused by the instrument itself or by external devices or connections. The following three error messages share the same description.

- CAUTION: OVERLOAD ON INPUT A, POWER REDUCED
- CAUTION: OVERLOAD ON INPUT B, POWER REDUCED
- CAUTION: OVERLOAD ON INPUT R, POWER REDUCED

If any of the above error messages appear, the analyzer has exceeded approximately + 14 dBm at one of the test ports. The RF output power is automatically reduced to -85 dBm. The annotation $P\downarrow$ appears in the left margin of the display to indicate that the power trip function has been activated. To reset the analyzer's power and regain control of the power level, do the following:

- 1. Remove any devices under test which may have contributed excess power to the input.
- 2. Press Menu POWER () (X1) SOURCE POWER ()N to return the power level to the preset state.
 - □ If the power trip indicator (P↓) does not reappear, reconfigure the test setup to keep input power levels at 0 dBm or below.
 - $\hfill\square$ If $P{\downarrow}$ reappears, continue with "Check the A and B Inputs".

Check the A and B Inputs

Good inputs produce traces similar to Figure 8-2 in terms of flatness. To examine both input traces, do the following:

1. Connect the equipment as shown in Figure 8-1. (The through cable is HP part number 8120-4779.)

pg637e

Figure S-1. Equipment Setup

2. Check the flatness of the input A trace by comparing it with the trace in Figure 8-2.

```
Press Preset Meas INPUT PORTS A TEST PORT 2 (Scale Ref) AUTO SCALE
```

3. Check the flatness of the input B trace by comparing it with the trace in Figure 8-2.

Press (Meas) INPUT PORTS TEST PORT 1 B.

- If neither of the input traces resembles Figure 8-2, continue with "Troubleshooting When All Inputs Look Bad".
- If at least one input trace resembles **Figure** 8-2, continue with "Troubleshooting When One or More Inputs Look Good".

Figure 8-2. Typical Good Trace

Troubleshooting When All Inputs Look Bad

Run Internal Tests 18 and 17

- 1. Press Preset System SERVICE MENU TESTS [18] X1 EXECUTE TEST to run the ADC offset.
- 2. Then, when the analyzer finishes test 18, press 17 (x1) EXECUTE TEST to run the ADC linearity test.

If either of these tests FAIL, the A10 assembly is probably faulty. This can be **confirmed** by checking the 4 MHz signal and substituting the A10 assembly or checking the **signals** listed in Table 8-1.

Check 2nd LO

Check the **2nd LO** signal. Refer to the **"A12** Reference Check" section of Chapter 7, "Source Troubleshooting" for analog bus and oscilloscope checks of the **2nd LO** and waveform illustrations.

- □ If the analyzer passes the checks, continue to "Check the 4 MHz REF Signal".
- □ If the analyzer fails the checks, perform the **high/low** band transition adjustment. If the adjustment fails, or brings no improvement, replace **A12**.

Check the 4 MHz REF Signal

- 1. Press (Preset).
- 2. Use an oscilloscope to observe the 4 MHz reference signal at A10P2-6.
 - If the **signal** does not resemble Figure 8-3, troubleshoot the signal source (A12P2-36) and path.
 - □ If the signal is good, the probability is greater than 90% that the A10 assembly is faulty. For confirmation, perform "Check A10 by Substitution or Signal Examination".

Figure 8-3. 4 MHz REF Waveform

Check A10 by Substitution or Signal Examination

If the 4 MHz REF signal is good at the A10 digital IF assembly, check the A10 assembly by one of the following methods:

- Substitute another A10 assembly or
- Check the signal/control lines required for its operation. The pins and signal sources of those lines are identified in **Table** 8-1. It is possible that the **A9** assembly may not be providing the necessary signals. These signal checks allow you to determine which assembly is faulty. Some of the waveforms are illustrated by Figure 8-4 and Figure 8-5.

If the substitute assembly shows no improvement or if all of the input signals are valid, continue with "Check the 4 kHz Signal". Otherwise troubleshoot the suspect signal(s) or consider the A10 assembly faulty.

Mnemonic	Description	A10 Location	Signal Source	See Figure
DIFD0	Digital IF data 0 (LSB)	P2-27	A9P2-27	*
DIFD1	Digital IF data 1	P2-57	A9P2-57	*
DIFD2	Digital IF data 2	P2-28	A9P2-28	*
DIFD3	Digital IF data 3	P2-58	A9P2-58	*
DIFD4	Digital IF data 4	P2-29	A9P2-29	*
DIFD5	Digital IF data 5	P2-59	A9P2-59	*
DIFD6	Digital IF data 6	P2-30	A9P2-30	*
DIFD7	Digital IF data 7 (MSB)	P2-60	A9P2-60	
L DIFENO	Digital IF enable 0	P2-34	A9P2-34	*
L DIFEN1	Digital IF enable 1	P2-5	A9P2-5	
L DIFEN2	Digital F enable 2	P2-35	A9P2-35	*
DIFCC	Digital IF conversion comp.	P2-33	A10P2-33	Figure 8-4
DIFCLK	Digital IF aerial clock	P2-4	A10P2-4	Figure 8-4
DIF DATA	Digital IF serial data out	P2-3	A10P2-3	Figure 8-4
L ENDIF	L-enable digital IF	P2-17	A9P2-17	Figure 8-5
L INTCOP	L-interrupt, DSP	P2-2	A10P2-2	Figure 8-5
'Check for TTL activity.				

Table S-I. Signals Required for A10 Assembly Operation

* DIF DATA consists of 16 serial bits per input conversion. the ISB is on the right side and is the most volatile.

sg602s

Figure 8-5. Digital Control Lines Observed Using L INTCOP as Trigger

Troubleshooting When One or More Inputs Look Good

Since at least one input is good, all of the common receiver circuitry beyond the multiplexer is functional. Only the status of the individual sampler/mixers and their individual signal paths is undetermined.

Check the 4 **kHz** Signal

1. Press (Preset) (Menu) CW FREQ.

- 2. Use an oscilloscope to check the 4 kHz output of the sampler/mixer in question at the A10 assembly. The input and output access pins are listed in Table 8-2. The signal should resemble the waveform of Figure 8-6.
 - □ If the signal is good, continue with "Check the Trace with the Sampler Correction Constants Off ".
 - □ If the signal is bad, skip ahead to "Check 1st LO Signal at Sampler/Mixer".

Mnemonic	Description	A10 Location	Signal Source
IFR	4 kHz	A10P1-1, 31	A4P1-6
IFA	4 kHz	A10P1-4, 34	A5P1-6
IFB	4 kHz	A10P1-7, 37	A6P1-6

Table 8-2. 2nd IF (4 kHz) Signal Locations

Figure 8-6. 2nd IF (4 kHz) Waveform

Check the Trace with the Sampler Correction Constants Off

- 1. Press (Preset) (Meas) INPUT PORTS A (Scale Ref) AUTO SCALE.
- 2. The trace is currently being displayed with the sampler correction constants on and should resemble Figure 8-7a.
- 3. Press (System) SERVICE MENU SERVICE MODES MORE SAMPLER COR OFF.
- 4. The trace is now being displayed with sampler correction constants off and should have worsened to resemble Figure 8-7b.
- 5. Press **SAMPLER COR ON**. The trace should improve and resemble Figure 8-7a again.
- **Note** When the correction constants are switched off, an absolute offset and bandswitch points may be evident.

If the trace shows no improvement when the sampler correction constants are toggled from off to on, perform the "Sampler Magnitude and Phase Correction Constants (Test 53)" adjustment described in Chapter 3, "Adjustments and Correction Constants" If the trace remains bad after this adjustment, the A10 assembly is defective.

Figure 8-7. Typical Trace with Sampler Correction On and Off

Check 1st LO Signal at Sampler/Mixer

If the 4 $\rm kHz$ signal is bad at the sampler/mixer assembly, check the 1st LO signal where it enters the sampler/mixer assembly in question.

- If the 1st LO is faulty, check the 1st LO signal at its output connector on the A7 assembly to determine if the failure is in the cable or the assembly.
- □ If the 1st LO is good, continue with "Check 2nd LO Signal at Sampler/Mixer".

Check **2nd LO** Signal at Sampler/Mixer

Check the **2nd LO** signal at the pins identified in **Table** 8-3. Refer to the "A12 Reference Check" in Chapter 7, "Source Troubleshooting", for analog bus and oscilloscope checks of the **2nd** LO and waveform illustrations **Table** 8-3 identifies the signal location at the samplers and the A12 assembly.

Mnemonic	Description	Sampler Location	Signal Source
2nd LO 1	2nd LO (0 degrees)	A4/5/6 P1-11	A12P1-2, 32
2nd LO 2	2nd LO (– 90 degrees)	A4/5/6 P1-4	A12P1-4, 34

Table 8-3. 2nd LO Locations

If the **2nd** LO is good at the sampler/mixer, the sampler/mixer assembly is faulty. Otherwise, troubleshoot the **A12** assembly and associated **signal** path.

Accessories Troubleshooting

Use this procedure only if you have read Chapter 4, "Start Troubleshooting Here." Follow the procedures in the order given, unless instructed otherwise.

Measurement failures can be divided into two categories:

- **Failures** which don't affect the normal functioning of the analyzer but render incorrect measurement data.
- **Failures** which impede the normal functioning of the analyzer or prohibit the use of a feature.

This chapter addresses the **first** category of **failures** which are usually caused by the following:

- operator errors
- faulty calibration devices or connectors
- bad cables or adapters
- improper calibration techniques

These failures are checked using the following procedures:

- "Inspect the Accessories"
- "Inspect the Error Terms"
Assembly Replacement Sequence

The following steps show the sequence to replace an assembly in an HP 8753E network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures."
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants. "
- 5. Perform the necessary performance tests. Refer to Chapter 2, "System Verification and Performance Tests "

Inspect the Accessories

Inspect the **Test** Port Connectors and Calibration Devices

- 1. Check for damage to the mating contacts of the test port center conductors and loose connector bulkheads.
- 2. Inspect the calibration kit devices for bent or broken center conductors and other physical damage. Refer to the calibration kit operating and service manual for information on gaging and inspecting the device connectors.

If any calibration device is obviously damaged or out of mechanical tolerance, replace the device.

Inspect the Error Terms

Error terms are a measure of a "system": a network analyzer, calibration kit, and any cables used. As required, refer to Chapter 11, "Error Terms," for the following:

- The specific measurement calibration procedure used to generate the error terms.
- The routines required to extract error terms from the instrument.
- Typical error term data.

Use Table 9-1 to cross-reference error term data to system faults

Component	Directivity	Source Match	Reflection Tracking	Isolation	Load Match	Transmission Tracking
Calibration Kit						
load	х					
open/short	x	х				
Analyzer						
sampler			x	х		х
A10 digital IF				х		
test port connectors	x	x	x	x	x	x
External cables					x	х

Table 9-1. Components Related to Specific Error Terms

If you detect problems using error term analysis, use the following approach to isolate the fault:

- 1. Check the cable by examining the load match and transmission tracking terms. If those terms are incorrect, go to "Cable Test."
- 2. Verify the calibration kit devices:

Loads: If the directivity error term looks good, the load and the test port are good. If directivity looks bad, connect the same load on the other test port and measure its directivity. If the second port looks bad, as if the problem had shifted with the load, replace the load. If the second port looks good, as if the load had not been the problem, troubleshoot the **first** port.

Shorts and opens: If the source match and reflection tracking terms look good, the shorts and the opens are good. If these terms look bad **while** the rest of the terms look good, proceed to "Verify Shorts and Opens."

Cable Test

The load match error term is a good indicator of cable problems. You can further verify a faulty cable by measuring the reflection of the cable. Perform an **S11** l-port calibration directly at port 1 (no cables). Then connect the suspect cable to port 1 and terminate the open end in 50 ohms.

Figure 9-1 shows the return loss trace of a good (left side) and faulty cable. Note that the important characteristic of a cable trace is its level (the good cable trace is much lower) not its regularity. Refer to the cable manual for return loss specifications.

Figure 9-1. Typical Return Loss Traces of Good and Poor Cables

Verify Shorts and Opens

Substitute a known good short and open of the same connector type and sex as the short and open in question. If the devices are not from one of the standard calibration kits, refer to the *HP 8753E Network Analyzer User's Guide* for information on how to use the MODIFY CAL KIT function. Set aside the short and open that are causing the problem.

- 1. Perform an S11 l-port calibration using the good short and open. Then press FORMAT SMITH CHART to view the devices in Smith chart format.
- 2. Connect the good short to port 1. Press <u>Scale Ref</u> ELECTRICAL DELAY and turn the front panel knob to enter enough electrical delay so that the trace appears as a dot at the left side of the circle. (See Figure 9-2a, left.)

Replace the good short with the questionable short at port 1. The trace of the questionable short should appear very similar to the known good short.

3. Connect the good open to port 1. Press Scale Ref ELECTRICAL DELAY and turn the front panel knob to enter enough electrical delay so that the trace appears as a dot at the right side of the circle. (See Figure 9-2b, right.)

Replace the good open with the questionable open at port 1. The trace of the questionable open should appear very similar to the known good open.

Figure 9-2. Typical Smith Chart Traces of Good Short (a) and Open (b)

Service Key Menus and Error Messages

Service Key Menus

These menus allow you to perform the following service functions:

- test
- verify
- adjust
- control
- troubleshoot

The menus are divided into two groups:

- 1. Internal Diagnostics
- 2. Service Features

When applicable, the HP-IB mnemonic is written in parentheses following the key. See HP-IB Service Mnemonic Definitions at the end of this section.

Error Messages

The displayed messages that pertain to service functions are also listed in this chapter to help you:

- Understand the message.
- Solve the problem.

Service Key Menus - Internal Diagnostics

TESTS

The internal diagnostics menus are shown in **Figure 10-1** and described in the following paragraphs. The following keys access the internal diagnostics menus:

Note Throughout this service guide, these conventions are observed:
 HARDKEYS) are labeled front panel keys.
 SOFTKEYS are display defined keys (in the menus).
 (HP-IB COMMANDS) when applicable, follow the keystrokes in parentheses.

Tests Menu

To access this menu, press System SERVICE MENU TESTS

TESTS (TE	T [D]) accesses a menu that allows you to select or execut the service tests The default is set to internal test 1.	e
Note	Descriptions of tests in each of the categories are given under the heading Test Descriptions in the following pages.	

The tests are divided by function into the following categories:

Internal Tests (0-20)
External Tests (21-26)
System Verification Tests (27-43)
Adjustment Tests (44-58)
Display Tests (59-65)
Test Patterns (66-80)
To access the first test in each category, press the category softkey. To access the other tests, use the numeric keypad, step keys, or front panel knob. The test number, name, and status abbreviation will be displayed in the active entry area of the display.

Table 10-1 shows the test status abbreviation that appears on the display, its definition, and the equivalent HP-IB code. The HP-IB command to output the test status of the most recently executed test is OUTPTESS. For more information, refer to "HP-IB Service Mnemonic Definitions" located at the end of this chapter.

Display Abbreviation	Definition	HP-IB Code
PASS	PASS	0
FAIL	FAIL	1
-IP-	IN PROGRESS	2
(NA)	NOT AVAILABLE	3
-ND-	NOT DONE	4
DONE	DONE	5

Table 10-1. Test Status Terms

runs the selected test and may display these softkeys:

CONTINUE (TESR1) continues the selected test.

YES (TESR2) alters correction constants during adjustment tests.

NEXT (TESR4) displays the next choice.

SELECT (**TESR**6) chooses the option indicated.

ABORT (TESR8) terminates the test and returns to the tests menu.

evaluates the analyzer's internal operation. These tests are completely internal and do not require external connections or user interaction.

evaluate the analyzer's external operation. These additional tests require some user interaction (such as keystrokes).

NATERNAL TESSES

EXTERNAL TESTS

SYS VER TESTS	verifies the analyzer system operation by examining the contents of the measurement calibration arrays. The procedure is in the "System Verification and Performance Tests" chapter. Information about the calibration arrays is provided in the "Error Terms" chapter.
ADJUSTMENT TESTS	generates and stores the correction constants. For more information, refer to the "Adjustments" chapter.
DISPLAY TESTS	checks for correct operation of the display and \ensuremath{GSP} board.

Test Options Menu

To access this menu, press System	SERVICE MENU	TEST OPTIONS.
		00 1

TEST OPTIONS	accesses softkeys that affect the way tests (routines) run, or supply necessary additional data. resumes the test from where it was stopped.
REPEAT on OFF (TO2)	toggles the repeat function on and off. When the function is ON, the selected test will run 10,000 times unless you press any key to stop it. The analyzer shows the current number of passes and fails.
RECORD on OFF (TO1)	toggles the record function on and off. When the function is ON, certain test results are sent to a printer via HP-IB. This is especially useful for correction constants. The instrument must be in system controller mode or pass control mode to print (refer to the "Printing, Plotting, and Saving Measurement Results" chapter in the <i>HP</i> 87533 User's <i>Guide</i> .
LIMITS [NORM/SPCL]	selects either NORMal or SPeCiaL (tighter) limits for the Operator's Check. The SPCL limits are useful for a guard band.
PWR LOSS (POWLLIST)	accesses the following Edit List menu to allow modification of the external power loss data table.

1.055/SENSR_1.1	sts accesses the power loss/sensor lists menu:
	USE SENSOR A/B selects the A or B power sensor calibration factor list for use in power meter calibration measurements.
	CAL FACTOR SENSOR A (CALFSENA) accesses the Edit List menu to allow modification of the calibration data table for power sensor A.
	CAL FACTOR SENSOR B (CALFSENB) accesses the Edit List menu to allow modification of the calibration data table for power sensor B.
	POWER LOSS (POWLLIST) accesses the Edit List menu to allow modification of the external power loss data table that corrects coupled-arm power loss when a directional coupler samples the RF output.
DUMP GRAPH	generates printed graphs of verification results when activated during a system verification.
Edit List Menu 7	o access this menu, press System SERVICE MENU
TEST OPTIONS	LOSS/SENSR LISTS and then press one of the following:

CAL FACTOR SENSOR A or CAL FACTOR SENSOR B or POWER LOSS.

SEGMENT	selects a segment (frequency point) to be edited, deleted from, or added to the current data table. Works with the entry controls
EDIT (SEDI[D])	allows modification of frequency, cal factor and loss values previously entered in the current data table.
DELETE (SDEL)	deletes frequency, cal factor and loss values previously entered in the current data table.
ADD (SADD)	adds new frequency, cal factor and loss values to the current data table up to a maximum of 12 segments (frequency points, PTS).
CLEAR LIST (CLEL)	deletes the entire current data table (or list) when YES is pressed. Press NO to avoid deletion.
DONE (EDITDONE)	returns to the previous menu.

Self Diagnose Softkey

You can access the self diagnosis function by pressing <u>System</u> <u>SERVICE MENU</u> <u>SELF DIAGNOSE</u>. This function examines, in order, the pass/fail status of all internal tests and displays NO FAILURE FOUND if no tests have failed.

If a failure is detected, the routine displays the assembly or assemblies most probably faulty and assigns a **failure** probability factor to each assembly.

Test Descriptions

The analyzer has up to 80 routines that test, verify, and adjust the instrument. This section describes those tests.

Internal Tests

This group of tests runs without external connections or operator interaction. All return a PASS or FAIL condition. All of these tests run on power-up and PRESET except as noted.

- 0 ALL **INT. Runs** only when selected. It consists of internal tests 3-11, 13-16, and 20. Use the front panel knob to scroll through the tests and see which failed. If **all** pass, the test displays a PASS status. Each test in the subset retains its own test status.
- 1 PRESET. Runs the following subset of internal tests: first, the **ROM/RAM** tests 2, 3, and 4; then tests 5 through 11, 14, 15, and 16. If any of these tests fail, this test returns a FAIL status. Use the front panel knob to scroll through the tests and see which failed. If all pass, this test displays a PASS status. Each test in the subset retains its own test status. This same subset is available over HP-IB as "TST?". It is not performed upon remote preset.
- 2 ROM. Part of the **ROM/RAM** tests and **cannot** be **run** separately. Refer to the "Digital Control Troubleshooting" chapter for more information.

3 SRAM RAM. Verifies the **A9** CPU SRAM (long-term) memory with a non-destructive write/read pattern. A destructive version that writes over stored data at power-on can be enabled by changing the **4th** switch position of the **A9** CPU switch as shown in Figure 10-2.

sg6117e

Figure 10-2. A9 CPU Switch Positions

4 Main DRAM. Verifies the A9 CPU main memory (DRAM) with a non-destructive write/read test pattern. A destructive version of this test is run during power-on.

For additional information, see Internal Tests (near the front of this section) and the "Digital Control Troubleshooting" chapter.

5	DSP Wr/Rd. Verifies the ability of the main processor and the DSP (digital signal processor), both on the A9 CPU assembly, to communicate with each other through DRAM. This also verifies that programs can be loaded to the DSP , and that most of the main RAM access circuits operate correctly.
6	DSP RAM. Verifies the A9 CPU RAM associated with the digital signal processor by using a write/read pattern.
7	DSP ALU. Verifies the A9 CPU high-speed math processing portions of the digital signal processor.
8	DSP Intrpt. Tests the ability of the A9 CPU digital signal processor to respond to interrupts from the A10 digital IF ADC .
9	DIF Control. Tests the ability of the A9 CPU main processor to write/read to the control latches on the A10 digital IF
10	DIF Canter. Tests the ability of the A9 CPU main processor to write/read to the triple divider on the A10 CPU. It tests the A9 CPU data buffers and A10 digital IF, the 4 MHz clock from the A12 reference.
11	DSP Control. Tests the ability of the A9 CPU digital signal processor to write to the control latches on the A10 digital IF. Feedback is verified by the main processor. It primarily tests the A10 digital IF, but failures may be caused by the A9 CPU.
12	Fr Pan Wr/Rd. Tests the ability of the A9 CPU main processor to write/read to the front panel processor. It tests the A2 front panel interface and processor, and A9 CPU data buffering and address decoding. (See also tests 23 and 24.) This runs only when selected.
13	Rear Panel. Tests the ability of the A9 CPU main processor to write/read to the rear panel control elements. It tests the A16 rear panel, and A9 CPU data buffering and address decoding. (It does not test the HP-IB interface; for that, see the HP-IB Programming Guide.) This runs only when selected or with ALL INTERNAL.
14	Post Reg. Polls the status register of the A8 post-regulator, and

14 Post **Reg. Polls** the status register of the **A8** post-regulator, and flags these conditions: heat sink too hot, inadequate air flow, or post-regulated supply shutdown.

- 15 **Frac** N Cont. Tests the ability of the A9 CPU main processor to write/read to the control element on the A14 fractional-N (digital) assembly. The control element must be functioning, and the **fractional-N** VCO must be **oscillating** (although not necessarily phase-locked) to pass.
- 16 Sweep Trig. Tests the sweep trigger (L SWP) line from the A14 fractional-N to the A10 digital IF. The receiver with the sweep synchronizes L SWP.
- 17 ADC Lin. It tests the linearity of the A10 digital IF ADC using the built-in ramp generator. The test generates a histogram of the ADC linearity, where each data point represents the relative "width" of a particular ADC code. Ideally, all codes have the same width; different widths correspond to non-linearities
- 18 ADC Ofs. This runs **only** when selected. It tests the ability of the offset DAC, on the **A10 digital** IF', to apply a bias offset to the IF signals before the ADC input. This runs **only** when selected.
- 19 **ABUS Test.** Tests analog bus accuracy, by measuring several analog bus reference voltages (all nodes from the A10 digitai IF). This runs only when selected.
- 20 **FN Count.** Uses the internal counter to count the A14 fractional-N VCO frequency (120 to 240 MHz) and the divided fractional-N frequency (100 kHz). It requires the 100 kHz signal from A12 and the counter gate signal from A10 to pass

External Tests

These tests require either external equipment and connections or operator interaction of some kind to run. Tests 30 and 60 are comprehensive front panel checks, more complete than test 12, that checks the front panel keys and knob entry.

- 21 Port 1 Op **Chk.** Part of the "Operator's Check" procedure, located in the "Start Troubleshooting" chapter. The procedure requires the external connection of a short to PORT 1.
- 22 Port 2 Op **Chk.** Same as 21, but tests PORT 2.
- 23 **Fr Pan** Seq. Tests the front panel knob entry and all A1 front panel keys, as well as the front panel microprocessor on the A2 assembly. It prompts the user to rotate the front panel knob, then press each key in an ordered sequence. It continues to the next prompt only if the current prompt is correctly satisfied.
- 24 **Fr Pan** Diag. Similar to 23 above, but the user rotates the front panel knob or presses the keys in any order. This test displays the command the instrument received.
- 25 **ADC** Hist. Factory use only.
- 26 Source Ex. **Factory** use only.

System Verification Tests

These tests apply **mainly** to system-level, error-corrected verification and troubleshooting. Tests 27 to 31 are associated with the system verification procedure, documented in the "System Verification and Performance Tests" chapter. Tests 32 to 43 **facilitate** examining the calibration coefficient arrays (error terms) **resulting** from a measurement calibration; refer to Chapter 11, "Error Terms," for **details**.

- 27 Sys Ver Init. **Recalls** the **initialization** state for system verification from an HP 8753E verification disk, in preparation for a measurement calibration. It must be done before service internal tests 28, 29, 30, or 31 are performed.
- 28 Ver Dev 1. **Recalls** verification limits from disk for verification device #1 in **all** applicable S-parameter measurements. It performs **pass/fail** limit testing of the current measurement.
- 29 Ver Dev 2. **Same** as 28 above for device **#2**.
- 30 Ver Dev 3. Same as 28 above for device **#3**.
- 31 Ver Dev 4. Same as 28 above for device **#4**.
- 32-43 **Cal Coef** 1-12. Copies error term data from a measurement calibration array to display memory. A measurement calibration must be complete and active. The **definition** of calibration arrays depends on the current calibration type. After execution, the memory is automatically displayed. Refer to Chapter 11, "Error Terms," for details.

Adjustment Tests

The tests without asterisks are used in the procedures located in the "Adjustments" chapter of this manual, except as noted.

- 44 *Source Def. Writes default correction constants for rudimentary source power accuracy. Use this test before running test 47, below.
- 45 ***Pretune** Def. Writes default correction constants for rudimentary phase lock pretuning accuracy. Use this test before running test 48, below.
- 46 **ABUS Cor.** Measures three **fixed** voltages on the **ABUS**, and generates new correction constants for **ABUS** amplitude accuracy in both high resolution and low resolution modes. Use this test before **running** test 48, below.
- 47 Source Cm. Measures source output power accuracy, flatness, and linearity against an external power meter via HP-IB to generate new correction constants Run tests 44, **45**, **46**, and 48 first.
- 48 **Pretune Cor.** Generates source pretune values for proper phase-locked loop operation. Run tests 44, 45, and 46 first.
- 50 Disp 2 Ex. Not used in "Adjustments." Writes the "secondary test pattern" to the display for adjustments. Press (Preset to exit this routine.
- 51 **IF** Step **Cor.** Measures the gain of the IF **amplifiers** (A and B only) located on the **A10** digital IF, to determine the correction constants for absolute amplitude accuracy. It provides smooth dynamic accuracy and absolute amplitude accuracy in the -30 **dBm** input power region.
- 52 ADC Ofs **Cor.** Measures the **A10** Digital IF ADC linearity characteristics, using an internal ramp generator, and stores values for the optimal operating region. During measurement, IF signals are centered in the optimal region to improve low-level dynamic accuracy.
- 53 Sampler **Cor.** Measures the absolute amplitude response of the R sampler against an external power meter via HP-IB, then compares A and B, (magnitude and phase), against R. It improves the R input accuracy and **A/B/R** tracking.
- 54 **Cav** Osc Cm. Calculates the frequency of the cavity oscillator and the instrument temperature for effective spur avoidance.

- 55 Serial Cor. Stores the serial number (input by the user in the Display Title menu) in EEPROM. This routine will not overwrite an existing serial number.
- 56 Option **Cor.** Stores the option keyword (required for Option 002, 006, 010 or any combination).
- 57 Not used.
- 58 **Init EEPROM.** This test initializes certain EEPROM addresses to zeros and resets the display intensity correction constants to the default values. Also, the test will not alter the serial number and correction constants for Option 002, 006, and 010.

Display Tests

These tests return a PASS/FAIL condition. All six amber front panel LEDs will turn off if the test passes. Press (Preset) to exit the test. If any of the six LEDs remain on, the test has failed.

- 59 **Disp/cpu** corn. Checks to **confirm** that the CPU can communicate with the **A19** GSP board. The CPU writes all zeros, all ones, and then a walking one pattern to the GSP and reads them back. If the test fails, the CPU repeats the walking 1 pattern until **(Preset)** is pressed.
- 60 DRAM cell. Tests the DRAM on A19 by writing a test pattern to the DRAM and then verifying that it can be read back.
- 61 Main **VRAM**. Tests the VRAM by writing all zeros to one location in each bank and then writii all ones to one location in each bank. **Finally** a walking one pattern is written to one location in each bank.
- 62 **VRAM** bank. Tests all the cells in each of the 4 VRAM banks
- 63 **VRAM/video.** Verifies that the GSP is able to successfully perform both write and read shift register transfers. It also checks the video signals LHSYNC, LVSYNC, and LBLANK to verify that they are active and toggling.
- 64 **RGB** outputs. **Confirms** that the analog video signals are correct and it verifies their functionality.
- 65 **Inten** DAC. Verifies that the intensity DAC can be set both low and high.

Test Patterns

Test patterns are used in the factory for display adjustments, diagnostics, and troubleshooting, but they are not used for field service. Test patterns are executed by entering the test number (66 through SO), then pressing **EXECUTE TEST CONTINUE**. The test pattern will be displayed and the softkey labels blanked. To increment to the next pattern, press softkey 1; to go back to a previous pattern, press softkey 2. To exit the test pattern and return the softkey labels, press softkey 8 (bottom softkey). The following is a description of the test patterns.

- 66 **Test** Pat 1. Displays an all white screen for verifying the light output of the **A18** display and checks for color purity.
- 67-69 **Test** Pat 2-4. Displays a red, green, and blue pattern for verifying the color purity of the display and also the ability to independently control each color.
- 70 **Test** Pat 5. Displays an all black screen. This is used to check for stuck pixels.
- 71 **Test Pat** 6. Displays a **16-step** gray **scale** for verifying that the **A19** GSP board can produce 16 different amplitudes of color (in this case, white). The output comes from the RAM on the GSP board, it is then split. The signal goes through a video DAC and then to an external monitor or through some buffer amplifiers and then to the internal LCD display. If the external display looks good but the internal display is bad, then the problem may be with the display or the cable connecting it to the GSP board. This pattern is also very useful when using an oscilloscope for troubleshooting. The staircase pattern it produces will quickly show missing or stuck data bits
- 72 Test Pat 7. Displays the following seven colors: Red, Yellow, Green, Cyan, Blue, Magenta and White.
- 73 **Test Pat** 8. This pattern is intended for use with an external display. The pattern displays a color rainbow pattern for showing the ability of the A19 GSP board to display 15 colors plus white. The numbers written below each bar indicate the tint number used to produce that bar (0 & 100=pure red, 33=pure green, 67=pure blue).
- 74 **Test Pat** 9. Displays the three primary colors Red, Green, and Blue at four different intensity levels. You should see 16 color bands across the screen. Starting at the left side of the display the pattern is; Black four bands of Red (each band increasing in intensity) Black four bands

of Green (each band increasing in intensity) Black four bands of Blue (each band increasing in intensity) Black If any one of the four bits for each color is missing the display will not look as described.

- **Test Pat** 10. Displays a character set for showing the user **all** the different types and sizes of characters available. Three sets of characters are drawn in each of the three character sizes. 125 characters of each size are displayed. Characters 0 and 3 cannot be drawn and several others are really control characters (such as carriage return and line feed).
- **Test** Pat 11. Displays a bandwidth pattern for verifying the bandwidth of the EXTERNAL display. It consists of multiple alternating white and black vertical stripes. Each stripe should be clearly visible. A limited bandwidth would smear these lines together. This is used to test the quality of the external monitor.
- 77 **Test Pat** 12. Displays a repeating gray scale for troubleshooting, using an oscilloscope. It is similar to the 16 step gray scale but is repeated 32 times across the screen. Each of the 3 outputs of the video palette will then show 32 ramps (instead of one staircase) between each horizontal sync pulse. This pattern is used to troubleshoot the pixel processing circuit of the A19 GSP board.
- **Test Pat** 13. Displays a convergence pattern for measuring the accuracy of the color convergence of the external monitor.
- 79-80 **Test** Pat 14-15. Displays crosshatch and inverse crosshatch patterns for testing color convergence, **linearity,and** alignment. This is useful when aligning the LCD display in the bezel.

Service Key Menus - Service Features

The service feature menus are shown in **Figure 10-3** and described in the following paragraphs. The following keys access the service feature menus:

- SERVICE MODES
- ANALOG BUS on OFF
- PEEK/POKE
- FIRMMARE REVISION

Figure 10-3. Service Feature Menus

Service Modes Menu

To access this menu, press: (System) SERVICE MENU SERVICE MODES

signava (operation) des

FRACN TUNE on OFF (SM1) allows you to control and monitor various circuits for troubleshooting.

tests the A13 and A14 fractional-N circuits. It allows you to directly control and monitor the output frequency of the fractional-N synthesizer (10 MHz to 60 MHz). Set the instrument to CW sweep mode and then set F'RACN TUNE ON. Change frequencies with the front panel keys or knob. The output of the A14 assembly can be checked at A14J1 HI OUT (in high band) or A14J2 LO OUT (in low band) with an oscilloscope, a frequency counter, or a spectrum analyzer. Signal jumps and changes in shape at 20 MHz and 30 MHz when tuning up in frequency, and at 29.2 MHz and 15 MHz when tuning down, are due to switching of the digital divider. This mode can be used with the SRC TUNE mode as described in "Source Troubleshooting" chapter.

SRC ADJUST MENU

accesses the functions that ailow you to adjust the source:

SRC TUNE on OFF tests the pretune functions of the phase lock and source assemblies Use the entry controls to set test port output to any frequency from 300 KHz to 6 **GHz**. When in this mode:

- □ Set analyzer to CW frequency before pressing **SRC TUNE ON**.
- □ Test port output is 1 to 6 MHz above indicated (entered) frequency.
- □ Instrument does not attempt to phase lock.
- o Residual FM increases.

SRC TUNE FREQ allow you to change the source tune frequency.

ALC ON off toggles the automatic leveling control (ALC) on and off.

MAUN PUR DAC

SLOPE DAC

SRC ADJUST DACS

HB ELER St on DEE

SOURCE PLL ON off (SM3) With this mode switched OFF, the source stays in the pretune mode and does not attempt to complete the phase lock sequence. Also, all phase lock error messages are disabled. The fractional-N circuits and the receiver operate normally. Therefore, the instrument sweeps, but the source is being driven by the pretune DAC in a stair-stepped fashion.

PLL AUTO ON off (SM4) Automatically attempts to determine new pretune values when the instrument encounters phase lock problems (for example, "harmonic skip"). With PLL AUTO OFF the frequencies and voltages do not change, like when they are attempting to determine new pretune values, so troubleshooting the phase-locked loop circuits is more convenient. This function may also be turned off to avoid pretune calibration errors in applications where there is a limited frequency response in the R (reference) channel. For example, in a high power test application, using band limited filters for R channel phase locking.

PLL DIAG on OFF (SM5) displays a phase lock sequence at the beginning of each band. This sequence normally occurs very rapidly, making it difficult to troubleshoot phase lock problems Switching this mode ON slows the process down, allowing you to inspect the steps of the phase lock sequence (pretune, acquire, and track) by pausing at each step. The steps are indicated on the display, along with the channel (Cl or C2) and band number (B1 through B13).

This mode can be used with PLL PAUSE to **halt** the process at any step. It can also be used with the analog bus counter.

PLL PAUSE used only with **PLL** DIAG mode. **CONT** indicates that it will continuously cycle through all steps of the phase lock sequence. **PAUSE** holds it at any step of interest. This mode is useful for troubleshooting phase-locked loop problems

Accesses the service modes more menu listed below.

MORE

Service Modes More Menu

To access this menu, press (System) SERVICE MENU SERVICE MODES MORE.

SAMPLER COR ON off (SM6)	Toggles the sampler correction routine ON, for normal operation, or OFF, for diagnosis or adjustment purposes
<u>IF GAIN AUTO</u>	Normal operating condition and works in conjunction with IF GAIN ON and OFF. The A10 assembly includes a switchable attenuator section and an amplifier that amplifies low-level 4 kHz IF signals (for A and B inputs only). This mode allows the A10 IF section to automatically determine if the attenuator should be switched in or out. The switch occurs when the A or B input signal is approximately -30 dBm.
IF GAIN ON	Locks out the A10 IF attenuator sections for checking the A10 IF gain amplifier circuits, regardless of the amplitude of the A or B IF signal. Switches out both the A and B attenuation circuits; they cannot be switched independently. Be aware that input signal levels above -30 dBm at the sampler input will saturate the ADC and cause measurement errors.
IF GAIN OFF	Switches in both of the A10 IF attenuators for checking the A10 IF gain amplifier circuits Small input signals will appear noisy, and raise the apparent noise floor of the instrument.
SPUR TEST on OFF (SM	7) For factory use only.
STORE EEPR on OFF	Allows you to store the correction constants that reside in non-volatile memory (EEPROM) onto a disk. Correction constants improve instrument performance by compensating for specific operating variations due to hardware limitations (refer to the "Adjustments" chapter). Having this information on disk is useful as a backup, in case the constants are

manually, although the procedures are more time consuming.

SPUR AVOID ON off (SM8)

ANALOG BUS on OFF (ANAB) offsets the frequency of both the A3 YIG oscillator and the A3 cavity oscillator to avoid spurs which cannot otherwise be filtered out. SPUR AVOID OFF allows examination of these spurs for service.

enables and disables the analog bus, described below. Use it with the analog in menu, (a description of this menu follows).

Analog Bus

To access the analog bus, press (System) SERVICE MENU ANALOG BUS ON .

Description of the Analog Bus

The analog bus is a single multiplexed line that networks 31 nodes within the **instrument**. It can be controlled from the front panel, or through HP-IB, to make voltage and frequency measurements just like a voltmeter, oscilloscope, or frequency counter. The next few paragraphs provide general information about the structure and operation of the analog bus See "Analog Bus Nodes," for a description of each individual node. Refer to the "Overall Block Diagram," in the "Start Troubleshooting" chapter, to see where the nodes are located in the instrument.

The analog bus consists of a source section and a receiver section. The source can be the following:

- any one of the 31 nodes described in "Analog Bus Nodes"
- the A14 fractional-N VCO
- the A14 fractional-N VCO divided down to 100 kHz

The receiver portion can be the following:

- the main ADC
- the frequency counter

When analog bus traces are displayed, frequency is the x-axis. For a linear x-axis in time, switch to CW time mode (or sweep a single band).

The Main ADC

The main ADC is located on the A10 digital IF assembly and makes voltage measurements in two ranges. See "**RESOLUTION**", under "Analog In Menu".

The Frequency Counter

The frequency counter is located on the A14 assembly and can count one of three sources:

- selected analog bus node
- A14 fractional-N VCO (F'RAC N)
- A14 fractional-N VCO divided down to 100 kHz (DIV F'RAC N) (frequency range is 100 kHz to 16 MHz)

The counts are triggered by the phase lock cycle; one at each **pretune**, acquire, and track for each bandswitch. (The service mode, **SOURCE** PLL, must be ON for the counter to be updated at each bandswitch). The counter works in swept modes or in CW mode. It can be used in conjunction with **SERVICE MODES** for troubleshooting phase lock and source problems.

To read the counter overHP-IB, use the command OUTPCNTR.

Notes

- The display and marker units (U) correspond to volts
- Nodes 17 (1st IF) and 24 (2nd LO) are unreliable above 1 MHz.
- About 0.750 MHz is a typical counter reading with no AC signal present.
- Anything occurring during bandswitches is not visible.
- Past-moving waveforms may be sensitive to sweep time.
- The analog bus input impedance is about 50K ohms
- Waveforms up to approximately 200 Hz can be reproduced.

Analog In Menu

Select this menu to monitor voltage and frequency nodes, using the analog bus and internal counter, as explained below.

To switch on the analog bus and access the analog in menu, press:

(System) SERVICE MENU ANALOG BUS ON (Meas) ANALOG IN

The **RESOLUTION** [LOW] key toggles between low and high resolution.

Resolution	Maximum Signal	Minimum Signal
LOW	+0.5 V	-0.5 v
HIGH	+ 10 V	-10 v

AUX OUT on OFF allows you to monitor the analog bus nodes (except nodes 1, 2, 3, 4, 9, 10, 12) with external equipment (oscilloscope, voltmeter, etc). To do this, connect the equipment to the AUX INPUT BNC connector on the rear panel, and press AUX OUT, until ON is highlighted.

Caution To prevent damage to the analyzer, **first** connect the signal to the rear panel AUX INPUT, and then switch the function ON.

COUNTER: OFF switches the internal counter off and removes the counter display from the display. The counter can be switched on with one of the next three keys. (Note: Using the counter slows the sweep.) The counter bandwidth is 16 MHz unless otherwise noted for a specific node.

Note OUTPCNTR is the HP-IB command to output the counter's frequency data.

ANALOG BUS	switches the counter to monitor the analog bus.
FRAC N	switches the counter to monitor the A14 fractional-N VCO frequency at the node shown on the "Overall Block Diagram, " in the "Start Troubleshooting" chapter.
DIV FRAC N	switches the counter to monitor the A14 fractional-N VCO frequency after it has been divided down to 100 kHz for phase locking the VCO.

Analog Bus Nodes

The following paragraphs describe the 31 analog bus nodes. The nodes are listed in numerical order and are grouped by assembly. Refer to the "Overall Block Diagram" for node locations.

A3 Source

To observe six of the eight A3 analog bus nodes (not node 5 or 8), perform step A3 to set up a power sweep on the analog bus. Then follow the node specific instructions.

Step .	A3.		
Press:			
Preset)		
System	SERVICE MENU	ANALOG BUS ON	
(Meas)	ANALOG IN		
(Format) MORE REAL		
Menu	CW FREQ 3 G/n) SWEEP TYPE MENU	POWER SWREP
(Start)	-15) x1)		
Stop)			

Node 1 **Mn Pwr** DAC (main power **DAC**)

Perform step A3 to set up a power sweep on the analog bus. Then press Meas ANALOG IN (1) (x1) (Scale Ref) AUTO SCALE.

Node 1 is the output of the main power DAC. It sets the reference voltage to the ALC loop. At normal operation, this node should read approximately -4 volts at 0 dBm with a slope of about -150 mV/dB. This corresponds to approximately 4 volts from -15 to + 10 dBm.

sg6262d

Figure 10-4. Analog Bus Node 1

Node 2 Src **1V/GHz** (source 1 volt per **GHz**)

Press the following to view analog bus node 2:

Preset	(Start)	30k	/m		
System	SERVI	ce me	NU A	VALOG	BUS ON
(Meas)	ANALOG	IN (2			
Format	MORE	REAL			
(Scale Re	f) aut) SCAI	Æ		

Node 2 measures the voltage on the internal voltage controlled oscillator. Or, in normal operation, it should read -1V/GHz.

sg6263d

Figure 10-5. Analog Bus Node 2

Node 3 Amp Id (amplifier current)

Press the following keys to view analog node 3:

 Preset System
 SERVICE MENU
 ANALOG BUS ON

 (Meas)
 ANALOG IN (3) (x1)

 Format
 MORE
 REAL

 Scale Ref
 AUTO
 SCALE

Node 3 measures the current that goes to the main IF amplifier. At normal operation this node should read about:

 $15~\mathrm{mA}$ from 30 kHz to 299 kHz

130 mA from 300 kHz to 3 GHz

500 mA from 3 GHz to 6 GHz

Figure 10-6. Analog Bus Node 3

Node 4 Det (detects RF OUT power level)

Perform step A3, described previously, to set up a power sweep on the analog bus. Then press Meas ANALOG IN (4) x1 (Scale Ref) AUTO SCALE.

Node 4 detects power that is coupled and detected from the RF OUT arm to the ALC loop. Note that the voltage exponentially follows the power level inversely. Flat segments indicate ALC saturation and should not occur between -15 dBm and + 10 dBm.

sg6265d

Figure 10-7. Analog Bus Node 4
Node 5 **Temp** (temperature sensor)

This node registers the temperature of the cavity oscillator which must be known for effective spur avoidance. The sensitivity is 10 mV/ $^{\circ}$ C. The oscillator changes frequency slightly as its temperature changes. This sensor indicates the temperature so that the frequency can be predicted.

Node 6 Integ (ALC leveling integrator output)

Perform step A3 to set up a power sweep on the analog bus. Then press (Meas) ANALOG IN (6) (x1) (Scale Ref) AUTO SCALE.

Node 6 displays the output of the summing circuit in the ALC loop. Absolute voltage level variations are normal. When node 6 goes above 0 volts, the ALC saturation is indicated.

Figure **10-8.** Analog Bus Node 6

Node 7 Log (log **amplifier** output detector)

Perform step A3 to set up a power sweep on the analog bus. Then press (Meas ANALOG IN (7) x1 (Scale Ref) AUTO SCALE.

Node 7 displays the output of a logger circuit in the ALC loop. The trace should be a linear ramp with a slope of 33 mv/dB with approximately 0 volts at -3 dBm. Absolute voltage level variations are normal. Flat segments indicate ALC saturation and should not occur between -15 dBm and + 10 dBm.

The proper waveform at node 7 indicates that the circuits in the A3 source ALC loop are normal and the source is leveled.

sg6267d

Figure 10-9. Analog Bus Node 7

Node 8 A3 Gnd (ground)

A10 Digital IF

To observe the A10 analog bus nodes, perform step A10, below. Then follow the node-specific instructions

Step A10. Press: Preset Meas ANALOG IN Marker System SERVICE MENU ANALOG BUS ON Format MORE REAL

Node 9 +0.37 V (+0.37 V reference)

Perform step A10, above, and then press Meas ANALOG IN

RESOLUTION [HICH] (9 X1).

Check for a flat line at approximately + 0.37 V. This is used as the voltage reference in the "Analog Bus Correction Constants" adjustment procedure. The voltage level should be the same in high and low resolution; the absolute level is not critical.

Node 10 +2.50 V (+2.50 V reference)

Perform step A10, above, and then press Meas ANALOG IN RESOLUTION [LOW] (10 x1 (Scale Ref) (1) x1).

Check for a flat line at approximately +2.5 V. This voltage is used in the "Analog Bus Correction Constants" adjustment as a reference for calibrating the analog bus low resolution circuitry.

Node 11 Aux Input (rear panel input)

Perform step A10 and then press Meas ANALOG IN (1) (1) (1).

This selects the rear panel AUX INPUT to drive the analog bus for voltage and frequency measurements It can be used to look at test points within the instrument, using the analyzer's display as an oscilloscope. Connect the test point of interest to the rear panel AUX INPUT BNC connector.

This feature can be useful if an oscilloscope is not available. Also, it can be used for testing voltage-controlled devices by connecting the driving voltage of the device under test to the AUX IN connector. Look at the driving voltage on one display channel, while displaying the S-parameter response of the test device on the other display channel.

With AUX OUT switched ON, you can examine the analyzer's analog bus nodes

with external equipment (see <u>AUX OUT on OFF</u> under the "Analog Bus Menu" heading). For HP-IB considerations, see "HP-IB Service Mnemonic Definitions," located later in this chapter.

Node 12 **A10** Gnd (ground reference)

This node is used in the "Analog Bus Correction Constants" adjustment as a reference for calibrating the **analog** bus low and high resolution circuitry.

All Phase Lock

To observe the All analog bus nodes, perform step All, below. Then follow the node-specific instructions.

Step All. Press: Preset Meas ANALOG IN Marker System SERVICE MENU ANALOG BUS ON Format MORE REAL

Node 13 **VCO** Tune 2 (not used)

Node 14 Vbb Ref (ECL reference voltage level)

Perform step Al 1 and then press Meas ANALOG IN 14 x1 Scale Ref 3 x1 REFERENCE VALUE (-1.29) x1.

The trace should be a flat line across the entire operation frequency range within 0.3 V (one division) of the reference value. Vbb Ref is used to compensate for ECL voltage drift.

sg6268d

Figure 10-10. Analog Bus Node 14

Node 15 **Pretune** (open-loop source pretune voltage)

Perform step A11 and then press (Meas) ANALOG IN (15) (x1) (Scale Ref) AUTOSCALE.

This node displays the source pretune signal and should look like a stair-stepped ramp. Each step corresponds to the start of a band.

Figure 10-11. Analog Bus Node 15

Node 16 **IV/GHz** (source oscillator tuning voltage)

Perform step A11 and then press Meas ANALOG IN (16 x1 Scale Ref) AUTOSCALE.

This node displays the tuning voltage ramp used to tune the source oscillator. You should see a voltage ramp like the one shown in **Figure 10-12**. If this waveform is correct, you can be confident that the All phase lock assembly, the **A3** source assembly, the **A13/A14** fractional-N assemblies, and the **A7** pulse generator are working correctly and the instrument is phase locked. If you see anything else, refer to the "Source Troubleshooting" chapter.

Figure 10-12. Analog Bus Node 16

Node 17 **1st** IF (IF used for phase lock)

Perform step A11 and then press (Meas) ANALOG IN (17 X1) COUNTER: ANALOG BUS (Menu) CW FREQ.

Vary the frequency and compare the results to the table below.

Entered Frequency	Counter Reading
0.2 to 15.999 MHz	same as entered
16 MHz to 6 GHz	1 MHz

This node displays the IF frequency (see **node17**) as it enters the All phase lock assembly via the A4 R sampler assembly. This signal comes from the R sampler output and is used to phase lock the source.

Figure 10-13. Counter Readout Location

Node 18 IF Det **2N (IF** on All phase lock after 3 MHz filter)

Perform step A11 and then press Meas ANALOG IN 18 (xl) Stop 20 M/μ (Scale Ref) AUTOSCALE.

This node detects the IF within the low pass filter/limiter. The filter is used during the track and sweep sequences but never in band 1 (3.3 to 16 MHz). The low level (about -1.7 V) means IF is in the passband of the filter. This node can be used with the FRAC N TUNE and SRC TUNE service modes.

sg6272d

Figure 10-14. Analog Bus Node 18

Node 19 IF Det 2W (IF after 16 MHz filter)

Perform step A11 and then press Meas ANALOG IN 19 x1 Menu Stop 20 M/μ Scale Ref (2) x1 REFERENCE VALUE (-1.2) x1.

This node detects IF after the 16 MHz filter/limiter. The filter is used during pretune and acquire, but not in band 1. Normal state is a flat line at about -1.7 v.

Node 20 IF Det 1 (IF after 30 **MHz** filter)

Perform step A11 and then press Meas ANALOG IN 20 x1 Scale Ref 0.3 x1 REFERENCE VALUE (-1.29 x1).

The trace should be a flat line across the entire frequency band at least 0.5 V greater than Vbb (node 14). The correct trace indicates the presence of IF after the **first** 30 MHz **filter/limiter**.

Figure 10-15. Analog Bus Node 20

A12 Reference

To observe the A12 analog bus nodes perform step A12, below. Then follow the node-specific instructions.

Step A	12.	
Press:		
Preset		
(Meas)	NALOG IN	
Marker		
(System)	SERVICE MENU	ANALOG BUS ON
(Format)	MORE REAL	

Node 21 100 kHz (100 kHz reference frequency)

Perform step A12 and then press Meas ANALOG IN (21) x1

COUNTER: ANALOG BUS. This node counts the **A12** 100 **kHz** reference signal that is used on **A13** (the fractional-N analog assembly) as a reference frequency for the phase detector.

Node 22 **A12** Gnd 1 (ground)

Node 23 VCO Tune (A12 VCO tuning voltage)

Perform Step A12 and then press Start 11 M/μ Stop 21 M/μ Meas ANALOG IN 23 x1 Marker Scale Ref AUTO SCALE.

The trace should show a voltage step as shown in **Figure** 10-16. At normal operation, the left **half** trace should be $0 \pm 1000 \text{ mV}$ and the right **half** trace should be 100 to 200 **mV** higher (that is, one to two divisions). If the trace does not appear as shown in Figure 10-16, refer to the "High/Low Band Transition Adjustment" in the "Adjustments and Correction Constants" chapter.

Figure 10-16. Analog Bus Node 23

Node 24 **2nd** LO

Perform step A12 and then press Meas ANALOG IN 24 x1 COUNTER: ANALOG BUS Menu CW FREQ.

This node counts the **2nd** LO used by the sampler/mixer assemblies to produce the **2nd** IF of 4 **kHz**. As you vary the frequency, the counter reading should change to values very close to those indicated below:

Frequency Entered	Counter Reading
0.03 to 1 MHz	frequency entered +4 kHz
1 to 16 MHz	not accurate
16 to 3,000 MHz	996 kHz

Node 25 PL **Ref (phase** lock reference)

Perform step A12 and then press Meas ANALOG IN (25 x1) COUNTER: ANALOG BUS (Menu) CW FREQ.

This node counts the reference signal used by the phase comparator circuit on the All phase lock assembly. As you vary the frequency, the counter reading should change as indicated below:

Frequency Entered	Counter Reading
0.3 to 1 MHz	frequency entered
1 to 16 MHz	not accurate
16 to 3,000 MHz	1 MHz

Node 26 Ext **Ref** (rear panel external reference input)

Perform step A12 and then press (Meas) ANALOG IN 126) (x1).

The voltage level of this node indicates whether an external reference **timebase** is being used:

- No external reference: about -0.9 V
- With external reference: about -0.6 V.

Node 27 VCXO Tune (40 **MHz** VCXO **tuning** voltage)

Perform step A12 and then press (Meas) ANALOG IN (27) x1 (Marker Fctn) MARKER ² DEFERENCE

This node displays the voltage used to **fine** tune the **A12** reference VCXO to 40 MHz. You should see a flat line at some voltage level (the actual voltage level varies from instrument to instrument). Anything other than a flat line indicates that the VCXO is tuning to different frequencies. Refer to the "Frequency Accuracy" adjustment procedure.

Node 28 A12 Gnd 2 (Ground reference)

A14 Fractional-N (Digital)

To observe the A14 analog bus nodes perform step A14, below. Then follow the node-specific instructions.

Step A14. Press: Preset Meas ANALOG IN System SERVICE MENU ANALOG BUS ON Format MORE REAL

Node 29 FN **VCO** Tun **(A14** FN VCO tuning voltage)

Perform step A14 and then press (Meas) ANALOG IN (29) (x1) (Scale Ref) AUTOSCALE

Observe the A14 FN VCO tuning voltage. If the A13 and A14 assemblies are functioning correctly and the VCO is phase locked, the trace should look like Figure 10-17. Any other waveform indicates that the FN VCO is not phase locked. The vertical lines in the trace indicate the band crossings. (The counter can **also** be enabled to count the VCO frequency in CW mode.)

Figure 10-17. Analog Bus Node 29

Node 30 FN VCO Det (A14 VCO detector)

Perform step A14 and then press Meas ANALOG IN (30 x1) RESOLUTION [HIGH] (Scale Ref) (50 k/m).

See whether the FN VCO is oscillating. The trace should resemble Figure 10-18.

Figure 10-18. Analog Bus Node 30

Node 31 **Count** Gate (analog bus counter gate)

Perform step A14 and then press Meas ANALOG IN 31 x1 Scale Ref 2 x1.

You should see a flat line at + 5 V across the operating frequency range. The counter gate activity occurs during bandswitches, and therefore is not visible on the analog bus. To view the bandswitch activity, look at this node on an oscilloscope, using AUX OUT ON. Refer to AUX OUT on OFF under the Analog Bus Menu heading.

PEEK/POKE Menu

To access this menu, press (System) SERVICE MENU PEEK/POKE.

PEEK/POKE allows you to edit the content of one or more memory addresses The keys are described below.

Caution The PEEK/POKE capability is intended for service use only.

PEEK/POKE ADDRESS (PEEL[D])	accesses any memory address and shows it in the active entry area of the display. Use the front panel knob, entry keys, or step keys to enter the memory address of interest.
PEEK (PEEK)	displays the data at the accessed memory address.
POKE (POKE[D])	allows you to change the data at the memory address accessed by the PEEK/POKE ADDRESS softkey. Use the front panel knob, entry keys, or step keys to change the data. The A9CC switch must be in the "ALTER" position in order to poke.
RESET MEMORY	resets or clears the memory where instrument states are stored. To do this, press RESET MEMORY (Preset.

Firmware Revision Softkey

Press System SERVICE MENU FIRMWARE REVISION to display the current firmware revision information. The number and implementation date appear in the active entry area of the display as shown in Figure 10-19 below. The analyzer's serial number and installed options are also displayed. Another way to display the firmware revision information is to cycle the line power.

Figure 10-19. Location of Firmware Revision Information on Display

HP-IB Service Mnemonic Definitions

All service routine keystrokes can be made through HP-IB in one of the following approaches:

- sending equivalent remote HP-IB commands. (Mnemonics have been documented previously with the corresponding keystroke.)
- invoking the System Menu (MENUSYST) and using the analyzer mnemonic (SOFTn), where "n" represents the softkey number. (Softkeys are numbered 1 to 8 from top to bottom.)

An HP-IB overview is provided in the "Compatible Peripherals" chapter in the User's *Guide*. HP-IB programming information is **also** provided in the Programming Guide.

Invoking Tests Remotely

Many tests require a response to the displayed prompts. Since bit 1 of the Event Status Register B is set (bit 1 = service routine waiting) any time a service routine prompts the user for an expected response, you can send an appropriate response using one of the following techniques:

- Read event status register B to reset the bit.
- Enable bit 1 to interrupt (ESNB[D]). See "Status Reporting" in the *Programming Guide*.
- Respond to the prompt with a **TESRn** command (see Tests Menu, at the beginning of this chapter).

Symbol Conventions

- [] An optional operand
- D A numerical operand
- < > A necessary appendage
- An either/or choice in appendages

Analog Bus Codes

ANAI[D]	Measures and displays the analog input. The preset state input to the analog bus is the rear panel AUX IN. The other 30 nodes may be selected with D only if the ABUS is enabled (ANABon).
OUTPCNTR	Outputs the counter's frequency data.
OUTPERRO	Reads any prompt message sent to the error queue by a service routine.
OUTPTESS	Outputs the integer status of the test most recently executed. Status codes are those listed under "TST?".
TST?	Executes the power-on self test (internal test 1) and outputs an integer test status. Status codes are as follows:
	0 = pass
	1 = fail
	2 = in progress
	3 =not available
	4 =not done
	5 = done

Error Messages

This section contains an alphabetical list of the error messages that pertain to servicing the analyzer. The information in the list includes explanations of the displayed messages and suggestion to help solve the problem.

Note The error messages that pertain to measurement applications are included in the *HP 8753E Network Analyzer User's Guide*.

BATTERY FAILED. STATE MEMORY CLEARED

Error Number The battery protection of the non-volatile SRAM memory has 183 failed. The SRAM memory has been cleared. Refer to the "Assembly Replacement and Post-Repair Procedures" chapter for battery replacement instructions See the "Preset State and Memory Allocation," chapter in the *HP* 87533 Network Analyzer User's Guide for more information about the SRAM memory.

BATTERY LOW! STORE SAVE REGS TO DISK

Error Number The battery protection of the non-volatile SRAM memory is in 184 danger of failing. If this occurs, all of the instrument state registers stored in SRAM memory will be lost. Save these states to a disk and refer to the "Assembly Replacement and Post-Repair Procedures" chapter for battery replacement instructions. See the "Preset State and Memory Allocation," chapter in the HP **8753E Network Analyzer User's Guide** for more information about the SRAM memory.

CALIBRATION ABORTED

Error Number You have changed the active channel during a calibration so the 74 calibration in progress was terminated. Make sure the appropriate channel is active and restart the calibration.

CALIBRATION REQUIRED

Error Number A calibration set could not be found that matched the current 63 stimulus state or measurement parameter. You will have to perform a new calibration.

CORRECTION CONSTANTS NOT STORED

Error Number A store operation to the EEPROM was not successful. You must 3 change the position of the jumper on the A9 CPU assembly. Refer to the "A9 CC Jumper Position Procedure" in the "Adjustments and Correction Constants" chapter.

CORRECTION TURNED OFF

Error Number Critical parameters in your current instrument state do not 66 match the parameters for the calibration set, therefore correction has been turned off. The critical instrument state parameters are sweep type, start frequency, frequency span, and number of points

CURRENT PARAMETER NOT IN CAL SET

Error Number Correction is not **valid** for your selected measurement 64 parameter. Either change the measurement parameters or perform a new calibration.

DEADLOCK

Error Number A fatal **firmware** error occurred before instrument preset 111 completed.

DEVICE: not on, not connect, wrong addrs

Error Number The device at the selected address cannot be accessedbythe 119 analyzer. Verify that the device is switched on, and check the HP-IB connection between the analyzer and the device. Ensure that the device address recognized by the analyzer matches the HP-IB address set on the device itself.

DISK HARDWARE PROBLEM

Error Number The disk drive is not responding correctly. Refer to the disk 39 drive operating manual.

DISK MESSAGE LENGTH ERROR

Error Number The analyzer and the external disk drive aren't communicating 190 properly. Check the **HP-IB** connection and then try substituting another disk drive to isolate the problem instrument.

DISK: not on, not connected, wrong addrs

Error Number The disk cannot be accessed by the analyzer. Verify power to 38 the disk drive, and check the HP-IB connection between the analyzer and the disk drive. Ensure that the disk drive address recognized by the analyzer matches the HP-IB address set on the disk drive itself.

DISK READ/WRITE ERROR

Error Number There may be a problem with your disk. Try a new floppy disk. 189 If a new floppy disk does not eliminate the error, suspect hardware problems.

INITIALIZATION FAILED

Error Number The disk initialization failed, probably because the disk is damaged.

INSUFFICIENT MEMORY, PWR MTR CALOFF

Error Number There is not enough memory space for the power meter 154 calibration array. Increase the available memory by clearing one or more save/recall registers, or by reducing the number of points

NO CALIBRATION CURRENTLY I N PROGRESS

Error Number The **RESUME CAL SEQUENCE** softkey is not valid unless a calibration is already in progress. Start a new calibration.

NOT ENOUGH SPACE ON DISK FOR STORE

Error Number The store operation will overflow the available disk space. 44 Insert a new disk or purge **files** to create free disk space.

NO FILE(S) FOUND ON DISK

Error Number No files of the type created by an analyzer store operation were **45** found on the disk. If you requested a specific **file** title, that **file** was not found on the disk.

NO IF FOUND: CHECK R INPUT LEVEL

Error Number The first IF signal was not detected during pretune. Check the 5 front panel R channel jumper. If there is no visible problem with the jumper, refer to the "Source Troubleshooting" chapter.

NO PHASE LOCK: CHECK R INPUT LEVEL

Error Number The first IF signal was detected at pretune, but phase lock could 7 not be acquired. Refer to the "Source Troubleshooting" chapter.

NO SPACE FOR NEW CAL. CLEAR REGISTERS

Error Number You cannot store a calibration set due to insufficient memory.
You can free more memory by clearing a saved instrument state from an internal register (which may also delete an associated calibration set, if all the instrument states using the calibration kit have been deleted.) You can store the saved instrument state and calibration set to a disk before clearing them. After deleting the instrument states, press (Preset) to run the memory packer.

NOT ALLOWED DURING POWER METER CAL

Error Number When the analyzer is performing a power meter calibration, the 198 HP-IB bus is unavailable for other functions such as printing or plotting.

OVER LOAD ON INPUT A, POWER REDUCED

Error Number See error number 57. 58

OVER LOAD ON INPUT B, POWER REDUCED

Error Number See error number 57. 59

OVER LOAD ON INPUT R, POWER REDUCED

Error Number You have exceeded approximately + 14 dBm at one of the test 57 ports, The RF output power is automatically reduced to -85 dBm. The annotation P↓ appears in the left margin of the display to indicate that the power trip function has been activated. When this occurs, reset the power to a lower level, then toggle the SOURCE PWR on OFF softkey to switch on the power again.

PARALLEL PORT NOT AVAILABLE FOR GPIO

Error Number You have **defined** the parallel port as COPY for sequencing in 165 the HP-IB menu. **To** access the parallel port for general purpose I/O (GPIO), set the selection to [GPIO].

PARALLEL PORT NOT AVAILABLE FOR COPY

Error Number You have **defined** the parallel port as general purpose I/O (GPIO) 167 for sequencing. The definition was made under the (Local key menus. To access the**parallel** port for copy, set the selection to **PARALLEL** [COPY].

PHASE LOCK CAL FAILED

Error Number An internal phase lock calibration routine is automatically 4 executed at power-on, preset, and any time a loss of phase lock is detected. This message indicates that phase lock calibration was initiated and the **first** IF detected, but a problem prevented the calibration from completing successfully. Refer to Chapter 3, "Adjustments and Correction Constants" and execute pretune correction (test 48).

This message may appear if you connect a mixer between the RF' output and R input before turning on frequency offset mode. Ignore it: it will go away when you turn on frequency offset. This message may also appear if you turn on frequency offset mode before you **define** the offset.

PHASE LOCK LOST

Error Number Phase lock was acquired but then lost. Refer to the "Source 8 Troubleshooting" chapter.

POSSIBLE FALSE LOCK

Error Number Phase lock has been achieved, but the source may be phase

6 locked to the wrong harmonic of the synthesizer. Perform the source pretune correction routine documented in the "Adjustments and Correction Constants" chapter.

POWER METER INVALID

Error Number The power meter indicates an out-of-range condition. Check the 116 test setup.

POWER METER NOT SETTLED

Error Number Sequential power meter readings are not consistent. Verify that 118 the equipment is set up correctly. If so, preset the instrument and restart the operation.

POWER SUPPLY HOT!

Error Number The temperature sensors on the **A8** post-regulator assembly 21 have detected an over-temperature condition. The power supplies regulated on the post-regulator have been shut down. Refer to the "Power Supply Troubleshooting" chapter.

POWER SUPPLY SHUT DOWN!

Error Number One or more supplies on the **A8** post-regulator assembly have 22 been shut down due to an over-current, over-voltage, or under-voltage condition. Refer to the "Power Supply Troubleshooting" chapter.

POWER UNLEVELED

Error Number There is either a hardware failure in the source or you have 179 attempted to set the power level too high. Check to see if the power level you set is within **specifications**. If it is, refer to the "Source Troubleshooting" chapter. You will only receive this

message over the HP-IB. On the analyzer, P? is displayed.

PRINTER: error

Error Number The parallel port printer is malfunctioning. The analyzer cannot 175 complete the copy function.

PRINTER: not handshaking

Error Number The printer at the parallel port is not responding. $177\,$

PRINTER: not on, not connected, wrongaddrs

Error Number The printer does not respond to control. Verify power to the 24 printer, and check the HP-IB connection between the analyzer and the printer. Ensure that the printer address recognized by the analyzer matches the **HP-IB** address set on the printer itself.

PROBE POWER SHUT DOWN!

Error Number The analyzer biasing supplies to the HP **85024A** external probe 23 are shut down due to excessive current. Troubleshoot the probe, and refer to the "Power Supply Troubleshooting" chapter.

PWR MTR: NOT ON/CONNECTED OR WRONG ADDRS

Error Number The power meter cannot be accessed by the analyzer. Verify

117 that the power meter address and model number set in the analyzer match the address and model number of the actual power meter.

SAVE FAILED. INSUFFICIENT MEMORY

Error Number You cannot store an instrument state in an internal register due 151 to insufficient memory. Increase the available memory by clearing one or more save/recall registers and pressing **Preset**, or by storing **files** to a disk.

SELF TEST #n FAILED

Service Error Internal test #n has failed. Several internal test routines are Number 112 executed at instrument preset. The analyzer reports the first **failure** detected. Refer to the internal tests and the self-diagnose feature descriptions earlier in this chapter.

SOURCE POWER TURNED OFFRESEUNDEROWERMENU

Information Message You have exceeded the maximum power level at one of the inputs and power has been automatically reduced. The annotation P↓ indicates that power trip has been activated. When this occurs, reset the power and then press Menu SOURCE PWR on OFF, to switch on the power. This message follows error numbers 57, 58, and 59.

SWEEP MODE CHANGED TO CW TIME SWEEP

Error Number If you select external source auto or **manual** instrument mode 187 and you do not **also** select CW mode, the **analyzer** is automatically switched to CW.

TEST ABORTED

Error Number You have prematurely stopped a service test. $113\,$

TROUBLE! CHECK SETUP AND START OVER

Service Error Your equipment setup for the adjustment procedure in progress Number 115 is not correct. Check the setup diagram and instructions in the "Adjustments and Correction Constants" chapter. Start the procedure again.

WRONG DISK FORMAT, INITIALIZE DISK

Error Number You have attempted to store, load, or read file titles, but your disk format does not conform to the Logical Interchange Format (LIF). You must initialize the disk before reading or writing to it.

Error Terms

The analyzer generates and stores factors in internal arrays when a measurement error-correction (measurement calibration) is performed. These factors are known by the following terms:

- error terms
- E-terms
- measurement calibration coefficients

The analyzer creates error terms by measuring **well-defined** calibration devices over the frequency range of interest and comparing the measured data with the ideal model for the devices The differences represent systematic (repeatable) errors of the analyzer system. The resulting calibration coefficients are good representations of the systematic error sources. For details on the various levels of error-correction, refer to the **"Optimizing** Measurement Results" chapter of *the HP 8753E Network Analyzer User's Guide*. For details on the theory of error-correction, refer to the "Application and Operation Concepts" chapter of *the HP 8753ENetwork Analyzer User's Guide*.

Error Terms Can Also Serve a Diagnostic Purpose

Specific parts of the analyzer and its accessories directly contribute to the magnitude and shape of the error terms Since we know this correlation and we know what typical error terms look like, we can examine error terms to monitor system performance (preventive maintenance) or to identify faulty components in the system (troubleshooting).

 Preventive Maintenance: A stable, repeatable system should generate repeatable error terms over long time interval% for example, six months If you make a hardcopy record (print or plot) of the error terms, you can periodically compare current error terms with the record. A sudden shift in error terms reflects a sudden shift in systematic errors, and may indicate the need for further troubleshooting. A long-term trend often reflects drift, connector and cable wear, or gradual degradation, indicating the need for further investigation and preventive maintenance. Yet, the system may still conform to specifications. The cure is often as simple as cleaning and gaging connectors or inspecting cables.

• Troubleshooting: If a subtle **failure** or mild performance problem is suspected, the magnitude of the error terms should be compared against values generated previously with the same **instrument** and calibration kit. This comparison will produce the most precise view of the problem.

However, if previously generated values are not available, compare the current values to the typical values listed in **Table** 11-2, and shown graphically on the plots in this chapter. If the magnitude exceeds its limit, inspect the corresponding system component. If the condition causes system verification to fail, replace the component.

Consider the following while troubleshooting:

- □ All parts of the system, including cables and calibration devices, can contribute to systematic errors and impact the error terms.
- Connectors must be clean, gaged, and within specification for error term analysis to be meaningful.
- Avoid unnecessary bending and flexing of the cables following measurement calibration, **minimizing** cable instability errors.
- Use good connection techniques during the measurement calibration. The connector interface must be repeatable. Refer to the "Principles of Microwave Connector Care" section in the "Service Equipment and Analyzer Options" chapter for information on connection techniques and on cleaning and gaging connectors.
- □ Use error term analysis to troubleshoot minor, subtle performance problems. Refer to the "Start Troubleshooting Here" chapter if a blatant **failure** or gross measurement error is evident.
- □ It is often worthwhile to perform the procedure twice (using two distinct measurement calibrations) to establish the degree of repeatability. If the results do not seem repeatable, check all connectors and cables.

Full Two-Port Error-Correction Procedure

Note This is the most accurate error-correction procedure. Since the analyzer takes both forward and reverse sweeps, this procedure takes more time than the other correction procedures.

- 1. Set any measurement parameters that you want for the device measurement: power, format, number of points, IF bandwidth.
- 2. To access the measurement correction menus, press:

Cal

3. If your calibration kit is different than the kit specified under the CAL KIT [] softkey, press:

CAL KIT SELECT CAL KIT (select your type of kit) RETURN

4 To select the correction type, press:

CALIBRATE MENU FULL 2-PORT REFLECTION

5. Connect a shielded open circuit to PORT 1.

Figure 11-1. Standard Connections for Full Two-Port Error-Correction

6. To measure the standard, when the displayed trace has settled, press: FORWARD: OPEN

The analyzer underlines the **OPEN** softkey after it measures the standard.

- 7. Disconnect the open, and connect a short circuit to PORT 1.
- 8. To measure the device, when the displayed trace has settled, press: FORWARD: SHORT

The analyzer underlines the **SHORT** softkey after it measures the standard.

- 9. Disconnect the short, and connect an impedance-matched load to PORT 1.
- 10. To measure the standard, when the displayed trace has settled, press:

FORWARD? LOAD

The analyzer **underlines** the **LOAD** softkey after it measures the standard.

- 11. Repeat the open-short-load measurements descried above, but connect the devices in turn to PORT 2, and use the <u>REVERSE: OPEN</u>, <u>REVERSE: SHORT</u>, and <u>REVERSE: LOAD</u> softkeys.
- 12. To compute the reflection correction coefficients, press:

STANDARDS DONE

- 13. To start the transmission portion of the correction, press: TRANSMISSION.
- 14. Make a "through" connection between the points where you will connect your device under test as shown in F"igure 11-1.

Note Include any adapters or cables that you will have in the device measurement. That is, connect the standard device where you will connect your device under test.

- **Note** The through in most calibration kits is defined with zero length. The correction will *not* work properly if a non-zero length through is used, unless the calibration kit is modified to change the defined through to the length used. This is important for measurements of non-insertable devices (devices having ports that are both male or both female). The modified calibration kit must be saved as the user calibration kit, and the **USER KIT** must be selected before the calibration is started.
- 15. To measure the standard, when the trace has settled, press:

DO BOTH FWD+REV

The analyzer underlines the softkey label after it makes each measurement.

- 16. Press ISOLATION and select from the following two options:
 - \square If you will be measuring devices with a dynamic range less than 90 dB, press:

OMIT ISOLATION ISOLATION DONE

- □ If you will be measuring devices with a dynamic range greater than 90 dB, follow these steps:
 - a. Connect impedance-matched loads to PORT 1 and PORT 2.
- **Note** If you will be measuring highly reflective devices, such as filters, use the test device, connected to the reference plane and terminated with a load, for the isolation standard.
 - b. Activate at least four times more averages than desired during the device measurement.
 - c. Press Cal RESUME CAL SEQUENCE FWD ISOL'N ISOL'N STD REV ISOL'N ISOL'N STD ISOLATION DONE.
 - d. Return the averaging to the original state of the measurement, and press (Cal) RESUME CAL SEQUENCE.
- 17. To compute the error coefficients, press:

DONE 2=PORT CAL

11-6 Error Terms
The analyzer displays the corrected measurement trace. The analyzer also shows the notation Cor at the left of the screen, indicating that error-correction is on.

- Note You can save or store the measurement correction to use for later measurements Use the menus under <u>Save/Recall</u>, or refer to "Printing, Plotting, and Saving Measurement Results" located in the *HP 8753E Network Analyzer* User's *Guide* for procedures.
- 18. This completes the full two-port correction procedure. You can connect and measure your device under test.

Calibration	Calibration Type				Test
Coefficient	Response	Response and Isolation*	1-port	2 -port †	Number
1	$\mathbf{E}_{\mathbf{R}}$ or $\mathbf{E}_{\mathbf{T}}$	$\mathbf{E}_{\mathbf{X}}$ ($\mathbf{E}_{\mathbf{D}}$)	$\mathbf{E}_{\mathbf{D}}$	E _{DF}	32
2		$\mathbf{E}_{\mathrm{T}}\left(\mathbf{E}_{\mathrm{R}}\right)$	$\mathbf{E}_{\mathbf{S}}$	$\mathbf{E_{SF}}$	33
3			$\mathbf{E}_{\mathbf{R}}$	$\mathbf{E_{RF}}$	34
4				EXF	35
5				$\mathbf{E_{LF}}$	36
6				$\mathbf{E_{TF}}$	37
7				E _{DR}	38
8				$\mathbf{E}_{\mathbf{SR}}$	39
9				E _{RR}	40
10				EXR	41
11				E_{LR}	42
12				$\mathbf{E_{TR}}$	43

Table 11-1. Calibration Coefficient Terms and Tests

VOTES:

Meaning of first subscript: D-directivity; S-source match; R-reflection tracking; X-crosstalk; -load match; T-transmission tracking.

Meaning of second subscript: F-forward; R-reverse.

⁵ Response and Isolation cal yields: E_X or E_T if a transmission parameter (S_{21}, S_{12}) or E_D or E_R if a reflection parameter (S_{11}, S_{22}).

One-path, 2-port cal duplicates arrays 1 to 6 in arrays 7 to 12.

Error Term Inspection

Note If the correction is not active, press [call **CORRECTION ON**.

1. Press System SERVICE MENU TESTS (32) x1 EXECUTE TEST.

The analyzer copies the first calibration measurement trace for the selected error term into memory and then displays it. **Table 11-1** lists the test numbers

- 2. Press (Scale Ref) and adjust the scale and reference to study the error term trace.
- 3. Press (Marker Fctn) and use the marker functions to determine the error term magnitude.
- 4. Compare the displayed measurement trace to the trace shown in the following "Error Term descriptions" section, and to previously measured data. If data is not available from previous measurements, refer to the typical uncorrected performance specifications listed in **Table** 11-2.
- 5. Make a hardcopy of the measurement results:
 - a. Connect a printing or plotting peripheral to the analyzer.
 - b. Press Local SYSTEM CONTROLLER SET ADDRESSES and select the appropriate peripheral to verify that the HP-IB address is set correctly on the analyzer.
 - C. Press (Save/Recall) and then choose either PRINT or PLOT.
 - d. Press **Display MORE TITLE** and title each data trace so that you can identify it later.

For detailed information on creating hardcopies, refer to "Printing, Plotting, and Saving Measurement Results" in the *HP 8753E Network Analyzer User's Guide*.

If Error **Terms** Seem Worse than Typical Values

- 1. Perform a system verification to verify that the system still conforms to specifications.
- 2. If system verification fails, refer to "Start Troubleshooting Here."

Uncorrected Performance

The following table shows typical performance without error-correction. RF cables are not used except as noted. Related error terms should be within these values.

	Frequency	Frequency Range (GHz)		
	0.0003 to 3.0	3.0 to 6.0		
Directivity	30 dB	25 dB		
Source Match	16 dB	14 dB		
Load Match	16 dB	14 dB		
Reflection Tracking*	±1.5 dB	+0.5 dB, -2.5 dB		
Transmission Tracking*	±1.5 dB	+0.5 dB, -2.5 dB		
Crosstalk	90 dB	80 dB		
*Deviation from nominal trace across the frequency range.				

Table 11-2. Uncorrected System Performance

Error Term Descriptions

The error term descriptions in this section include the following information:

- significance of each error term
- typical results following a full **2-port** error-correction
- guidelines to interpret each error term

The same description applies to both the forward (F) and reverse (R) terms.

Directivity (EDF and EDR)

Description

Directivity is a measure of any detected power that is reflected when a load is attached to the test port. These are the uncorrected forward and reverse directivity error terms of the system. The directivity error of the test port is determined by measuring the reflection (S11, S22) of the load during the error-correction procedure.

Significant System Components

- load used in the error-correction (calibration)
- test port connectors
- test port cables

Affected Measurements

Low reflection device measurements are most affected by directivity errors.

Figure 11-2. Typical EDF/EDR without and with Cables

Source Match **(ESF** and ESR)

Description

Source match is a measure of test port connector match, as well as the match between all components from the source to the test port. These are the forward and reverse uncorrected source match terms of the driven port.

Significant System Components

- load calibration kit device
- open calibration kit device
- short calibration kit device
- bridge
- test port connectors
- bias tees
- step attenuator
- transfer switch
- test port cables

Affected Measurements

Reflection and transmission measurements of highly reflective devices are most affected by source match errors.

sg633s

Figure 11-3. Typical **ESF/ESR** without and with Cables

Reflection Tracking (ERF and ERR)

Description

Reflection tracking is the difference between the frequency response of the reference path (R path) and the frequency response of the reflection test path (A or B input path).

Significant System Components

- open calibration kit device
- short calibration kit device
- R signal path if large variation in both ERF and ERR
- A or B input paths if only one term is affected

Affected Measurements

All reflection measurements (high or low return loss) are affected by the reflection tracking errors.

Figure 11-4. Typical **ERF/ERR** without and with Cables

Isolation (Crosstalk, **EXF** and EXE)

Description

Isolation is a measure of the leakage between the test ports and the signal paths The isolation error terms are characterized by measuring transmission (S21, S12) with loads attached to both ports during the error-correction procedure. Since these terms are low in magnitude, they are usually noisy (not very repeatable). The error term magnitude changes dramatically with IF bandwidth: a 10 Hz IF bandwidth must be used in order to lower the noise floor beyond the crosstalk specification. Using averaging will also reduce the peak-to-peak noise in this error term.

Significant System Components

■ sampler crosstalk

Affected Measurements

Transmission measurements, (primarily where the measured signal level is very low), are affected by isolation errors. For example, transmission measurements where the insertion loss of the device under test is large.

Figure 11-5. Typical **EXF/EXR** with 10 Hz Bandwidth and with 3 **kHz** Bandwidth

Load Match (ELF and **ELR**)

Description

Load match is a measure of the impedance match of the test port that terminates the output of a **2-port** device. Load match error terms are characterized by measuring the reflection (S11, S22) responses of a "through" configuration during the calibration procedure.

Significant System Components

- "through" cable
- cable connectors
- test port connectors

Affected Measurements

All transmission and reflection measurements of a low insertion loss two-port devices are most affected by load match errors. Transmission measurements of lossy devices are also affected.

Figure 11-6. Typical ELF/ELR

Transmission Tracking (ETF and ETR)

Description

Transmission tracking is the difference between the frequency response of the reference path (including R input) and the transmission test path (including A or B input) while measuring transmission. The response of the test port cables is included. These terms are characterized by measuring the transmission (S21, S12) of the "through" configuration during the error-correction procedure.

Significant System Components

- R signal path (if both ETF and ETR are bad)
- A or B input paths
- "through" cable

Affected Measurements

All transmission measurements are affected by transmission tracking errors.

Figure 11-7. Typical ETF/ETR

Theory of Operation

This chapter is divided into two major sections:

- "How the HP 8753E Works" gives a general description of the HP 8753E network analyzer operation.
- "A Close Look at the Analyzer's Functional Groups" provides more detailed operating theory for each of the analyzer's functional groups.

How the HP 8753E Works

Network analyzers measure the reflection and transmission characteristics of devices and networks. A network analyzer test system consists of the following:

- source
- signal-separation devices
- receiver
- display

The analyzer applies a signal that is either transmitted through the device under test, or reflected from its input, and then compares it with the incident signal generated by the swept RF source. The signals are then applied to a receiver for measurement, signal processing, and display.

The HP 8753E vector network analyzer integrates a high resolution synthesized RF source, test set, and a dual channel three-input receiver to measure and display magnitude, phase, and group delay of transmitted and reflected power. The HP 8753E Option 010 has the additional capability of transforming measured data from the frequency domain to the time domain. Figure 12-1 is a simplified block diagram of the network analyzer system. A detailed block diagram of the analyzer is located at the end of Chapter 4, "Start Troubleshooting Here."

The Built-In Synthesized Source

The analyzer's built-in synthesized source produces a swept RF signal in the range of 30 kHz to 3.0 GHz. The HP 8753E Option 006 is able to generate signals up to 6 GHz. The source output power is leveled by an internal ALC (automatic leveling control) circuit. To achieve frequency accuracy and phase measuring capability, the analyzer is phase locked to a highly stable crystal oscillator.

For this purpose, a portion of the transmitted signal is routed to the R channel input of the receiver, where it is sampled by the phase detection loop and fed back to the source.

The Source Step Attenuator

The 70 **dB**, electro-mechanical, step attenuator contained in the source has very low loss. It is used to adjust the power level to the device under test without changing the level of the incident power in the reference path. The user sets the attenuation levels via the front panel softkeys.

The Built-In **Test** Set

The HP 8753E features a built-in test set that provides the signal separation capability for the device under test, as well as to the signal-separation devices. The signal separation devices are needed to separate the incident signal from the transmitted and reflected signals. The incident signal is applied to the R channel input via an external jumper cable on the front panel. Meanwhile, the transmitted and reflected signals are internally routed from the test port couplers to the inputs of the A and B sampler/mixers in the receiver. Port 1 is connected to the A input and port 2 is connected to the B input.

The test set contains the hardware required to make simultaneous transmission and reflection measurements in both the forward and reverse directions. A solid-state transfer switch in the built-in test set allows reverse measurements to be made without changing the connections to the device under test.

The Receiver Block

The receiver block contains three sampler/mixers for the R, A and B inputs. The signals are sampled, and down-converted to produce a 4 kHz IF' (intermediate frequency). A multiplexer sequentially directs each of the three IF signals to the ADC (analog to digital converter) where it is converted from an analog to a digital signal to be measured and processed for viewing on the display. Both amplitude and phase information are measured simultaneously, regardless of what is displayed on the analyzer.

The Microprocessor

A microprocessor takes the raw data and performs all the required error correction, trace math, formatting, scaling, averaging, and marker operations, according to the instructions from the front panel or over HP-IB. The formatted data is then displayed.

Required Peripheral Equipment

In addition to the analyzer, a system requires calibration standards for vector accuracy enhancement, and cables for interconnections.

A Close Look at the Analyzer's Functional Groups

The operation of the analyzer is most logically described in five functional groups. Each group consists of several major assemblies, and performs a distinct function in the instrument. Some assemblies are related to more than one group, and in fact all the groups are to some extent interrelated and affect each other's performance.

Power Supply. The power supply functional group consists of the A8 post regulator and the A15 preregulator. It supplies power to the other assemblies in the instrument.

Digital Control. The digital control group consists of the Al front panel and A2 front panel processor, the A9 CPU, the A16 rear panel, the A18 display and the A19 graphics system processor (GSP). The A10 digital IF assembly is also related to this group. These assemblies combine to provide digital control for the analyzer.

Source. The source group consists of the A3 source, A7 pulse generator, All phase lock, A12 reference, A13 fractional-N (analog), and A14 fractional-N (digital) assemblies. The A4 sampler is also related since it is part of the source phase lock loop. The source supplies a phase-locked RF signal to the device under test.

Signal Separation. The signal separation group performs the function of an S-parameter test set, dividing the source signal into a reference path and a test path, and providing connections to the device under test. It consists of the A24 transfer switch, the A21 test port 1 coupler, and the A22 test port 2 coupler.

Receiver. The receiver group consists of the A4/A5/A6 sampler/mixers and the A10 digital IF. The A12 reference assembly and the A9 CPU are also related. The receiver measures and processes input signals for display.

The following pages describe the operation of each of the functional groups.

Power Supply Theory

The power supply functional group consists of the A15 preregulator and the A8 post regulator. These two assemblies comprise a switching power supply that provides regulated DC voltages to power all assemblies in the analyzer. The A15 preregulator is enclosed in a casting at the rear of the instrument behind the display. It is connected to the A8 post regulator by a wire bus A15W1. Figure 12-2 is a simplified block diagram of the power supply group.

Figure 12-2. Power Supply Functional Group, Simplified Block Diagram

A15 Preregulator

The A15 preregulator steps down and **rectifies** the line voltage. It provides a fully regulated +5 V digital supply, and several preregulated voltages that go to the A8 post regulator assembly for additional regulation.

The A15 preregulator assembly includes the line power module, a 60 kHz switching preregulator, and overvoltage protection for the +5 V digital supply. It provides LEDs, visible from the rear of the instrument, to indicate either normal or shutdown status.

Line Power Module

The line power module includes the line power switch, voltage selector switch, and main fuse. The line power switch is activated from the front panel. The voltage selector switch, accessible at the rear panel, adapts the analyzer to local line voltages of approximately 115 V or 230 V (with 350 VA maximum). The main fuse, which protects the input side of the preregulator against drawing too much line current, is also accessible at the rear panel. Refer to the *HP 8753E Network Analyzer Installation and Quick Start Guide* for line voltage tolerances and other power considerations.

PreregulatedVoltages

The switching preregulator converts the line voltage to several DC voltages. The regulated +5 V digital supply goes directly to the motherboard. The following **partially** regulated voltages are routed through **A15W1** to the **A8** post regulator for **final** regulation:

+70 V + 25 V + 18 V - 18 V + 8 V - 8 V

Regulated + 5 V Digital Supply

The + 5 VD supply is regulated by the control circuitry in the A15 preregulator. It goes directly to the motherboard, and from there to all assemblies requiring a low noise digital supply. A + 5 V sense line returns from the motherboard to the A15 preregulator. The +5 V CPU is derived from the +5 VD in the A8 post regulator and goes directly to the A19 graphics system processor.

In order for the preregulator to function, the +5 V digital supply must be loaded by one or more assemblies, and the +5 V sense line must be working. If not, the other preregulated voltages will not be correct.

Shutdown Indications: the Green LED and Red LED

The green LED is on in normal operation. It is off when line power is not connected, not switched on, or set too low, or if the line fuse has blown.

The red LED, which is off in normal operation, lights to indicate a fault in the +5 V supply. This may be an over/under line voltage, over line current, or overtemperature condition. Refer to the troubleshooting chapters for more information.

A8 Post Regulator

The A8 post regulator filters and regulates the DC voltages received from the A15 preregulator. It provides fusing and shutdown circuitry for individual voltage supplies. It distributes regulated constant voltages to individual assemblies throughout the instrument. It includes the overtemperature shutdown circuit, the variable fan speed circuit, and the air flow detector. Nine green LEDs provide status indications for the individual voltage supplies

Refer to the Power Supply Block Diagram located at the end of Chapter 5, "Power Supply Troubleshooting", to see the voltages provided by the **A8** post regulator.

Voltage Indications: the Green LEDs

The nine green **LEDs** along the top edge of the **A8** assembly are on in normal operation, to indicate the correct voltage is present in each supply. If they are off or flashing, a problem is indicated. The troubleshooting procedures later in this chapter detail the steps to trace the cause of the problem.

Shutdown Circuit

The shutdown circuit is triggered by overcurrent, overvoltage, undervoltage, or overtemperature. It protects the instrument by causing the regulated voltage supplies to be shut down. It also sends status messages to the A9 CPU to trigger warning messages on the analyzer display. The voltages that are not shut down are the +5 VD and +5 VCPU digital supplies from the preregulator, the fan supplies, the probe power supplies, and the display supplies. The shutdown circuit can be disabled momentarily for troubleshooting purposes by using a jumper to connect the SDIS line (A8TP4) to ground.

Variable Fan Circuit and Air Flow Detector

The fan power is derived directly from the + 18 V and -18 V supplies from the A15 preregulator. The fan is not fused, so that it will continue to provide airflow and cooling when the instrument is otherwise disabled. If overheating occurs, the main instrument supplies are shut down and the fan runs at full speed. An overtemperature status message is sent to the A9 CPU to initiate a warning message on the analyzer display. The fan **also runs** at full speed if the air flow detector senses a low output of air from the fan. (Pull speed is normal at initial power on.) **Display** Power

The A8 assembly supplies +5 VCPU to the A19 GSP through the motherboard. The GSP converts a portion of the +5 VCPU to 3.3 V to drive the display and LVDS (low voltage differential signaling) logic The A19 GSP also controls and supplies power to the A27 backlight inverter. The voltages generated by the inverter are then routed to the display. Display power is not connected to the protective shutdown circuitry so that the A18 display assemblies can operate during troubleshooting when other supplies do not work.

Note If blanking pulses from the **A19** GSP are not present, then +**3.3** V will not be sent to the display.

Probe Power

The + 18 V and -18 V supplies are post regulated to + 15 V and -12.6 V to provide a power source at the front panel for an external RF probe or millimeter modules.

Digital Control Theory

The digital control functional group consists of the following assemblies:

- Al front panel
- A2 front panel processor
- A9 CPU
- A10 digital IF
- A16 rear panel
- A18 display
- A19 GSP
- A27 Inverter

These assemblies combine to provide digital control for the entire analyzer. They provide math processing functions, as well as communications between the analyzer and an external controller and/or peripherals Figure 12-3 is a simplified block diagram of the digital control functional group.

Figure 12-3. Digital Control Group, Simplified Block Diagram

Al **Front** Panel

The A1 front panel assembly provides user interface with the analyzer. It includes the keyboard for local user inputs, and the front panel **LEDs** that indicate instrument status The RPG (rotary pulse generator) is not electrically connected to the front panel, but provides user inputs directly to the front panel processor.

A2 Front Panel Processor

The A2 front panel processor detects and decodes user inputs from the front panel and the RPG, and transmits them to the CPU. It has the capability to interrupt the CPU to provide information updates. It controls the front panel LEDs that provide status information to the user.

The A2 also contains the LVDS (low voltage differential signaling) receivers which connect to the graphics processor. The received video signals are routed to the A18 display.

A9 CPU/A10 Digital IF

The **A9** CPU assembly contains the main CPU (central processing unit), the **digital** signal processor, memory storage, and interconnect port interfaces The main CPU is the master controller for the analyzer, including the other dedicated microprocessors The memory includes EEPROM, DRAM, flash ROM, SRAM and boot ROM.

Data from the receiver is serially clocked into the **A9** CPU assembly from the **A10** digital IF'. The data taking sequence is triggered either from the **A14 fractional-N** assembly, externally from the rear panel, or by software on the **A9** assembly.

Main CPU

The main CPU is a **32-bit** microprocessor that maintains **digital** control over the entire instrument through the instrument **bus**. The main CPU receives external control information from the front panel or HP-IB, and performs processing and formatting operations on the raw data in the main RAM. It controls the digital **signal** processor, the front panel processor, the display processor, and the interconnect port interfaces. In addition, when the analyzer is in the system controller mode, the main CPU controls peripheral devices through the peripheral port interfaces

The main CPU has a dedicated flash ROM that contains the operating system for instrument control. Front panel settings are stored in **SRAM**, with a battery providing at least 5 years of backup storage when external power is off.

Main RAM

The main RAM (random access memory) is shared memory for the CPU and the digital signal processor. It stores the raw data received from the digital signal processor, while additional calculations are performed on it by the CPU. The CPU reads the resulting formatted data from the main RAM and converts it to GSP commands. It writes these commands to the GSP for output to the analyzer display.

EEPROM

EEPROM (electrically-erasable programmable read only memory) contains factory set correction constants **unique** to each instrument. These constants correct for hardware variations to maintain the highest measurement accuracy. The correction constants can be updated by executing the routines in Chapter 3, "Adjustments and Correction Constants."

Digital Signal Processor

The digital signal processor receives the digitized data from the A10 digital IF. It computes discrete Fourier transforms to extract the complex phase and magnitude data from the 4 kHz IF signal. The resulting raw data is written into the main RAM.

Al8 Display

The Al8 display is an 8.4 inch LCD with associated drive circuitry. It receives a +3.3 V power supply from the A19 GSP, along with the voltage generated from the A27 backlight inverter. It receives the following signals from the A19 GSP:

- digital **TTL** horizontal sync
- digital **TTL** vertical sync
- blanking
- data clock
- digital TTL red video
- digital TTL green video
- digital **TTL** blue video

Theory of Operation 12-11

A19 GSP

The A19 graphics system processor is the main interface between the A9 CPU and the Al8 display. The CPU (A9) converts the formatted data to GSP commands and writes it to the GSP. The GSP processes the data to obtain the necessary video signals, which are then used for the following purposes:

- The video signals are used to produce VGA compatible RGB output signals, which are routed to the Al6 rear panel.
- The video signals are converted by an LVDS (low voltage differential signaling) driver which translates the signals to low level differential signals to help **eliminate** radiated emissions The converted video signals are then routed to the A2 assembly, where they are received and sent to the Al8 display.

The A19 assembly receives the +5 VCPU which is used for processing and supplying power to the A27 backlight inverter (+ 5 VCPU) and the Al8 display (3.3 V).

A27 Inverter

The **A27** backlight inverter assembly supplies the ac voltage for the backlight tube in the Al8 display assembly. This assembly takes the + 5 VCPU and converts it to approximately 380 **Vac** with 5 ma of current at 40 **kHz**. There are two control lines:

- Digital ON/OFF
 Analog Brightness
 100% intensity is 0 V
 - \Box 50% intensity is 4.5 V

Al6 Bear Panel

The Al6 rear panel includes the following interfaces:

TEST **SET I/O** INTERCONNECT. This provides control signals and power to operate duplexer test adapters

EXT **REF.** This allows for a frequency reference signal input that can phase lock the analyzer to an external frequency standard for increased frequency accuracy.

The analyzer automatically enables the external frequency reference feature when a signal is connected to this input. When the signal is removed, the analyzer automatically switches back to its internal frequency reference.

12-12 **Theory of** Operation

10 MHZ PRECISION REFERENCE. (Option 1D5) This output is connected to the EXT REF (described above) to improve the frequency accuracy of the analyzer.

AUX INPUT. This allows for a dc or ac voltage input from an external signal source, such as a detector or function generator, which you can then measure, using the S-parameter menu. (You can also use this connector as an analog output in service routines.)

EXT AM. This allows for an external analog signal input that is applied to the ALC circuitry of the analyzer's source. This input analog signal amplitude modulates the RF output signal.

EXT TRIG. This allows connection of an external negative **TTL-compatible** signal that will trigger a measurement sweep. The trigger can be set to external through **softkey** functions.

TEST SEQ. This outputs a **TTL** signal that can be programmed in a test sequence to be high or low, or pulse (10 μ seconds) high or low at the end of a sweep for a robotic part handler interface.

LIMIT TEST. This outputs a **TTL** signal of the limit test results as follows:

Pass: TTL high

Fail: TTL low

VGA OUTPUT. This provides a video output of the analyzer display that is capable of running a PC VGA monitor.

Theory of Operation 12-13

www.valuetronics.com

Source Theory Overview

The source produces a highly stable and accurate RF output signal by phase locking a YIG oscillator to a harmonic of the synthesized **VCO** (voltage controlled oscillator). The source output produces a CW or swept signal between 300 kHz and 3 GHz (or 300 kHz and 6 GHz for Option 006) with a maximum leveled power of + 10 dBm. The source's built-in 70 dB step attenuator allows the power to go as low as -85 dBm.

The full frequency range of the source is produced in 14 subsweeps, one in super low band, two in low band, and eleven in high band. The high band frequencies (16 MHz to 3 GHz) or (16 MHz to 6 GHz for Option 006) are achieved by harmonic mixing, with a different harmonic number for each subsweep. The low band frequencies (300 kHz to 16 MHz) are down-converted by fundamental mixing. The super low band frequencies (10 kHz to 300 kHz) are sent directly from the Al2 reference board to the output of the A3 source assembly. This band is not phased locked nor does it use the ALC. It is the basic amplified output of the fractional-N synthesizer.

The source functional group consists of the individual assemblies described below.

A14/A13 Fractional-N

These two assemblies comprise the synthesizer. The 30 to 60 MHz VCO in the Al4 assembly generates the stable LO frequencies for fundamental and harmonic mixing.

Al2 Reference

This assembly provides stable reference frequencies to the rest of the instrument by dividing down the output of a 40 MHz crystal oscillator. In low band operation, the output of the fractional-N synthesizer is mixed down in the Al2 reference assembly. (The 2nd **LO** signal from the Al2 assembly is explained in Receiver Theory.) The Al2 is **also** the origin of the super low band portion of the 87533 source.

12-14 Theory of Operation

A7 Pulse Generator

A step recovery diode in the pulse generator produces a comb of harmonic multiples of the VCO output. These harmonics provide the high band LO (local oscillator) input to the samplers. In low band and super low band the operation the pulse generator is turned off.

All Phase Lock

This assembly compares the **first** IF (derived from the source output in the **A4** sampler) to a stable reference, and generates an error voltage that is integrated into the drive for the **A3** source assembly.

A3 Source

This assembly includes a 3.0 to 6.8 GHz YIG oscillator and a 3.8 GHz cavity oscillator. The outputs of these oscillators are mixed to produce the RF output signal. In Option 006 (30 kHz to 6 GHz) the frequencies 3.0 to 6.0 GHz are no longer a mixed product, but are the direct output of the YIG Oscillator. The signal tracks the stable output of the synthesizer. The ALC (automatic leveling control) circuitry is also in the A3 assembly.

Source Super Low Band Operation

The Super Low Band Frequency Range is 10 kHz to 300 kHz. These frequencies are generated by the A12 Reference Board. They are the **amplified** output of the fractional-N synthesizer. This output is not phase locked and is not subject to ALC control. Refer to **Table** 12-1.

Table 12-1. Super Lo	w Band Subsweep	Frequencies
----------------------	------------------------	-------------

Fractional-N (MHz)	1st IF (MHz)	RF Output (MHz)
40.0 to 43.3	0.010 to 0.300	0.010 to 0 . 300

Source Low Band Operation

The low band frequency range is 300 kHz to 16 MHz. These frequencies are generated by locking the A3 source to a reference signal. The reference signal is synthesized by mixing down the fundamental output of the fractional-N VCO with a 40 MHz crystal reference signal. Low band operation differs from high band in these respects: The reference frequency for the All phase lock is not a **fixed** 1 MHz signal, but varies with the frequency of the fractional-N VCO signal. The sampler diodes are biased on to pass the signal through to the mixer. The 1st IF signal from the A4 sampler is not fixed but is identical to the source output signal and sweeps with it. The following steps outline the low band sweep sequence, illustrated in Figure 12-4.

- 1. A **signal (FN** LO) is generated by the fractional-N VCO. The VCO in the **A14 Fractional-N** assembly generates a CW or swept signal that is 40 MHz greater than the start frequency. The signal is divided down to 100 **kHz** and phase locked in the **A13** assembly, as in high band operation.
- 2. The fractional-N VCO **signal** is mixed with 40 **MHz** to produce a reference signal. The signal (**FN** LO) from the Fractional-N VCO goes to the **A12** reference assembly, where it is mixed with the 40 MHz VCXO (voltage controlled crystal oscillator). The resulting signal is the reference to the phase comparator in the All assembly.
- 3. The **A3** source is pretuned. The source output is fed to the **A4** sampler. The pretuned DAC in the All phase lock assembly sets the **A3** source to a frequency 1 to 6 MHz above the start frequency. This signal (source output) goes to the **A4** R input sampler/mixer assembly.
- 4. The **signal** from the source is fed back **(1st** IF') to the phase comparator. The source output signal passes directly through the sampler in the **A4** assembly, because the sampler is biased on. The signal **(1st IF)** is fed back unaltered to the phase comparator in the All phase lock assembly. The other input to the phase comparator is the heterodyned reference signal from the **A12** assembly. Any frequency difference between these two signals produces a proportional error voltage.
- 5. A tuning signal **(YO** DRIVE) **tunes** the source and **phase** lock is achieved. The error voltage is used to drive the **A3** source YIG oscillator to bring the YIG closer to the reference frequency. The loop process continues until the source frequency and the reference frequency are the same, and phase lock is achieved.

6. A synthesized sub sweep is generated. The source tracks the synthesizer. When lock is achieved at the start frequency, the synthesizer starts to sweep. This changes the phase lock reference frequency, and causes the source to track at a difference frequency 40 MHz below the synthesizer.

Figure 12-4. Low Band Operation of the Source

The full low band is produced in two sub sweeps, to allow addition IF filtering below 3 MHz. At the transition between subsweeps, the source is pretuned and then relocks. **Table** 12-2 lists the low band **subsweep** frequencies at the fractional-N VCO and the RF output.

Fractional-N (MHz)	1st IF (MHz)	Source Output (MHz)
40.3 to 43.3	0.3 to 3.3	0.3 to 3.3
43.3 to 56.0	3.3 to 16.0	3.3 to 16.0

 Table 12-2.
 Low Band Subsweep Frequencies

Source High Band Operation

The high band frequency range is 16 MHz to 3.0 **GHz** or 16 MHz to 6.0 **GHz** with Option 006. These frequencies are generated in subsweeps by phase-locking the **A3** source signal to harmonic multiples of the fractional-N VCO. The high band **subsweep** sequence, **illustrated** in **Figure** 12-5, follows these steps:

- 1. A **signal (HI** OUT) is generated by the fractional-N VCQ. The VCO in the **A14** fractional-N assembly generates a CW or swept signal in the range of 30 to **60** MHz. This signal is synthesized and phase locked to a 100 **kHz** reference signal from the **A12** reference assembly. The signal from the fractional-N VCO is divided by 1 or 2, and goes to the pulse generator.
- 2. A comb of harmonics **(1st** LO) is produced **in** the **A7** pulse generator. The divided down signal from the fractional-N VCO drives a step recovery diode (SRD) in the **A7** pulse generator assembly. The SRD multiplies the fundamental signal from the fractional-N into a comb of harmonic frequencies The harmonics are used as the **1st** LO (local oscillator) signal to the samplers One of the harmonic signals is 1 MHz below the start signal set from the front panel.
- 3. The **A3** source is pretuued. The source output is fed to the **A4** sampler. The **pretune** DAC in the All phase lock assembly sets the **A3** source to a **first** approximation frequency (1 to 6 MHz higher than the start frequency). This signal (RF OUT) goes to the **A4** R input sampler/mixer assembly.
- 4. The synthesizer **signal** and the source signal are combined by the sampler. A difference frequency is generated. In the **A4** sampler, the **1st** LO signal from the pulse generator is combined with the source output signal. The **IF** (intermediate frequency) produced is a **first** approximation of 1 MHz. This signal **(1st** IF') is routed back to the A11 phase lock assembly.
- 5. The difference frequency **(1st** IF') from the **A4** sampler is compared to a reference. The **1st** IF feedback signal from the **A4** is filtered and applied to a phase comparator circuit in the A11 phase lock assembly. The other input to the phase comparator is a crystal controlled 1 MHz signal from the **A12** reference assembly. Any frequency difference between these two signals produces a proportional error voltage.
- 6. A **tuning signal (YO DRIVE)** tunes the source and phase lock is achieved. The error voltage is used to drive the **A3** source YIG oscillator, in order to bring it closer to the required frequency. The loop process continues until the **1st** IF feedback signal to the phase comparator is equal to the 1 MHz reference signal, and phase lock is achieved.

7. A synthesized **subsweep** is generated by **A13/A14.** The **A3** source tracks the synthesizer. when the source is phase locked to the synthesizer at the start frequency, the synthesizer starts to sweep. The phase locked loop forces the source to track the synthesizer, **maintaining** a constant 1 **MHz 1st** IF signal.

The full high band sweep is generated in a series of subsweeps, by phase locking the **A3** source signal to harmonic multiples of the fractional-N VCO. The 16 to 31 MHz **subsweep** is produced by a one half harmonic, using the **divide-by-2** circuit on the **A14** assembly. At the transitions between subsweeps, the source is **pretuned** and then **relocks**. **Table** 12-3 lists the high band **subsweep** frequencies from the fractional-N VCO and the source output.

Figure 12-5. High Band Operation of the Source

Fractional-N (MHz)	Harmonic	source output (MHz)
30 to 60	1/2	16 to 31
30 to 60	1	31 to 61
30 to 60	2	61 to 121
40 to 59	3	121 to 178
35.4 to 59.2	5	178 to 296
32.8 to 59.4	0	296 to 536
35.7 to 59.5	15	536 to 893
33.0 to 59.5	27	893 to 1607
31.5 to 58.8	51	1607 to 3000
option 006		
37.0 to 59.5	83	3000 to 4950
49.0 to 59.4	101	4950 to 6000

 Table 12-3. High Band Subsweep Frequencies

Source Operation in other Modes/Features

Resides the normal network analyzer mode, the HP **8753E** has extra modes and features to make additional types of measurements The following describes the key differences in how the analyzer operates to achieve these new measurements

Frequency Offset

The analyzer can measure frequency-translating devices with the frequency offset feature.

The receiver operates normally. However, the source is pretuned to a different frequency by an offset entered by the user. The device under test **will** translate this frequency back to the frequency the receiver expects. Otherwise, phase locking and source operation occur as usual.

Harmonic Analysis (Option 002)

The **analyzer** can measure the **2nd** or **3rd** harmonic of the fundamental source frequency, on a swept or CW basis, with the harmonic analysis feature (optional).

To make this measurement, the reference frequency (normally 1 MHz) from the **A12** reference assembly to the All phase lock assembly is divided by 1, 2, or 3. See **Figure** 12-6.

The fractional-N assemblies are also tuned so that the correct harmonic (comb tooth) of the **1st** LO is 0.500 or 0.333 MHz below the source frequency instead of the usual 1.000 MHz. **The** analyzer pretunes the **A3** source normally, then phase locks the **1st** IF to the new reference frequency to sweep the fundamental source frequency in the usual way. The key difference is that the **1st** IF (output from the R sampler) due to the fundamental and used for phase locking is now 0.500 or 0.333 MHz instead of 1.000 MHz.

Since the chosen VCO harmonic and the source differ by 0.500 or 0.333 MHz, then another VCO harmonic, 2 or 3 times higher in frequency, will be exactly 1.000 MHz away from the **2nd** or **3rd** harmonic of the source frequency. The samplers, then, will also down-convert these harmonics to yield the desired components in the **1st** IF at 1.000 MHz. Narrow **bandpass filters** in the receiver eliminate all but the 1.000 MHz signals; these pass through to be processed and displayed.

Figure 12-6. Harmonic Analysis

External Source Mode

In external source mode, the analyzer phase locks its receiver to an external signal source. This source must be CW (not swept), but it does not need to be synthesized. The user must enter the source frequency into the analyzer. (The analyzer's internal source output is not used.)

To accomplish this, the phase lock loop is reconnected so that the tuning voltage from the A11 phase lock assembly controls the VCO of the**A14** fractional-N assembly and not the **A3** source. See Figure 12-7. The **VCO's** output still drives the **1st** LO of the samplers and down-converts the RF signal supplied by the external source. The resulting **1st** IF is fed back to the A11 phase lock assembly,

compared to the 1.000 MHz reference, and used to generate a **tuning** voltage as usual. However, the tuning voltage controls the VCO to lock on to the external source, keeping the **1st** IF at exactly 1.000 MHz.

The analyzer normally goes through a pretune-acquire-track sequence to achieve phase lock. In external source mode, the fractional-N **VCO pretunes** as a closed-loop synthesizer referenced to the 100 kHz signal from the A12 reference assembly. Then, to acquire or track, a switch causes the VCO to be tuned by the All phase lock assembly instead. (Refer to the Overall Block Diagram at the end of Chapter 4, "Start Troubleshooting Here.")

Figure 12-7. **External** Source Mode

Tuned Receiver Mode

In tuned receiver mode, the analyzer is a synthesized, swept, narrow-band receiver only. The external signal source must be synthesized and reference-locked to the analyzer.

To achieve this, the analyzer's source and phase lock circuits are completely unused. See Figure 12-8. The fractional-N synthesizer is tuned so that one of its harmonics (1st LO) down-converts the RF input to the samplers (In contrast to external source mode, the analyzer does not phase lock at all. However, the 1st LO is synthesized.)

The analyzer can function as a swept tuned receiver, similar to a spectrum analyzer, but the samplers create spurious signals at certain frequencies, which **limit** the accuracy of such measurements

sg6234d

Figure 12-8. Tuned Receiver Mode

Signal Separation

The Built-In Test Set

Figure 12-9 shows a simplified block diagram of the analyzer's built-in test set.

A21 and A22 Test Port Couplers

The analyzer's test port couplers are used to separate signals incident to, reflected from, and transmitted from the device under test. Each test port coupler has a coupling coefficient factor of 16 dB.

A23 LED Front Panel

The LED front panel board indicates whether the source power is incident on the analyzer's test port 1 or test port **2**. The analyzer's source power is directed to test port 1 when making a forward transmission/reflection measurement. Similarly, source power is incident at test port 2 when making a reverse transmission/reflection measurement.

A24 Transfer Switch

The A3 source output power is directed to either the analyzer's test port 1 or test port 2 via a low loss solid state transfer switch. With this switch, all four S-parameters can be updated continuously (for example: the data obtained from a full 2-port calibration). In addition, the transfer switch provides termination for the inactive test port in order to minimize the crosstalk between the source and receiver sampler.

A25 Test Set Interface

The test set interface board provides biasing for active devices under test with an external dc voltage. This dc voltage is applied directly to the test port center pm. In addition, the test set interface board provides the drive signal for the **A24** forward/reverse transfer switch.

Figure 12-9. Simplified Block Diagram of the Built-in Test Set

Receiver Theory

The receiver functional group consists of the following assemblies:

- A4 sampler/mixer
- A5 sampler/mixer
- A6 sampler/mixer

A10 digital IF

These assemblies combine with the **A9** CPU (described in Digital Control Theory) to measure and process input signals into digital information for display on the analyzer. Figure 12-10 is a **simplified** block diagram of the receiver functional group. The **A12** reference assembly is **also** included in the illustration to show how the **2nd** LO signal is derived.

Figure 12-10. Receiver Functional Group, Simplified Block Diagram

A4/A5/A6 Sampler/Mixer

The A4, A5, and A6 sampler/mixers all down-convert the RF input signals to fixed 4 kHz 2nd IF signals with amplitude and phase corresponding to the RF" input. The A5 and A6 sampler/mixer assemblies both include an 8 dB gain preamplifier in front of the sampler. This improves the noise figure performance of the analyzer's receiver channels A and B.

The Sampler Circuit in High Band

In high band operation, the sampling rate of the samplers is controlled by the **1st** LO from the **A7** pulse generator assembly. The **1st** LO is a comb of harmonics produced by a step recovery diode driven by the fractional-N VCO fundamental signal. One of the harmonic signals is 1 MHz below the start frequency set at the front panel. The **1st** LO is combined in the samplers with the RF input signal from the source. In the Option 006, samplers are additionally capable of recognizing RF input signals from 3 to 6 GHz. The mixing products are **filtered**, so that the only remaining response is the difference between the source frequency and the harmonic 1 MHz below it. This **fixed 1 MHz signal is the 1st IF. Part of the 1st IF signal from the R sampler is fed** back to the All phase lock assembly.

The Sampler Circuit in Low Band or Super Low Band

In low band or super low band the sampler diodes are biased continuously on, so that the RF input signal passes through them unchanged. Thus the **1st** IF is identical to the RF output signal from the source (300 **kHz** to 16 MHz for **lowband;** 10 to 300 **kHz** for super lowband), and sweeps with it. Part of the **1st** IF signal from the R sampler is fed back to the All phase lock assembly.

(Refer to "Source Theory Overview" for information on high band and low band operation of the source.)

The 2nd LO Signal

The **2nd** LO is obtained from the **A12** reference assembly. In high band, the **2nd** LO is **fixed** at 996 **kHz**. This is produced by feeding the 39.34 MHz output of a phase-locked oscillator in the **A12** assembly through a **divide-by-40** circuit.

In low band, the **2nd LO** is a variable frequency produced by mixing the output of the fractional-N **VCO** with a **fixed** 39.996 MHz signal in the **A12** assembly. The **2nd LO** covers the range of 0.014 to 16.004 MHz in two subsweeps that correspond with the source subsweeps These subsweeps are 0.304 to 3.304 MHz and 3.304 to 16.004 MHz.

The Mixer Circuit

The 1st IF and the 2nd LO are combined in the mixer circuit. The resulting difference frequency (the 2nd IF) is a constant 4 kHz in both bands, as Table 12-4 shows

Band	1st IF	2nd LO	2nd IF
Super Low	0.010 to 0.300 MHz	0.014 to 0.304 MHz	4.0 kHz
Low	0.300 to 16.0 MHz	0.304 to 16.004 MHz	4.0 kHz
High	1.000 MHz	0.996 MHz	4.0 kHz

Table 12-4. Mixer Frequencies

A10 Digital IF

The three 4 kHz 2nd IF signals from the sampler/mixer assemblies are input to the A10 digital IF assembly. These signals are sampled at a 16 kHz rate. A fourth input is the analog bus, which can monitor either an external input at the rear panel AUX IN connector, or one of 31 internal nodes. A multiplexer sequentially directs each of the signals to the ADC (analog-to-digital converter). Here they are converted to digital form and sent to the A9 CPU assembly for processing. Refer to "Digital Control Theory" for more information on signal processing.

Replaceable Parts

This chapter contains information for ordering replacement parts for the HP 8753E network analyzer. Replaceable parts include the following:

- major assemblies
- cables
- chassis hardware

In general, parts of major assemblies are not listed. Refer to **Table** 13-1 at the back of this chapter to help interpret part descriptions in the replaceable parts lists that follow.

Replacing an Assembly

The following steps show the sequence to replace an assembly in an HP $8753\mathrm{E}$ network analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts"
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures"
- 4. Perform the necessary adjustments. Refer to Chapter 3, "Adjustments and Correction Constants "
- 5. Perform the necessary performance tests Refer to Chapter 2, "System **Verification** and Performance Tests."

Rebuilt-Exchange Assemblies

Under the rebuilt-exchange assembly program, certain factory-repaired and tested modules (assemblies) are available on a trade-in basis These assemblies are offered for lower cost than a new assembly, but meet all factory specifications required of a new assembly.

The defective assembly must be returned for credit under the terms of the rebuilt-exchange assembly program. Any spare assembly stock desired should be ordered using the new assembly part number. **Figure** 13-1 illustrates the module exchange procedure. "Major Assemblies, **Top**" and "Major Assemblies, Bottom" list all major assemblies, including those that can be replaced on an exchange basis

Ordering Information

To order a part listed in the replaceable parts lists, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

To order a part that is not listed**in** the replaceable parts lists, include the instrument model number, complete instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

Figure 13-1. Module Exchange Procedure

Replaceable Part Listings

The following pages list the replacement part numbers and descriptions for the HP 8753E Network Analyzer. Illustrations with reference designators are provided to help identify and locate the part needed. The parts lists are organized into the following categories:

- Major Assemblies, Top
- Major Assemblies, Bottom
- Cables, **Top**
- Cables, Bottom
- Cables, Front
- Cables, Rear
- Cables, Source
- Front Panel, Outside
- Front Panel, Inside
- Rear Panel
- Rear Panel, Option 1D5
- Hardware, Top
- Hardware, Bottom
- Hardware, kont
- Hardware, **Test** Set Deck
- Hardware, Disk Drive Support
- Hardware, Memory Deck
- Hardware, Preregulator
- Chassis Parts, Outside
- Chassis Parts, Inside
- Miscellaneous

Major Assemblies, Top

Ref. Desig.	option	HP Part Number	Qty	Description		
Al				NOT SHOWN (see "Front Panel Assembly, Inside")		
A2				NOT SHOWN (see 'Front Panel Assembly, Inside")		
A3		08753-60231	1	ASSY-SOURCE 3 GHz		
A3		08753-69231	1	ASSY-SOURCE 3 GHz (REBUILT-EXCHANGE)		
A3	006	08753-60146	1	ASSY-SOURCE 6 GHz		
A3	006	08753-69146	1	ASSY-SOURCE6GHz(REBUILT-EXCHANGE)		
The following parts apply to instruments with serial numbers greater than US3739xxxx or JP3802xxxx , and to instruments having all three samplers replaced.						
A4		08753-60907	1.	ASSY-SAMPLER R (REBUILT-EXCHANGE: 08753-69907)		
A5		08753-60908	1	ASSY-SAMPLER A (REBUILT-EXCHANGE: 08753-69908)		
A6		08753-60908	1	ASSY-SAMPLER B (REBUILT-EXCHANGE: 08753-69908)		
The following parts apply to instruments with serial numbers in the form of US3739xxxx or JP3802xxxx . If all three samplers are being replaced, we the part numbers listed above.						
A4		08753-60004	1	ASSY-SAMPLER R(REBUILT-EXCHANGE:08753-69004)		
A5		08753-60169	1	ASSY-SAMPLER A (REBUILT-EXCHANGE: 08753-69169)		
A 6		08753-60169	1	ASSY-SAMPLER B (REBUILT-EXCHANGE: 08753-69169)		
A7		08753-60164	1	BD ASSY-PULSE GENERATOR		
A7		08753-69164	1	BD ASSY-PULSE GENERATOR (REBUILT-EXCHANGE)		
A8 [*]		08753-60366	1	BD ASSY-POST REGULATOR		
A10		08753-60095	1	BD ASSY-DIGITAL IF		
All		08753-60162	1	BD ASSY-PHASE LOCK		
A12		08753-60357	1	BD ASSY-REFERENCE		
A13		08753-60013	1	BD ASSY-FRAC N ANALOG		
A14		08753-60068	1	BD Assy-frac N digital		
A15		08753-60098	1	ASSY-PREREGULATOR		
A15		08753-69098	1.	ASSY-PREREGULATOR (REBUILT-EXCHANGE)		
A16				NOT SHOWN (see "Bear Panel Awembly")		
A17				NOT SHOWN (see "Chassis Parts, Inside")		
A18			1	NOT SHOWN (see "Front Panel Assembly, Inside")		
A19		08753-60271	1	BD ASSY-GRAPHICS PROCESSOR (under sheet metal cover)		
A20		08720-60190	1	ASSY-DISK DRIVE		
A27			1	NOT SHOWN (see "Front Panel Assembly, Inside")		
A26	1D5			NOT SHOWN (see 'Rear Panel Assembly, Option 1D5")		
B1				NOT SHOWN (see "Rear Panel Assembly")		
RPG				NOT SHOWN (see "Front Panel Assembly, Inside")		

• For fuse part numbers on the AS Post Regulator, refer to "Miscellaneous" in this chapter.

Major Assemblies, Bottom

Ref. Desig.	Option	HP Part Number	Qty	Description		
А9		08753-60315	1	CPU REPAIR KIT		
A9		08753-69315	1	CPU REPAIR KIT (REBUILT-EXCHANGE)		
CPU FAN		5060-8776	1	A9 CPU FAN ¹		
A9BT1		1420-0338	1	BATTERY-LITHIUM 3V1.2AH		
A21		5087-7007	1	ASSY-TEST PORT COUPLER		
A21		5087-6007	1	ASSY-TEST PORT COUPLER (REBUILT-EXCHANGE)		
A21	075	5087-7008	1	ASSY-TEST PORT COUPLER		
A21	075	60874008	1	ASSY-TEST PORT COUPLER (REBUILT-EXCHANGE)		
A22		6087-7007	1	ASSY-TEST PORT COUPLER		
A22		60874007	1	ASSY-TEST PORT COUPLER (REBUILT-EXCHANGE)		
A22	075	6087-7008	1	ASSY-TEST PORT COUPLER		
A22	075	60874008	1	ASSY-TEST PORT COUPLER (REBUILT-EXCHANGE)		
A23		08753-60145	1	BD ASSY-LED FRONTPANEL		
A24		5086-7539	1	ASSY-TRANSFER SWITCH		
A24		5086-6539	1	ASSY-TRANSFER SWITCH (REBUILT-EXCHANGE)		
A25		08753-60280	1	BD ASSY-TEST SET INTERFACE		

1 Remove the backing from the heat transfer area before re-assembly.

Major Assemblies, Bottom

sg6126e

Cables, Top

Ref. Desig.	Гуре	Opt	HP Part Number	Qty	Description
1			1400-0249	1	CABLE TIE (15W1 to CHASSIS)
A15W1	18W		(part of A15)	1	PREREGULATOR (A15) to POST REGULATOR (A8J2) and MOTHERBOARD (A17J3)
W 1	SR		08753-20285	1	SOURCE ASSY (A3W4) to TRANSFER SWITCH (A24)
₩2	SR		08753-20291	1	FP (R CHANNEL IN) to SAMPLER-R (A4)
ws	SR		08753-20286	1	TEST FORT 1 COUPLER (A21) to SAMPLER-A (AS)
W4	SR		08753-20366	1	TEST PORT 2 COUPLER (A22) to SAMPLER-B(A6)
W 5	F		08753-60027	1	SAMPLER-R (A4) to PULSE GENERATOR (A7)
W 6	F		08753-60027	1	SAMPLE%A (A5) to PULSE GENERATOR (A7)
₩7	F		08753-60027	1	SAMPLER-B (A6) to PULSE GENERATOR (A7)
W 8	F		08753-60029	1	PHASE LOCK (A11J1) to SAMPLER-R (A4)
W 9	F		8120-5021	1	FRAC-N DIGITAL (A14J1) to PULSE GENERATOR (A7)
W 10	F		08753-60029	1	FRAC-N DIGITAL (A14J2) to REFERENCE(A12J1)
W11	F		08753-60029	1	FRAC-N DIGITAL (A14J3) to FRAC-N ANALOG (A13J1)
W 12	F		08753-60029	1	FRAC-N ANALOG (A13J2) to REFERENCE(A12J2)
W13	F		08753-60026	1	REFERENCE (A12J3) to RP (EXT REF)
W24	SR		08753-20291	1	SOURCE ASSY (A3) to FP (R CHANNEL OUT)
W26	F		8120-5026	1	SOURCE ASSY (A3) to REFERENCE (A12J4)
W21	14R		8120-6876	1	MOTHERBOARD (A17J12) to REAR PANEL VGA OUT
W20	34R		8120-6890	1	MOTHERBOARD (A17J11) to CPU (A9J5)

Wire Bundle (n is the number of wires in the bundle) nW

nR **Ribbon** Cable (*n* is the number of wires in the ribbon)

F Flexible **Coax** Cable

SR Semi-Rigid Coax Cable

sg656e

Cables, Bottom

Ref. Desig.	Туре	Opt	HP Part Number	Qty	Description
1			1400-0611	1	CABLE CLAMP
A21W1	1₩		8120-6483	1	GRAY WIRE-TEST PORT 1 COUPLER (A21) to TEST SET INTERFACE (A25TP1)
A22₩1	1 W		8120-6483	1	GRAY WIRE-TEST PORT 2 COUPLER (A22) to TEST SET INTERFACE (A25TP2)
A24W1	SW		85047-60004	1	TRANSFER SWITCH (A24) to TEST SET INTERFACE (A25J3)
W1	SR		08753-20285	1	SOURCE ASSY (A3W4) to TRANSFER SWITCH (A24)
W20	34R		8120-6890	1	CPU/PIG (A9J7) to MOTHERBOARD (A17J11)
W31	SR		08753-20102	1	TEST PORT 1 COUPLER (A21) to TRANSFER SWITCH (A24)
W32	SR		08753-20101	1	TEST PORT 2 COUPLER (A22) to TRANSFER SWITCH (A24)
W33	4W		08753-60221	1	LED (A23J1) to TEST SET INTERFACE (A25J2)
W37	26R		8120-8670	1	DISK DRIVE (A20) to CPU/PIG (A9J8)
W38	40R		8120-6882	1	TEST SET INTERFACE (A25J1) to MOTHERBOARD (A17J2)

• *n*W Wire Bundle (*n* is the number of wires in the bundle)

Ribbon Cable (**n** is the number of wires in the ribbon) Semi-Rigid Coax Cable nR

SR

sg657e

Cables. Front

Туре	opt	HP Part Number	Qty	Description
SOB		8120-8439	1	FP KEYBOARD (A1J1) to FP INTERFACE (A2J2)
5R		(part. of RPG1)	1	RPG to FP INTERFACE (A2J5)
SR		08753-20285	1	SOURCE ASSY (A3W4) to TRANSFER SWITCH (A24)
SR		08753-20291	1	FP (B CHANNEL IN) to SAMPLER-R (A4)
SR		08753-20286	1	TEST PORT 1 COUPLER (A21) to SAMPLER-A (AS)
SR		08753-20287	1	TEST PORT 2 COUPLER (A22) to SAMPLER-B (A6)
50R		8120-8431	1	FPINTEBFACE (A2J1) to MOTHERBO ABD (A17J1)
SW		08711-60037	1	FP INTERFACE (A2J4) to FP (PROBE POWER)
SW		08711-60037	1	FP INTERFACE (A2J3) to FP (PROBE POWER)
5R		8120-8408	1	FP INTERFACE (A2J7) to INVERTER (A27)
31R		8120-8409	1	FP INTERFACE (A2J6) to DISPLAY (A18)
SR		08753-20220	1	SOURCE ASSY (A3) to FP (R CHANNEL OUT)
SR		08720-20098	1	FP (R CHANNEL OUT) to FP (R CHANNEL IN)
	Type* SOB 5R 5R 5R 5R 50R 50R SW 50R 5W 50R 51R 51R 51R 51R 51R 51R 51R 51R 51R 51	Type* opt SOB - 5R - 5R - 5R - 5R - 5R - 5W - 5W - 5R -	Type* opt HIP Part Number SOB 8120-8439 5R (part. of RPG1) SR 08753-20285 SR 08753-20291 SR 08753-20286 SR 08753-20287 SR 08753-20287 SR 08753-20287 SW 0871-60037 SW 08711-60037 SW 08711-60037 SW 08711-60037 SW 08711-60037 SW 08711-60037 SW 08753-20220 SW 08711-60037 SW 08720-8408 SIB 08753-20220 SR 08753-20220 SR 08753-20220 SR 08720-20098	Type* opt HP Part Number Qty SOB 8120-8439 1 5R (part. of RPG1) 1 5R 08753-20285 1 SR 08753-20291 1 SR 08753-20286 1 SR 08753-20286 1 SR 08753-20286 1 SR 08753-20287 1 SW 08711-60037 1 SR 8120-8408 1 SR 08753-20220 1 SR 08753-20220 1

Wire Bundle (n is the number of wires in the bundle) n₩

Bibbon Cable (n is the number of **wires** in the ribbon) nR

Semi-Bigid **Coax** Cable SR

sg658e

Cables, Rear

Bof. Desig.	Туре	Opt	HP Part Number	Qty	Description
B1W1	2 W		(part of B1)	1	FAN (B1) to MOTHERBOARD (A17J5)
W13	F		08753-60026	1	REFERENCE (A12J3) to BP (EXT REF)
W21	14R		8120-6876	1	MOTHERBOARD (A17J12) to RP (VGA OUT)
W27	34R		8120-6407	1	RPINTERFACE (A16J4) to MOTHERBOARD (A17J6)
W28	2 W		85047-60005	1	RP INTERFACE (A16J10) to RP (PORT 1 FUSE)
W29	2 W		85047-60005	1	RP INTERFACE (A16J11) to RP (PORT 2 FUSE)
W3O	3W	1D5	8120-6458	1	RP INTERFACE (A16J3) to HIGH-STABILITY FREQ REF (A26J1)
W35	50R		8120-6379	1	CPU/PIG(A9J1) to MOTHERBOARD (A17J7)
W36	26R		8120-6382	1	CPU/PIG (A9J2) to MOTHERBOARD (A17J8)

nW Wire Bundle (A **is** the number of wires in the bundle)

nR Ribbon Cable (n is the number of wires in the ribbon)

F Flexible Coax Cable

.

Cables, Rear

sg6113e

Cables, Source

Ref. Desig.	Type*	opt	HP Part Number	Qty	Description
A3A2W1	10R		08753-60034	1	EYO (A3A3) to ALC (A3A2J3)
A3A4W1	4W		08753-60035	1	CAVITY OSC (A3A4) to ALC (A3A2J2)
A3W1	SR		08753-20107	1	EYO (A3A3) to SCURCE ASSY (A3)
A3W2	SR		08753-20032	1	CAVITY OSC (A3A4) to SCURCE ASSY (A3)
A3W3	SR		08753-20106	1	SCURCE ASSY (A3) to ATTENUATOR (A3A5)
A3W4	SR		08753-20111	1	ATTENUATOR (A3A5) to W1
A3W5	10R		5062-0701	1	ALC (A3A2J1) to ATTENUATOR (A3A5)

• *n***W** Wire Bundle (*n* is the number of wires in the bundle)

nR Ribbon Cable (n is the number of wires in the ribbon)

SR Semi-Rigid Coax Cable

BACK

sg662e

Front Panel Assembly, Outside

Ref. Desig.	Option	HP Part Number	Qty	Description
1	STD	08753-80168	1	OVERLAY, LOWER FRONT PANEL
1	075	08753-80170	1	OVERLAY, LOWER FRONT PANEL
2	STD	08753-60924	1	FP REPAIR KIT STD ¹
2	075	08753-60926	1	FP REPAIR KIT #075 ¹
3		1510-0038	1	GROUND POST
4		2950-0006	1	NUT HEX 1/4-32
4		2190-0067	1	WASHER LK .256 ID
5		08753-40015	1	LINE BUTTON
		08753-80211	1	OVERLAY, UPPER FRONT PANEL

1 Comes with gasket, upper and lower overlays.

sg663e

Front Panel Assembly, Inside

Ref. Desig.	Туре	Opt	HP Part Number	Qty	Description
1			08720-40012	1	DISPLAY HOLD DOWN
2			2090-0566	1	DISPLAY LAMP
A18			08753-60325	1	LCD REPLACEMENT ASSY
3			1000-0995	1	DISPLAY GLASS
4			08720-00094	4	GROUNDING CLIPS
		1DT	08753-00135	1	FILLER PLATE ¹
5			08753-20300	1	FRONT PANEL
7			1990-1864	1	RPG (INCLUDES CABLE AND HARDWARE)
8			E4400-40003	1	RPG KNOB
₽			08720-40010	1	FLUBBER KEYPAD
LO			0515-0430	8	SCREW SM 3.0 6CWPNTX
11			0515-0306	4	SCREWSMM 3.0 14CWPNTX
12			1400-1439	2	CABLE CLIP ²
13			0515-0372	3	SCREWSMM 3.0 SCWPNTX
L4			08712-60035	2	CABLE ASSY, PROBE POWER
14			2950-0144	2	NUT, HEX 3/8-32
L5			08753-00112	1	PLATE, PBOBE POWER
16			0624-0828	2	SCREW, TAPPING
A1			08720-60127	1	BD ASSY-FRONT PANEL
<u>A2</u>			08753-60311	1	BD ASSY-FRONT PANEL INTERFACE
A1W1	26R		8120-8439	1	A1 TO A2
A27			0950-3068	1	ASSY-INVERTER
W17	50R		8120-8431	1	A2 TO A17
₩22	5R		8120-8408	1	CABLE-FP INTF (A2J7) to INVERTER (A27)
₩23	31R		8120-8409	1	CABLE-FP INTF (A2J6) to DISPLAY (A18)

L Not shown. F&places **A18** and display glass for Option **1DT.** Order new grounding clips when replacing **filler** plate.

 ${\bf 2}$ Order with ${\bf A2}$ and LCD hold down.

Rear **Panel** Assembly

Ref. Desig.	Туре	Opt	HP Part Number	Qty	Description
1	34R		8120-6407	1	RP INTERFACE (A16J4) TO MB (A17J6) (W27)
2			85047-60005	2	FUSE HARNESS ASSEMBLY
3 (A16)			08720-60138	1	BD ASSY-REAR PANEL INTERFACE (A16)
4			08753-60026	1	ASSY-EXTERNAL REFERENCE CABLE (W13)
5			08415-60036	1	ASSY-FAN
6			1251-2942	4	FASTENER CONN RP LOCK
7			2190-0034	2	WASHER LK.194ID10
7			0380-0644	2	NUT STDF .327L 632
8			1251-7812	4	FASTENER CONN RP LOCK
Ð			0515-0379	4	SCREWSMM3.5X16CWPNTX
Ð			3050-1192	4	FLAT WASHER
10			0515-0372	10	SCREWSMM3.0X8 CWPNTX
11			08720-00071	1	REAR PANEL SHEET METAL
12			3160-0281	1	FANGUARD
13			6960-0419	1	HOLE PLUG
14			6960-0086	1	HOLE PLUG
15			2190-0102	8	WASHERLK.472ID
15			2950-0035	8	NUT HEX 15/32-32
16			0400-0271	1	GROMMET SN.5-515ID
17			2110-0047	2	FUSE
17			1400-0112	2	FUSE CAP
18			6960-0027	2	HOLE PLUGS
19	j –	1D5		I I	(see "Rear Panel Assembly, Option 1D5")

Rear	Panel	Assembly,	Option	1D5
------	-------	-----------	--------	-----

Ref. Desig.	Option	HP Part Number	Qty	Description
1	1D5	1250-1859	1	ADAPTER-COAX
2	1D5	0515-0374	1	SCREW-MACHINE M3.0×10 CW-PN-TX
3	1D5	3050-1546	1	WASHER-FLAT .505ID NY
4	1D5	2190-0068	1	WASHER-LOCK .505ID
6	1D5	2950-0054	1	NUT-SPECIALITY 1/2-28
6	1D5	0515-0430	1	SCREW-MACHINE M3.0×6 CW-PN-TX
7	1D5	08753-00078	1	BRACKET-OSC BD
8		6960-0027	2	HOLE PLUGS
A26	1D5	08753-60158	1	BD ASSY-HIGH STABILITY FREQ REF
W3 0	1D5	8120-6458	1	RP INTERFACE (A16J3) to HIGH-STABILITY FREQ REF (A26J1)

Hardware, Top

Ref. Desig.	Option	HP Part Number	Qty	Description
1		0515-2799	2	SCREW-MACHINE M3.0×10 CW-FL-TX
2		08753-40014	1	STABILIZER-PC BOARD
3		08753-20062	1	STABILIZER CAP
4		0515-2035	1	SCREW-MACHINE M3.0×16 PC-FL-TX
5		0515-0458	2	SCREW-MACHINE M3.5×8 CW-PN-TX
6		08753-00107	1	AIR FLOW COVER
7		0515-0374	2	SCREW-MACHINE M3.0 X 10 CW-PN-TX
8		0515-0377	2	SCREW-MACHINE M3.5×10 CW-PN-TX
0		0515-0374	2	SCREW-MACHINE M3.0×12 CW-PN-TX
10		08753-00129	1	GSP COVER
11		08753-00113	1	BRACKET-SOURCE (SOURCE STRAP)
12		0515-0374	6	SCREW-MACHINE M3.0 X 10 CW-PN-TX
13		0515-0374	15	SCREW-MACHINE M3.0×10 CW-PN-TX
14		08753-00040	1	CLIP-PULSERGROUND
15		0515-1400	3	SCREW-MACHINE M3.5×8 PC-FL-TX

Hardware, Bottom

Ref. Desig.	Option	HP Part Number	Qty	Description
1		0515-0458	4	SCREW-MACHINE M3.5×8 CW-PN-TX
2		0515-0430	8	SCREW-MACHINE M3.0×6 CW-PN-TX
3		0515-0667	2	SCREW-MACHINE M3.0×25 CW-PN-TX
4		0515-0430	5	SCREW-MACHINE M3.0×6 CW-PN-TX
5		0515-1400	3	SCREW-MACHINE ~ M3.5×8 PC-FL-TX
6		0515-0375	8	SCREW-MACHINE M3.0×16 CW-PN-TX
7		0515-0458	4	SCREW-MACHINE M3.0×16 CW-PN-TX

sg668e

Hardware, Front

Ref. Desig.	Option	HP Part Number	Qty	Description
1		0515-0665	1	SMM 3.0×14 CWPNTX
2		08753-00137	1	BRACKET - CABLE SUPPORT
3		1250-1251	2	ADAPTER FEMALE SMA/FEMALE SMA
4		0515-1946	1	SCREW-MACHINE M3.0×6 PC-FL-TX
Hardware, Front

Hardware, **Test** Set Deck

Ref. Desig.	Option	HP Part Number	Qty	Description
1		08753-20296	8	SHOULDER SCREW
2		08753-40013	8	GUIDE WASHER
3		08753-20293	8	PRESSURE SPRING
4		08753-00127	1	CHASSIS-TEST SET
5		0515-1946	1	SCREW-~ M3.0x 6 PC-FL-TX
6		0515-0375	2	SCREW-MACHINE M3.0×16 CW-PN-TX
7		0515-0430	1	SCREW M3.0× 6 CW-FN-TX
8		0515-0667	2	SCREW-MACHINE M3.0×25 CW-PN-TX
9		0515-0430	5	SCREW-MACHINE M3.0×6 CW-FN-TX

sg670e

Hardware, Disk Drive Support

Ref. Desig.	Option	HP Part Number	Qty	Description
1		0515-1048	4	SCREW-M2.5X4 SOCKET BEAD, HEX.
2		08720-00021	1	DISK DRIVE BRACKET ¹
2		08753-00152	1	DISK DRIVE BRACKET ¹
3		0515-0374	4	SCREWS M 3.0X10CWPNTX

1 Your analyzer may use either **p/n** 08720-00021 or p/n 08753-00152. Analyzers manufactured prior **to** February 1999 use p/n 0872040021. **Analyzers** manufactured after February 1900, or that have been repaired or upgraded with Service Kit p/n 08720-40190, use p/n 08753-40152. Contact Hewlett-Packard if you need help identifying replacement parts for your analyzer.

sg671e

Hardware, Memory Deck

Ref. Desig.	Option	HP Part Number	Qty	Description
1		0515-0468	4	SCREW-MACHINE M3.5×8 CW-PN-TX
2		0515-0430	2	SCREW-MACHINE M3.0×6 CW-PN-TX
3		0515-0375	1	SCREW-MACHINE M3.0×14 CW-PN-TX
4		08753-00128	1	DECK-MEMORY

sg672e

This page intentionally left blank.

Hardware, Preregulator

Ref. Desig.	Option	HP Part Number	Qty	Description
1		2110-0780	1	FUSE 3A 250V NON-TIME DELAY (CSA/UL)
1		2110-0655	1	FUSE 3.15A 250V NON-TIME DELAY (IEC)
2		08753-00065	1	BRACKET-PREREGULATOR
3		0515-1400	2	SCREW-MACHINI M3.5×8CW-FL-TX
A15		08753-60098	1	PREREGULATOR-ASSY
A15		08753-69098	1	PREREGULATOR-ASSY (REBUILT-EXCHANGE)

sg673e

Chassis **Parts,** Outside

Ref. Desig.	Option	HP Part Number	Qty	Description
1		5041-9176	1	TRIM STRIP
2		08720-00078	1	COVER-TOP
3		5041-9188	4	REAR STANDOFF
4		0515-1402	4	SCREW SMM 3.5 8 PCPNTX
6		5041-9187	2	REAR CAP-SIDE STRAP
6		0515-1384	4	SCREW SMM 5.0 10 PCFLTX
7		08720-00081	2	SIDE STRAP
8		08720-00080	2	COVER-SIDE
0		6041-0186	2	FRONT CAP-SIDE STRAP
10		08720-00079	2	COVER-BOTTOM
11		1460-1345	2	FOOT ELEVATOR
12		5041-9167	4	FOOT
13		08753-80066	1	LABEL: CAUTION WARNING
14		08753-80174	1	LABEL: LOCATION DIAGRAM
16		08753-40015	1	LINE BUTTON
16		6180-8600	1	MYLAR INSULATOR

Chassis Parts, Inside

Bef. Desig.	Option	HP Part Number	Qty	Description
1		5022-1190	1	FRONTPANELFRAME
2		5021-5808	1	REARFRAME
3		08753-60314	1	ASSY-CARDCAGE/MOTHER
4		0515-2086	16	SCREW SMM4.0×7 PCFLTX
5		0515-0430	1	SCREW M3.0×6 CWPNTX [*]
6		08720-00083	1	INSULATOR SWITCH*
7		1460-1573	1	SPRING EXTENSION .138 OD
8		08720-00077	1	SWITCH BOD*
9		0515-1400	1	SMM 3.5×8 PCFLTX
A17		08753-60270	1	BD ASSY-MOTHERBOARD
* Part of CARDCAGE/MOTHER assembly (item 3) .				

Miscellaneous

Description	HP Part Number				
Service Tools					
HP 8753 TOOL KIT includes the following:	08753-60023				
RF CABLE-INPUT R	08753-20028				
EXTENDER BOARD ASSEMBLY-RECEIVER	08753-60019				
EXTENDER BOARD ASSEMBLY-SOURCE	08753-60020				
EXTENDER BOARD ASSEMBLY-CARD CAGE	08753-60155				
ADAPTER-MALE SMB TO MALE SMB	1250-0669				
ADAPTER-MALE TYPE N TO FEMALE SMA	1250-1250				
CABLE ASSEMBLY	5061-1022				
BAG-ANTISTATIC 18×15	9222-1132				
Documentation					
HP 8753E EXAMPLE PROGRAM DISK #1	08753-10028				
HP 8753E EXAMPLE PROGRAM DISK #2	08753-10029				
HP 8753E SERVICE GUIDE	08753-90374				
HP 8753E OPTION 011 SERVICE GUIDE	08753-90404				
HP 8753E MANUAL SET includes the following:	08753-90365				
HP 8753E HP-IB PROGRAMMING AND COMMAND REFERENCE GUIDE	08753-90366				
HP 8753E HP BASIC PROGRAMMING EXAMPLES GUIDE	08753-90413				
HP 8753E USER'S GUIDE (includes Quick Reference, 08753-90368)	08753-90367				
HP 8753E INSTALLATION/QUICK START GUIDE	08753-90369				
HP 8753E SYSTEM VERIFICATION AND PERFORMANCE TESTS	08753-90394				
HP 8753E OPTION 011 MANUAL SET includes the following:	08753-90370				
HP 8753E HP-IB PROGRAMMING AND COMMAND REFERENCE GUIDE	08753-90366				
HP 8753E HP BASIC PROGRAMMING EXAMPLES GUIDE	08753-90413				
HP 8753E OPTION 011 USER'S GUIDE (includes Quick Reference, 08753-90373)	08753-90371				
HP 8753E OPTION 011 INSTALLATION/QUICK START GUIDE	08753-90372				
HP 8753E OPTION 011 SYSTEM VERIFICATION AND PERFORMANCE TESTS	08753-90395				
Upgrade Kits					
HARMONIC MEASUREMENT UPGRADE KIT	8753EU OPT 002				
6 GHz UPGRADE KIT FOR HP 8753E	8753EU OPT 006				
6 GHz UPGRADE KIT FOR HP 8753E OPTION 011	8753EU OPT 611				
TIME DOMAIN UPGRADE KIT	8753EU OPT 010				
FIRMWARE UPGRADE KIT	8753EU OPT 099				
HIGH-STABILITY FREQUENCY REFERENCE RETROFT KIT	8753EU OPT 1D5				

Miscellaneous

Description	HP Part Number
Protective Cape for Connectors	
FEMALE HP-IB CONNECTOR	1252-5007
FEMALE TEST SET I/O	1252-4690
FEMALE PARALLEL PORT	1252-4690
RS-232 CONNECTOR	1252-4697
7-mm TEST PORTS	1401-0249
FEMALE TYPE-N TEST PORTS (OPTIONS 011 AND 075)	1401-0247
Fuses used on the A8 Post Regulator	
FUSE 0.5A 125V NON-TIME DELAY 0.25×0.27	2110-0046
FUSE 0.75A 125V NON-TIME DELAY 0.25×0.27	2110-0424
FUSE 1A 125V NON-TIME DELAY 0.25×0.27	2110-0047
FUSE 2A 125V NON-TIME DELAY 0.25×0.27	2110-0425
FUSE 4A 125V NON-TIME DELAY 0.25×0.27	2110-0476
HP-IB Cables	
HP-IB CABLE, 1M (3.3 FT)	HP 10833A
HP-IB CABLE, 2M (6.6 FT)	HP 10833B
HP-IB CABLE, 4M (13.2 FT)	HP 10833C
HP-IB CABLE, 0.5M (1.6 FT)	HP 10833D
ESD Supplies	n - 100 y - 1 y
ADJUSTABLE ANTISTATIC WRIST STRAP	9300-1367
5 FT GROUNDING CORD for wrist strap	9300-0980
2×4 FT ANTISTATIC TABLE MAT WITH 15 FT GROUND WIRE	9300-0797
ANTISTATIC HEEL STRAP for use on conductive floors	9300-1126
Other	
HP 8753E KEYBOARD OVERLAY for external keyboard	08753-80131
RACK MOUNT KIT WITHOUT HANDLES	5062-3978
RACK MOUNT KIT WITH HANDLES	5062-4073
FRONT HANDLE	5063-9229
FLOPPY DISKS, 3.5 INCH DOUBLE-SIDED (box of 10)	HP 92192A

Table 13-1.Reference Designations, Abbreviations, and Options

REFERENCE DESIGNATIONS	Mmeters
Aassembly	M metric hardware
B	MHz megahertz
J electrical connector (stationary portion); jack	mm
RPG rotary pulse generator	MON
W cable; transmission path; wire	NOM nominal
ABBREVIATIONS	NY
A	Ont ontion
A amper c	OSC orgillator
ASSY accombly	PN nanhead
AUX	PC patch lock (screws)
BD board	PC printed circuit
COAX	PIG peripheral interface group
CPU central processing unit	PN panhead (screws)
CW conical washer (screws)	REF reference
D diameter	REPL replacement
ESD electrostatic discharge	RP rear panel
EXT external	SHsocket head cap (screws)
EYO YIG oscillator	TX TORX recess (screws)
FL flathead (screws)	Uty quantity
FP front panel	v volt
FRAC-N	W/O wire formed
CHIZ	YIG vttrium-iron garnet
HEX hereford	
HP Hewlett-Packard	OPTIONS
HP-IB Hewlett-Packard interface bun	002 harmonica measurement
HX hex recess (screws)	0066 GHz performance
ID inside diameter	010 time domain
IF intermediate frequency	011 w/o test set
I/O input/output	10/6
LEDlight-emitting diode	10 MHz precision ref

14 Assembly Replacement and Post-Repair Procedures

This chapter contains procedures for removing and replacing the major assemblies of the HP 8753E network analyzer. A table showing the corresponding post-repair procedures for each replaced assembly is located at the end of this chapter.

Replacing an Assembly

The following steps show the sequence to replace an assembly in an HP $8753\mathrm{E}$ Network Analyzer.

- 1. Identify the faulty group. Refer to Chapter 4, "Start Troubleshooting Here." Follow up with the appropriate troubleshooting chapter that identifies the faulty assembly.
- 2. Order a replacement assembly. Refer to Chapter 13, "Replaceable Parts."
- 3. Replace the faulty assembly and determine what adjustments are necessary. Refer to Chapter 14, "Assembly Replacement and Post-Repair Procedures"
- 4. Perform the necessary adjustments Refer to Chapter 3, "Adjustments and Correction Constants "
- 5. Perform the necessary performance tests. Refer to Chapter 2, "System Verification and Performance **Tests.**"

Warning	These servicing instructions are for use by qualified personnel only. Ib avoid electrical shock, do not perform any servicing unless you are qualified to do so.
Warning	The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the instrument from all voltage sources while it is being opened.
Warning	The power cord is connected to internal capacitors that may remain live for 10 seconds after disconnecting the plug from its power supply.
Caution	Many of the assemblies in this instrument are very susceptible to damage from ESD (electrostatic discharge). Perform the following procedures only at a static-safe workstation and wear a grounding strap.

Procedures described in this chapter

The following pages describe assembly replacement procedures for the HP 8753E assemblies listed below:

- Line Fuse
- Covers
- **Front** Panel Assembly
- Front Panel Interface and Keypad Assemblies (Al, A2)
- Display, Display Lamp, and Inverter Assemblies (A18, A27)
- Rear Panel Assembly
- Rear Panel Interface Board Assembly (A16)
- **A3** Source Assembly
- A4, A5, A6 Samplers and A7 Pulse Generator
- AS, A10, All, A12, A13, A14 Card Cage Boards
- A9 CPU/PIG Board
- A9BT1 Battery
- A15 Preregulator
- A17 Motherboard Assembly
- A19 Graphics Processor
- A20 Disk Drive
- A21, A22 Test Port Couplers
- A23 LED Board
- **A24** Transfer Switch
- A25 Test Set Interface
- A26 High Stability Frequency Reference (Option 1D5)
- B1 Fan

Line Fuse

Tools Required

small slot screwdriver

Removal

Warning For continued protection against fire **hazard**, replace fuse only **with** same type **and** rating (3 A 250 **VAC)**. The use of **other** fuses or materials is prohibited.

- 1. Disconnect the power cord.
- 2. Use a small slot screwdriver to pry open the fuse holder.
- 3. Replace the failed fuse with a 3 AF 250 V F fuse. See "Hardware, Preregulator" in Chapter 13 to find the part number.

Replacement

1. Simply replace the fuse holder.

Line Fuse

qg652d

Covers

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- T-20 TORX screwdriver
- T-25 TORX screwdriver

Removing the top cover

- 1. Remove both upper rear feet (item 1) by loosening the attaching screws (item 2).
- 2. Loosen the top cover screw (item 3).
- 3. Slide cover off.

Removing the side covers

- 1. Remove the top cover.
- 2. Remove the lower rear foot (item 4) that corresponds to the side cover you want to remove by loosening the attaching screw (item 5).
- 3. Remove the handle assembly (item 6) by loosening the attaching screws (item 7).
- 4. Slide cover off.

Removing the bottom cover

- 1. Remove both lower rear feet (item 4) by loosening the attaching screws (item 5).
- 2. Loosen the bottom cover screw (item 8).
- 3. Slide cover off.

Covers

Front Panel Assembly

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- **5/16-inch** open-end torque wrench (set to 10 in-lb)

Removal

- 1. **Disconnect** the power cord.
- 2. Remove the front bottom feet (item 1).
- 3. Remove all of the RF cables that are attached to the front panel (item 2).
- 4. Remove the line button (item 6).
- 5. Remove the trim strip (item 3) from the top edge of the front frame by prying under the strip with a small slot screwdriver.
- 6. Remove the six screws (item 4) from the top and bottom edges of the frame.
- 7. Slide the front panel over the test port connectors
- 8. Disconnect the ribbon cable (item 5). The front panel is now free from the **instrument**.

Replacement

1. Reverse the order of the removal procedure.

Note When reconnecting semirigid cables, it is recommended that the connections be torqued to 10 in-lb.

Front Panel Assembly

sg679e

Front Panel Keyboard and Interface Assemblies (A1, A2)

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- 5/16-inch open-end torque wrench (set to 10 in-lb)

Removal

- 1. Remove the front panel assembly from the analyzer (refer to **"Front** Panel Assembly" in this chapter).
- 2. **Disconnect** all cables from the front panel interface board (items 1, 2, 3, 4, 6, and 7).
 - Disconnect item 4 by pulling up on the comers of the connector base. This will release the cable for easy removal. Damage *may occur to the connector if this step is not followed.*
 - Disconnect item 7 by sliding the ribbon cable away from its cable clamp.
- 3. Remove the four screws (item 5), attaching the interface board (A2).
- 4. Remove the nine screws from the Al front panel board to access and remove the rubber keypad.

Replacement

1. Reverse the order of the removal procedure.

Caution Damage may result if the following step is not followed.

2. To reconnect item 7, ensure that the ribbon cable is placed squarely into both of its cable clamps

sg680e

Display Lamp and Inverter Assemblies (A18, A27)

Tools Required

- **T-8** TORX screwdriver
- T-10 TORX screwdriver
- T-15 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- **5/16-inch** open-end torque wrench (set to 10 in-lb)

Removal

- 1. Remove the front panel assembly (refer to **"Front** Panel Assembly" in this chapter).
- 2. Disconnect the cables (items 2, 3 and 4) from the Al assembly.
- 3. Remove two screws (item 8) from the mounting plate (7) to remove the inverter (A27).
- 4. Remove the three screws (item 1) that attach the **mounting** plate and display to the front panel.
- 5. Remove the mounting plate and the display (A18) from the front panel.

Note The bottom half of the following **figure** depicts the rear view of the **A18** assembly with the mounting plate removed. Use the location of the display lamp cable (item 4) to aid in orientation.

- 6. Remove the three screws (item 5) from the outside of the display.
- 7. Pull the lamp (item 6) out with a curving side motion, as shown.

Replacement

- 1. Reverse the order of the removal procedure.
- 2. Be sure to route ribbon cable 2 through the cable clamp on the A2 assembly and the LCD mounting plate (item 7).

Caution	Be sure that cables are plugged in square and correct. Failure to do so will result in serious component damage.
Caution	Do not exceed 3 in-lb when replacing the self-tapping screws (item 8).

Display Lamp and Inverter Assemblies

Rear Panel Assembly

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord and remove the top (item 1) and bottom covers (refer to "Covers" in this chapter).
- 2. Remove the four rear standoffs (item 2).
- 3. If the **analyzer** has option **1D5**, remove the BNC jumper from the high stability frequency reference (item 3).
- 4. Remove the four screws (item 5) that attach the interface bracket to the rear panel.
- 5. Remove the six screws (item 6) and (item 7), that attach the **preregulator** to the rear panel.
- 6. Remove the six screws (item 8) from the rear frame: two from the top edge and four from the bottom edge.
- 7. Remove the screw from the pc (item 9) board **stabilizer** and remove the stabilizer.
- 8. Lift the reference board (A12) from its motherboard connector and disconnect the flexible RF cable from its connector on A12 (item 10)
- 9. Identify the wiring harness leading to the VGA connector (item 4). Follow this harness back to its connection on the motherboard. The air flow cover, attached by two screws, will have to be removed to get to this connection. Disconnect the VGA wire harness at this point.

10. Pull the rear panel away from the frame. Disconnect the ribbon cable (item 11) from the motherboard connector, pressing down and out on the connector locks. Disconnect the wiring harness (item 12) from the motherboard.

Replacement

1. Reverse the order of the removal procedure.

Rear Panel Assembly

sg683e

Rear Panel Interface Board Assembly (A16)

Tools Required

- 9/16 hex nut driver
- 3/16 hex nut driver
- T-10 TORX screwdriver
- T-15 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord and remove the top and bottom covers (refer to "Covers" in this chapter).
- 2. If the **analyzer** has option **1D5**, remove the **high-stability** frequency reference jumper (item 1).
- 3. Remove the hardware that attaches the seven BNC connectors to the rear panel (item 2).
- 4. Remove the hardware that attaches the interface connector to the rear panel (item 3).
- 5. Remove the rear panel from the analyzer (refer to "Rear Panel Assembly" in this chapter).
- 6. If the analyzer has option 1D5, disconnect the cable (item 4) from the rear panel interface board.
- 7. Disconnect the ribbon cable (item 5) from the rear panel interface board.

Replacement

1. Reverse the order of the removal procedure.

sg684e

A3 Source Assembly

ToolsRequired

- T-15 TORX screwdriver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord and remove the top cover (refer to "Covers" in this chapter).
- 2. Remove the source bracket (item 1) by removing four screws (It might be necessary to disconnect a flexible cable from the B sampler.)
- 3. Disconnect the flexible cable **W26**.
- 4. Disconnect the semirigid cable W1.
- 5. Lift the two retention clips (item 2) at the front and rear of the source assembly to an upright position.
- 6. Move **W1** to the side **while** lifting the source high enough to provide wrench clearance for **W24.** To lift the A3 source assembly, use the source bracket handle (item 3).
- 7. Disconnect the semirigid cable W24.
- 8. Remove the source assembly from the instrument.
A3 Source Assembly

A3 Source Assembly

sg687e

Replacement

- 1. Check the connector pins on the motherboard before reinstallation.
- 2. Slide the edges of the sheet metal partition (item 4) into the guides at the sides of the source compartment. Press down on the module to ensure that it is well seated in the motherboard connector.
- 3. Push down the retention clips Reconnect the two semirigid cables (W1 and W24) and one flexible cable (W26) to the source assembly.

Note When reconnecting semirigid cables, it is recommended that the connections be torqued to 10 in-lb.

- 4. Reinstall the source bracket.
- 5. Reconnect the flexible cable to the B sampler.

A4, AS, A6 Samplers and A7 Pulse Generator

ToolsRequired

- Needle-nose pliers
- **T-10** TORX screwdriver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord and remove the top cover (refer to "Covers" in this chapter).
- 2. To remove the B sampler(A6), you must remove the source bracket (item 1).
- 3. Disconnect all cables from the top of the sampler (A4/A5/A6) or pulse generator (A7).
- 4. Remove the screws from the top of each sampler assembly. Extract the assembly from the slot.

NoteTo remove the A (A5) or R (A4) sampler, first remove the cable
on the B (A6) sampler.NoteIf you are removing the pulse generator (A7), the grounding
clip, which rests on top of the assembly, will become loose once
the four screws are removed. Be sure to replace the grounding

clip when **reinstalling** the pulse generator assembly.

A4, A5, A6 Samplers and A7 Pulse Generator

Replacement

- 1. Check the connector pins on the motherboard before reinstallation.
- 2. Reverse the order of the removal procedure.

When reconnecting semirigid cables, it is recommended that the connections be torqued to 10 in-lb. Be sure to route W8 and W9 as shown. No excess wire should be hanging in the All and A14 board slots. Routing the wires in this manner will reduce noise and crosstalk.

A8, A10, A11, A12, A13, A14 Card Cage Boards

Tools Required

- **T-10** TORX screwdriver
- **T-15** TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. **Disconnect** the power cord and remove the top cover (refer to "Covers" in this chapter).
- 2. Remove the screw from the pc board stabilizer and remove the stabilizer.
- 3. Lift the two extractors located at each end of the board. Lift the board from the card cage slot, just enough to disconnect any flexible cables that may be connected to it.
- 4. Remove the board from the card cage slot.

Replacement

- 1. Check the connector pins on the motherboard before reinstallation.
- 2. Reverse the order of the removal procedure.

Note De sure to route **W8** and **W9** as shown. No excess wire should be hanging in the All and **A14** board **slots.** Routing the wires in this manner will reduce noise and crosstalk in the instrument.

AS, A10, All, A12, A13, A14 Card Cage Boards

A9 CPU Board

Tools Required

- T-10 TORX screwdriver
- **T-15 TORX** screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord.
- 2. Remove the top and bottom covers (refer to "Covers" in this chapter).
- 3. Remove the rear panel assembly, following steps 4 through 6 of "Rear Panel Assembly. "
- 4. Turn the analyzer upside down.
- 5. Pull the rear panel away from the frame as shown in the following figure.
- 6. Disconnect the four ribbon cables (W20, W35, W36, and W37) from the CPU board (AS).
- 7. Remove the three screws (item 2) that secure the CPU board **(A9)** to the deck. Slide the board towards the front of the instrument so that it disconnects from the three standoffs (item 3).
- 8. Lift the board off of the standoffs

Replacement

- 1. Reverse the order of the removal procedure.
- 2. Leave the bottom cover off in order to perform the post repair procedures located at the end of this chapter.

A9 CPU Board

sg6112e

A9 CPU Board

sg690e

A9BT1Battery

Tools Required

- T-10 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- soldering iron with associated soldering tools

Removal

- 1. Remove the A9 CPU/PIG board (refer to "A9 CPU Board" in this chapter).
- 2. Unsolder and remove A9BT1 from the A9 CPU/PIG board.

Warning Battery **A9BT1** contains lithium. Do not incinerate or puncture this battery. Dispose of the discharged battery in a safe manner.

DO NOT THROW **BATTERIES** AWAY BUT COLLECT AS SMALL CHEMICAL WASTE.

sk780a

Replacement

1. Make sure the new battery is inserted into the A9 board with the correct polarity.

Warning **Danger** of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended.

- 2. Solder the battery into place.
- 3. Replace the A9 CPU/PIG board (refer to "A9 CPU Board" in this chapter).

A9BT1 Battery

sg691e

A15Preregulator

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Remove the rear panel (refer to "Rear Panel Assembly" in this chapter).
- 2. Remove the two remaining screws from the top of the rear frame.
- 3. Disconnect the wire bundle (A15W1) from A8J2 and A17J3.
- 4. Remove the preregulator (A15) from the frame.

Replacement

1. Reverse the order of the removal procedure.

- When **reinstalling** the preregulator (A15), make sure the three grommets (item 1) on A15W1 are seated in the two slots (item 2) on the back side of the preregulator and the slot (item 3) in the card cage wall.
 - After reinstalling the preregulator (A15), be sure to set the line voltage selector to the appropriate setting, 115 V or 230 V.

A15 Preregulator

sg692e

A17 Motherboard Assembly

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- T-20 TORX screwdriver
- small slot screwdriver
- 2.5-mm hex-key driver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD (electrostatic discharge) grounding wrist strap

Removal

lb remove the A17 motherboard assembly only, perform the following steps to remove all assemblies and cables that connect to the motherboard.

- 1. Disconnect the power cord and remove the top, bottom, and side covers (refer to "Covers" in this chapter).
- 2. Remove the front panel assembly (refer to "Front Panel Assembly" in this chapter).
- 3. Remove the rear panel assembly (refer to "Rear **Panel** Assembly" in this chapter).
- 4. Remove the preregulator (refer to "A15 Preregulator" in this chapter).
- 5. Remove the graphics processor (refer to **"A19** Graphics Processor" in this chapter).
- 6. Remove the test set deck (item 3) by removing the three screws (item 4) from the bottom and four screws (item 5) from the side frames. For clarity, the **figure** on the next page does not show the assemblies attached to the test set deck.
- 7. Remove the CPU board (refer to "A9 CPU Board" in this chapter).
- 8. Remove the memory deck (item 1) by removing three screws (item 2) from the bottom and four screws (item 6) from the side frames

- 9. Remove the source assembly (refer to "A3 Source Assembly" in this chapter).
- 10. Remove the samplers and pulse generator (refer to ***A4**, **A5**, **A6** Samplers and **A7** Pulse Generator" in this chapter).
- 11. Remove the card cage boards (refer to ***A8**, **A10**, All, **A12**, **A13**, **A14** Card Cage Boards" in this chapter). Continue with step 12 to remove the motherboard, or step 13 to remove the motherboard/card cage assembly.
- 12. To disconnect the motherboard (item 7), remove the 34 riv screws (item 8). Important: Do not misplace any of these screws.

A 17 Motherboard Assembly

sg6109e

To remove the **A17** motherboard assembly along with the card cage, continue with the following step:

13. Referring to the **figure** on the following page, remove the front frame (item 1) and rear frame (item 6) by removing the attaching screws (item 7). At this point, only the motherboard/card cage assembly should remain. This whole assembly is replaceable.

Replacement

1. Reverse the order of the removal procedure.

A19 Graphics Processor

ToolsRequired

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord.
- 2. Remove the top cover (refer to "Covers" in this chapter) and front panel (refer to **"Front** Panel Assembly" in this chapter.)
- 3. Remove the six screws (item 1) from the GSP cover (item 2) and lift off.
- 4. Swing out the handles (item 3) and pull the GSP board (item 4) out of the **analyzer.**

Replacement

- 1. Check the connector pins on the motherboard before reinstallation.
- 2. Reverse the order of the removal procedure.

sg695e

A20 Disk Drive Assembly

Tools Required

- **#2** ball-end hexdriver with long shaft
- **T-8** TORX screwdriver
- T-10 TORX screwdriver
- T-15 TORX screwdriver
- T-20 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Required Diskette

• 3.5" diskette, 1.44 MB, formatted (DOS)

PreliminaryInstructions

Prepare the new disk drive assembly for installation in the analyzer. The Installation Note included in the service kit provides details for this procedure.

- 1. Disconnect the power cord and remove the top, bottom, and left side-covers (refer to "Covers" in this chapter).
- 2. Turn the analyzer over, so that the bottom faces up.
- 3. Disconnect the ribbon cable (item 1) that connects to the disk drive from its connector on the CPU board.
- 4. Remove the four screws (item 2) that secure the disk-drive bracket to the side of the analyzer, and remove the complete disk drive assembly.

Note Save the screws removed in this step for use later when installing the new disk drive bracket.

5. Disconnect the ribbon cable from its connection on the disk drive.

sg696e

A20 Disk Drive Assembly

Install the replacement disk drive.

1. Connect the existing ribbon cable to the replacement disk drive.

Note Make sure that the disk drive connector-contacts touch the ribbon cable contact areas (the ribbon-cable contact areas must face the contacts in the disk drive connector). Also assure that the connector is properly locked.

- 2. Slide the disk drive and bracket assembly into the analyzer.
- 3. Route the ribbon cable through the side access hole. Avoid twisting the cable-duplicate the original folds made to the cable.
- 4. **Fasten** the disk-drive bracket to the side of the analyzer frame, using the four screws saved in step 4 (immediately above).
- 5. Remove the trim strip from the top of the front panel.
- 6. Remove the screw from the top left comer of the front panel. This will allow access to one of the #2 hex screws of the disk-drive assembly.
- 7. **Align** the disk drive with the front panel, and tighten the three screws that fasten the disk drive to the disk-drive bracket. Do not over-tighten.
- 8. **Reconnect** the ribbon cable to the CPU board.
- **Note** Make sure that the CPU connector-contacts touch the ribbon cable contact areas (the ribbon-cable contact areas must face the contacts in the CPU connector). Also assure that the connector is properly locked.

Test the disk-eject function, and adjust if required.

- 1. Insert a diskette into the drive.
- 2. Eject the diskette from the drive.
- 3. If the diskette does not eject properly, loosen and re-tighten the three screws that hold the disk drive to the disk-drive bracket:
 - a. Loosen the two screws that are readily accessible.
 - b. Loosen the upper-most front screw through the access hole in the top-left area of the front frame.

- c. Center the disk drive in the opening.
- d. Re-tighten all three screws.

Reinstall the covers.

- 1. Reinstall the remaining top front-panel screw in the left corner.
- 2. Reinstall the trim strip.
- 3. Reinstall the covers. If needed, refer to "Covers" in this chapter for help in performing this task.

A21, A22 Test Port Couplers

ToolsRequired

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- 5/16-inch open-end torque wrench (set to 10 in-lb)

Removal

- 1. **Disconnect** the power cord and remove the bottom cover (refer to "Covers" in this chapter).
- 2. Disconnect the small bias wire from the test set interface board (A25).

For coupler A2 1 disconnect the gray wire (A2 1 W 1). For coupler A22 disconnect the gray wire (A22W1).

3. Disconnect the two semirigid cables from the coupler assembly.

For coupler A21 disconnect W3 and W31. For coupler A22 disconnect W4 and W32.

- 4. Remove the four screws, washers, and pressure springs that secure the coupler to the test set deck. Remove the coupler.
- 5. Remove the pressure springs

Replacement

1. Reverse the order of the removal procedure.

- **Note** If you're **installing** a new coupler, the gold lead on the feedthru capacitor (item 1) must be **carefully** bent at 90 degrees to prevent it from shorting to the bottom cover.
 - When reconnecting semirigid cables, it is recommended that the connections be torqued to 10 in-lb.

sg697e

A23 LED Board

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- small slot screwdriver
- ESD (electrostatic discharge) grounding wrist strap
- 5/16-inch open-end torque wrench (set to 10 in-lb)

Removal

- 1. Disconnect the power cord and remove the bottom cover (refer to "Covers" in this chapter).
- 2. Remove the front panel (refer to "Front Panel Assembly" in this chapter).
- 3. Remove the **A22** test port coupler (refer to **"A21, A22 Test Port** Couplers" in this chapter).
- 4. Disconnect **W33** from the LED board (A23).
- 5. Remove the screw (item 1) from the front of the test set deck.
- 6. Remove the LED board (A23).

Replacement

1. Reverse the order of the removal procedure.

A23 LED Board

sg698e

A24 Transfer Switch

Tools Required

- T-10 TORX screwdriver
- T-15 TORX screwdriver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Disconnect the power cord and remove the bottom cover (refer to "Covers" in this chapter).
- 2. Disconnect A24W1 from J3 on the test set interface board (A25).
- 3. Disconnect the three semirigid cables (W1, W31, and W32) from the transfer switch (A24).
- 4. Remove the two screws (item 1) that secure the transfer switch.

Replacement

1. Reverse the order of the removal procedure.

Note When reconnecting semirigid cables, it is recommended that the connections be torqued to 10 in-lb.

A24 Transfer Switch

A25 Test Set Interface

ToolsRequired

- **T-10** TORX screwdriver
- **T-15** TORX screwdriver
- 5/16-inch open-end torque wrench (set to 10 in-lb)
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. **Disconnect** the power cord and remove the bottom cover (refer to "Covers" in this chapter).
- 2. Disconnect all cables and wires (A21W1, A22W1, W33, and W34) from the test set interface board (A25).
- 3. Remove the five screws (item 1) that secure the test set interface board.

Replacement

1. Reverse the order of the removal procedure.

sg6100e

A26 High Stability Frequency Reference (Option 1D5) Assembly

ToolsRequired

- T-10 TORX screwdriver
- **T-15** TORX screwdriver
- 9/16-inch hex-nut driver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Remove the rear panel (refer to "Rear Panel Assembly" in this chapter).
- 2. Disconnect **W30** from the high stability frequency reference board (A26).
- 3. Remove the BNC connector nut and washer from the "10 MHz PRECISION REFERENCE" connector (item 1) on the rear panel.
- 4. Remove the screw (item 4) that attaches the 1D5 assembly to the rear panel.
- 5. Remove the screw (item 2) that secures the high stability frequency reference board **(A26)** to the bracket.
- 6. Slide the board out of the bracket. Be careful not to lose the plastic spacer washer (item 3) that is on the BNC connector as the board is being removed.

Replacement

- 1. Reverse the order of the removal procedure.
- **Note** Before reinserting the high stability frequency reference board (A26) into the bracket, be sure the plastic spacer washer (item 3) is on the BNC connector.

sg6101e

B1 Fan Assembly

ToolsRequired

- 2.5-mm hex-key driver
- T-10 TORX screwdriver
- T-15 TORX screwdriver
- ESD (electrostatic discharge) grounding wrist strap

Removal

- 1. Remove the rear panel (refer to "Rear Panel Assembly" in this chapter).
- 2. Remove the four screws (item 1) that secure the fan and fan cover to the rear panel.

Replacement

- 1. Reverse the order of the removal procedure.
- **Note** The fan should be installed so that the direction of the air Bow is away from the instrument. There is an arrow on the fan chassis indicating the air flow direction.

B1 Fan Assembly

hg628d
Post-Repair Procedures for HP 8753E

The following table lists the additional service procedures which you must perform to ensure that the instrument is working correctly, following the replacement of an assembly. These procedures can be located in either Chapter 2 or Chapter 3.

Perform the procedures in the order that they are listed in the table

Replaced Assembly	Adjustments/ Correction constants (ch.3)	Verification (Ch. 2)
Al Front Panel Keyboard	None	Service Test 0 serviceTest 23
A2 Front Panel Interface	None	Service Test 0 service Test 23 service Test 12 Tests 66 - 80
A3 source	A9 Switch Positions Source Def CC (Test 44) Pretune Default CC (Test 46) Analog Bus CC (Test 46) Source Pretune CC (Test 48) RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 53) Cavity Oscillator Frequency CC (Test 54) Source Spur Avoidance Tracking EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy Test Port Output Power Accuracy Test Port Output Power Range aud Linearity Test Port Output/Input Harmonics (Option 002 only)
A4/A5/A6Samplers	A9 Switch Positions Sampler Magnitude and Phase CC (Test 53) IF Amplifier CC (Test 51) EEPROM Backup Disk	Minimum R Channel Level (if R sampler replaced) Test Port Crosstalk Test Port Input Frequency Response
A7 Pulse Generator	A9 Switch Positions Sampler Magnitude and Phase CC (Test 53) EEPROM Backup Disk	Test Port Input Frequency Response Test Port Frequency Range and Accuracy
A8 Post Regulator	A9 Switch Positions Cavity Oscillator Frequency CC (Test 54) Source Spur Avoidance Tracking EEPROM Backup Disk	Service Test 0 Check A8 test point voltages

 Table 14- 1. Belated Service Procedures

Replaced Assembly	Adjustments/ Correction Constants (Ch. 3)	Verification (Ch. 2)
19 CPU EEPROM Backup)isk Available)	A9 Switch Positions Load Firmware CC Retrieval Serial Number CC (Test 55) Option Number CC (Test 56)	Operator's Check service Test 21 Service Test 22
19 CPU EEPROM Backup)isk Not Available)	A9 Switch Positions Load Firmware Serial Number CC (Test 55) Option Number CC (Test 56) Source Def CC (Test 44) Pretune Default CC (Test 46) Analog Bus CC (Test 46) Cal Kit Default (Test 57) Source Pretune CC (Test 48) RF Output Power CC (Test 48) RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 53) ADC Linearity CC (Test 52) IF Amplifier CC (Test 51) Cavity Oscillator Frequency CC (Test 54) EEFROM Backup Disk	Test Port Output Frequency Range and Accuracy Test Port Output Power Accuracy Test Port Output Power Range and Linearity Test Port Receiver Dynamic Accuracy Test Port Input Frequency Response
\10 Digital IF	A9 Switch Positions Analog Bus CC (Test 46) Sampler Magnitude and Phase CC (Test 53) ADC Linearity CC (Test 52) IF Amplifier CC (Test 51) EEPROM Backup Disk	Test Port Input Noise Floor Level Test Port Crosstalk System Trace Noise
111 Phase Lock	A9 Switch Positions Analog Bus CC (Test 46) Pretune Default CC (Test 45) Source Pretune CC (Test 48) EEPROM Backup Disk	Minimum R Channel Level Test Port Output Frequency Range and Accuracy
112 Reference	A9 Switch Positions High/Low Band Transition Frequency Accuracy EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy

 Table 14-1. Related Service Procedures (2 of 3)

Replaced Assembly	Adjustments/ Correction Constants (ch. 2)	Verification (Ch. 2)
A13 Fractional-N (Analog)	A9 Switch Positions Fractional-N Spur and FM Sideband EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy
A14 Fractional-N (Digital)	A9 Switch Positions Fractional-N Frequency Range Fractional-N Spur Avoidance and FM Sideband EEPROM Backup Disk	Test Port Output Frequency Range and Accuracy
A15 Preregulator	None	Self-Test
A16 Rear Panel Interface	None	Internal Test 13, Rear Panel
A17 Motherboard	None	Observation of Display Tests 66 - 80
A18 Display	None	Observation of Display Tests 66 - 80
A19 Graphics System Processor	None	Observation of Display Tests 59 - 80
A20 Disk Drive	none	none
A21 Test Port Coupler	RF Output Power CC (Test 47) Sampler Magnitude and Phase CC (Test 53)	Test Port Crosstalk Test Port Frequency Response
A22 Test Port Coupler	Sampler Magnitude and Phase CC (Test 53) •	Test Port Crosstalk Test Port Frequency Response
A23 Bd Assy LED	none	Self-Test (Chapter 4)
A24 Transfer Switch	none	Test Port Crosstalk
A25 Test Set Interface	none	Self-Test (Chapter 4)
A26 High Stability Frequency Reference	Frequency Accuracy Adjustment (Option 1D5)	Test Port Frequency Range and Accuracy
* Hewlett-Packard ver performance is typical	ifies source output performance on port 1 or l.	ly. Port 2 source output

 Table 14-1. Related Service Procedures (3 of 3)

Safety and Licensing

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Certification

Hewlett-Packard Company **certifies** that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further **certifies** that its calibration measurements are traceable to the United States National Institute of Standards and **Technology**, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards **Organization** members

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of three years from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard. Buyer shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and **firmware** designated by Hewlett-Packard for use with an instrument will execute its programming instructions when properly installed on that **instrument**. Hewlett-Packard does not warrant that the operation of the instrument, or software, or **firmware** will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental **specifications** for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. **HEWLETT**-PACKARD SPECIFICALLY **DISCLAIMS** THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

Fbr any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Hewlett-Packard Sales and Service Offices

UNITED STATES

Instrument Support Center Hewlett-Packard Company (800) 403-0801

EUROPEAN FIELD OPERATIONS

Headquarters

Hewlett-PackardS.A. 160, Route du Nant-d'Avril 1217 Meyrin 2/Geneva Switzerland (4122) 780.8111

France Hewlett-Packard France 1 Avenue Du Canada Zone D'Activite De Courtaboeuf F-91947 Les Ulis Cedex

France

(33 1) 69 82 60 60

Germany

Hewlett-Packard GmbH Hewlett-Packard Strasse 61362 BadHomburg v.d.H Germany (49 6172) 16-0

Great Britain Hewlett-Packard Ltd. E&dale Road, Winnersh Triangle Wokingham, Berkshire RG41 5DZ England (44 734) 696622

INTERCON FIELD OPERATIONS

Headquarters

Hewlett-PackardCompany 3495 Deer Creek Road Palo Alto, California, USA 94304-1316 (416) 857-5027

Japan

Hewlett-Packard Japan, Ltd. 91 Takakura-Cho, Hachioji Tokyo 192, Japan (81426) 60-2111

China ChinaHewlett-PackardCompany 38 Bei San Huan X1 Road Shuang Yu Shu Hai Dian District Beijing, china (86 1) 256-6888

Australia Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackbum, Victoria 3130 (613) 895-2895

Singapore

Hewlett-Packard Singapore (Pte.) Ltd. Hewlett-Packard Taiwan 169 Beach Road **#29-00** Gateway West Singapore0718 (65) 291-9088

Canada

Hewlett-Packard (Canada) Ltd. 17500 South Service Bond Trans- Canada Highway Kirkland, Quebec H9J2X8 Dian District Canada (514) 697-4232

Taiwan

8th Floor, H-P Building 337 Fu Hsing North Road Taipei, Taiwan (336 2) 712-0404

Shipment for Service

If you are sending the instrument to Hewlett-Packard for service, ship the analyzer to the nearest HP service center for repair, including a description of any failed test and any error message. Ship the analyzer using the original or comparable antistatic **packaging** materials.

Safety Symbols

The following safety symbols are used throughout this manual. **Familiarize** yourself with each of the symbols and its meaning before operating this **instrument**.

Caution	Caution denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, would result in damage to or destruction of the instrument. Do not proceed beyond a caution note until the indicated conditions are fully understood and met.
Warning	Warning denotes a hazard. It calls attention to a procedure which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

Instrument Markings

The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation.

"CE" The CE mark is a registered trademark of the European Community. (If accompanied by a year, it is when the design was proven.)

"ISM1-A" This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.

"CSA" The CSA mark is a registered trademark of the Canadian Standards Association.

Safety Considerations

Note This instrument has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Electronics Measuring Apparatus, and has been supplied in a safe condition. This instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

Safety Earth Ground

Warning	This is a Safety Class I product (provided with a protective earthing ground incorporated in the power cord). The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. Any interruption of the protective conductor, inside or outside the instrument, is likely to make the instrument dangerous. Intentional interruption is prohibited.

Warning Always use the three-prong AC power cord supplied with this product. Failure to ensure adequate earth **grounding** by not using this cord may cause product damage.

Before Applying Power

 Caution
 Before switching on this instrument, make sure that the analyzer line voltage selector switch is set to the voltage of the power supply and the correct fuse is installed.

 Caution
 If this product is to be energized via an autotransformer make sure the common terminal is connected to the neutral (grounded side of the mains supply).

Servicing

Warning	No operator serviceable parts inside. Refer servicing to qualified personnel. To prevent electrical shock, do not remove covers.	
Warning	These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing unless you are qualified to do so.	
Warning	The opening of covers or removal of parts is likely to expose dangerous voltages. Disconnect the instrument from all voltage sources while it is being opened.	
Warning	Adjustments described in this document may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.	
Warning	The power cord is connected to internal capacitors that may remain live for 10 seconds after disconnecting the plug from its power supply.	
Warning	For continued protection against fire hazard replace line fuse only with same type and rating (F 3A/250V) . The use of other fuses or material is prohibited.	

General

Warning	To prevent electrical shock, disconnect th HP 8753E from mains before cleaning. Use $_{a}$ dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally.	
Warning	If this product is not used as specified, the protection provided by the equipment could be impaired. This product must be used in a normal condition (in which all means for protection are intact) only.	
Caution	This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 664 respectively.	
Caution	VENTILATION REQUIREMENTS: When installing the product in a cabinet, the convection into and out of the product must not be restricted. The ambient temperature (outside the cabinet) must be less than the maximum operating temperature of the product by 4 ° C for every 100 watts dissipated in the cabinet. If the total power dissipated in the cabinet is greater that 800 watts, then forced convection must be used.	
Warning	Install the instrument according to the enclosure protection provided. This instrument does not protect against the ingress of water. This instrument protects agains finger access to hazardous parts within the enclosure.	

Compliance with German FTZ Emissions Requirements

This network analyzer complies with German FTZ 526/527 Radiated Emissions and Conducted Emission requirements.

Compliance with German Noise Requirements

This is to declare that this instrument is in conformance with the German Regulation on Noise Declaration for Machines (Laermangabe **nach** der Maschinenlaernuerordung -3. GSGV Deutschland).

Acoustic Noise Emission/Geraeuschemission		
LpA<70 dB	Lpa<70 dB	
Operator Position	am Arbeitsplatz	
Normal Operation	normaler Betrieb	
per ISO 7779	nach DIN 45635 t. 19	

Index

1

100 kHz pulses, 7-16

- 10 MHz HI OUT Waveform from A14J1,7-26
- 10 MHz precision reference assembly replacement, 14-58 part numbers, 13-26
- 1st LO signal at sampler/mixer, 8-14

2

25 MHz HI OUT Waveform from A14J1,7-27
2nd IF (4 kHz) signal locations, 8-11
2nd LO locations, 8-14
2ND LO waveforms, 7-21

4

4 kHz signal check, 8-11 4 MHz reference signal, 7-20 4 MHz REF signal check, 8-7

5

+5 v digital supply theory of operation, 12-6

6

60 MHz HI OUT Waveform from A14J1, 7-27

8

8753E

theory of operation, 12-1

Α

A10 assembly signals required, 8-8 A10 check by substitution or signal examination, 8-8 A10 digital IF, 12-30 digital control, 12-10 A10 Digital IF, 10-33 All input signals, 7-36 All Input Signals, 7-36 All phase lock, 10-34 source, 12-15 All phase lock and A3 source check, 7-8All phase lock check, 7-35 A12 digital control signals check, 7-23A12 reference, 10-40 source, 12-14 A12 reference check, 7-13 A13/A14 Fractional-N Check, 7-24 A13 frac-N analog source, 12-14 A14 Divide-by-N Circuit Check, 7-29 A14 frac-N digital source, 12-14 A14 fractional-N (digital), 10-43 A14 generated digital control signals, 7-31A14-to-A13 digital control signals check, 7-29 A14 VCO exercise, 7-27 A15 preregulator

theory of operation, 12-5 A15 preregulator check, 5-9 **A15W1** plug detail, 5-10 A16 rear panel digital control, 12-12 A18 display digital control, 12-11 power, 12-8 A19 GSP digital control, 12-12 A1/A2 front panel troubleshooting, 6 - 13Al front panel digital control, 12-10 A21 test port coupler, 12-26 A22 test port coupler, 12-26 **A23** LED front panel, 12-26 A24 transfer switch, 12-26 A25 test set interface, 12-26 A27 inverter digital control, 12-12 A2 front panel processor digital control, 12-10 A3 source external source mode, 12-23 frequency offset, 12-22 harmonic analysis, 12-22 high band theory, 12-19 low band theory, 12-16 operation in other modes, 12-22 source, 12-15 super low band theory, 12-15 theory of operation, 12-2, 12-14 tuned receiver mode, 12-25 A3 source and All phase lock check, 7-8A4 sampler/mixer, 12-29 A4 sampler/mixer check, 7-6 A5 sampler/mixer, 12-29 A6 sampler/mixer, 12-29 A7 pulse generator

source, 12-15 A7 pulse generator check, 7-32 A8 fuses and voltages, 5-14 A8 post regulator air flow detector, 12-7 display power, 12-8 green LEDs, 12-7 probe power, 12-8 shutdown circuit, 12-7 theory of operation, 12-7 variable fan circuit, 12-7 A8 post regulator test points, 5-5 A9 CPU digital control, 12-10 A9 CPU operation check, 6-4 A and B inputs check, 8-4 A and B input traces check, 416 **ABUS** Cot, **10-13 ABUS** node 16 for power check, 415 ABUS Test., 10-10 accessories error messages check, 4 - 18accessories inspection, 9-3 accessories troubleshooting, 418 accessories troubleshooting chapter, 9-1 accuracy and range of frequency, 2-18accuracy of frequency adjustment, 3-48accuracy of power test, 2-24 adapters, 1-4 ADC Hist., 10-11 ADC Lin., 10-10 ADC main, **10-23** ADC offset correction constants adjustment, 3-17 ADC Ofs., 10-10 ADC Ofs Cot, 10-13 ADD, 10-6 addresses for HP-IB systems, 46

adjustment A9 Switch Positions, 3-5 ADC offset correction constants (test 52), 3-17 analog bus correction constants (test **46**), 3-9 cavity oscillator frequency correction constants (test 54), 3-28fractional-N frequency range, 3-45 fractional-N spur avoidance and FM sideband, 3-54 frequency accuracy, 3-48 high/low band transition, 3-52 IF amplifier correction constants (test **51**), 3-16 initialize EEPROMs (test 58), 3-37 option numbers correction constants (test 56), 3-36 **RF** output power correction constants (test 47), 3-11 sampler magnitude correction constants (test 53), 3-18 sequences for mechanical adjustments, 3-62 serial number correction constants (test 55), 3-34 source default correction constants (test 44), 3-7 source pretune correction constants (test **48**), 3-10 source pretune default correction constants (test 45), 3-8 source spur avoidance tracking, 3-58adjustments analyzer, 3-1 adjustment tests, 10-3 Adjustment Tests, 10-13 ADJUSTMENT TESTS, 10-5 air flow detector, 12-7 ALC ON OFF, 10-19

ALL INT. 10-7 Alter and Normal switch position adjustment, 3-5 amplifier (IF') adjustment, 3-16 analog bus, 10-22 **ANALOG BUS, 10-25** analog bus check of reference frequencies, 7-13 analog bus checks YO coil drive, 7-11 analog bus codes, 10-49 analog bus correction constants adjustment, 3-9 analog bus node 1, 10-27 analog bus node 11, 10-34 analog bus node 12, 10-34 analog bus node 13,14, 10-35 analog bus node 15, 10-36 analog bus node 16, 10-37 analog bus node 17, 10-38 analog bus node 18, 10-39 analog bus node 19, 10-39 analog bus node 2, 10-28 analog bus node 20, 10-40 analog bus node 21, **10-41** analog bus node 23, 10-41 analog bus node 24, **10-42** analog bus node 27, 10-43 analog bus node 29, 10-44 analog bus node 3, 10-29 analog bus node 30, **10-45** analog bus node 4, 10-30 analog bus node 5, 10-31 analog bus node 6, 10-31 analog bus node 7, 10-32 analog bus node 8, 10-32 analog bus node 9, 10-33 analog bus nodes, 10-26 A3, 10-26 ANALOG BUS ON OFF, 10-22 analog in menu, 10-24 analog node 10, 10-33

analyzer theory of operations, 12-1 analyzer adjustments, 3-1 analyzer block diagram, 419 analyzer **HP-IB** address, 46 analyzer options available, 1-7 analyzer (spectrum), 1-3 analyzer verification, 2-1 antistatic wrist strap, **1-4** antistatic wrist strap and cord, **1-4** antistatic wrist strap cord, 1-4 appendix for source group troubleshooting, 7-38 assemblies bottom view, 13-8 part numbers, 13-6-8 rebuilt-exchange, 13-3 top view, 13-6 assembly replacement, 14-1 **A10** digital IF, 1430 All phase lock, 1430 **A12** reference, 14-30 **A13 frac-N** analog, 1430 **A14 frac-N** digital, 1430 A15 preregulator, 14-38 **A17** motherboard, 14-40 A19 graphics processor, 1444 A20 disk drive, 1446 **A21** test port-l coupler, 1450 **A22** test **port-2** coupler, 1450 **A23** LED board, 1452 A24 transfer switch, 1454 A25 test set interface, 14-56 A26 high stability frequency reference, 1458 **A3** source, 1422 **A4** R-sampler, 1426 **A5** A-sampler, 14-26 **A6** B-sampler, 1426 **A7** pulse generator, 1426 A8 post regulator, 1430

A9BT1 battery, 14-36 A9 CPU, 14-32 **B1** fan, 14-60 covers, 146 display, 14-12 display lamp, 1412 front panel, 148 front panel interface, 14-10 keypad, 1410 line fuse, 144 rear panel, 1416 rear panel interface, 14-20 attenuator theory of operation, 12-2 attenuators (fixed), 1-4 attenuator (step), 1-3 AUX OUT ON OFF, 10-24 available options, 1-7

B

background intensity check for display, 6-7 backup EEPROM disk, 3-38 bad cables, **9-1** B and A inputs check, 8-4 band (high/low) transition adjustment, 3-52BATTERY FAILED. STATE MEMORY CLEARED, 10-50 BATTERY LOW! STORE SAVE REGS TO DISK, 10-50 block diagram, 419 digital control group, 6-3 power supply, 5-25 power supply functional group, 5 - 3broadband power problems, 7-39 built-in test set, 12-26 LED front panel, 12-26 test port couplers, 12-26 test set interface, 12-26

transfer switch, 12-26 bus analog, 10-22 bus nodes, **10-26**

С cable inspection, 6-16 cables, 1-4 bottom view. 13-12 front view, 13-14 part numbers, 13-19-18 rear view, 13-16 source, 13-18 top view, 13-10 cable test, 9-5 Cal Coef 1-12., 10-12 CAL FACTOR SENSOR A, 10-6 CAL FACTOR SENSOR B, 10-6 CALIBRATION ABORTED, 10-50 calibration coefficients, 11-1 calibration device inspection, 9-3 calibration kit 7 mm, 500, 1-3 calibration kit device verification, 9-4 calibration kit Type-N, 750, 1-3 calibration procedure, 11-3 CALIBRATION REQUIRED, 10-51 care of connectors, 1-5 CAUTION OVERLOAD ON INPUT A, POWER REDUCED, 8-3 OVERLOAD ON INPUT B, POWER REDUCED, 8-3 OVERLOAD ON INPUT R, POWER REDUCED, 8-3 cavity oscillator frequency adjustment, 3-28 cavity oscillator frequency correction constants adjustment, 3-28 Cav osc Cor., **10-13** CC procedures

ADC offset (test 52), 3-17 analog bus (test 46), 3-9 cavity oscillator frequency (test 54), 3-28 IF amplifier (test 51), 3-16 initialize EEPROMs (test 58), 3-37 option numbers (test 56), 3-36 retrieve correction constant data from EEPROM backup disk, 3-40RF output power (test 47), 3-11 sampler magnitude (test 53), 3-18 serial number (test 55), 3-34 source default (test 44), 3-7 source pretune default (test 45), 3-8source **pretune** (test **48**), 3-10 Unprotected Hardware Option Numbers, 3-60 center conductor damage, 9-3 certification of kit, 2-7 chassis part numbers, 13-42-44 check **1st** LO signal at sampler/mixer, 8-14 4 MHz REF signal, 8-7 A10 by substitution or signal examination, 8-8 All phase lock, 7-35 A12 digital control signals, 7-23 **A12** reference, 7-13 A13/A14 Fractional-N, 7-24 A14 Divide-by-N Circuit Check, 7-29A14-to-A13 digital control signals, 7-29A15 Preregulator, 5-9 **A1/A2** front panel, 6-13 A3 source and All phase lock, 7-8 A4 sampler/mixer, 7-6

A7 pulse generator, 7-32 A8 fuses and voltages, 5-14 A9 CPU control, 6-4 A and B inputs, 8-4 A and B input traces, 4-16 accessories error messages, 4-18 CPU control, 6-4 digital control, 4-11 disk drive, 4-7 fan voltages, 5-22 FN LO at **A12**, 7-19 for a faulty assembly, 5-11 **HP-IB** systems, 46 line voltage, selector switch, fuse, 5-7motherboard, 5-13 operating temperature, 5-13 operation of **A9** CPU, 6-4 phase lock error message, 7-4 phase lock error messages, 413 plotter or printer, 4-7 post regulator voltages, 5-5 power supply, 4-10 power up sequence, 411 preregulator LEDs, 410 rear panel LEDs, 410 receiver, 416 receiver error messages, 4-17 source, 413 the 4 kHz signal, 8-11 trace with sampler correction off, 8-12 YO coil drive with analog bus, 7-11 check front panel cables, 6-16 cleaning of connectors, 1-5 CLEAR LIST, 10-6 coax cable, 1-4 codes for analog bus, 10-49 coefficients, 11-1 comb tooth at 3 GHz, 7-33

components related to specific error terms, 9-3 connection techniques, 1-5 connector care of, **1-5** CONTINUE TEST, 10-5 controller HP-IB address, 4-6 controller troubleshooting, 4-8 conventions for symbols, 10-48 correction constants ADC offset (test 52), 3-17 analog bus (test **46**), 3-9 cavity oscillator frequency(test 54), 3-28display intensity (test 45), 6-7 IF amplifier (test **51**), 3-16 initialize EEPROMs (test 58), 3-37 option numbers (test 56), 3-36 retrieval from EEPROM backup disk, **3-40** RF output power (test 47), 3-11 sampler magnitude (test 53), 3-18 serial number (test 55), 3-34 source default (test 44), 3-7 source pretune default (test 45), 3-8source pretune (test 48), 3-10 Unprotected Hardware Option Numbers, 3-60 CORRECTION CONSTANTS NOT STORED, 10-51 CORRECTION TURNED OFF, 10-51 counter, 10-23 COUNTER OFF, **10-24** counter (frequency), 1-3 counter readout location, 10-38 CPU digital control, 12-10 CPU operation check, 6-4

CURRENT PARAMETER NOT IN CAL SET, 10-51

D

damage to center conductors, 9-3 data that is faulty, 417 DEADLOCK, 10-51 default correction constants adjustment for source, 3-7 default correction constants adjustment for source **pretune**, 3-8**DELETE**, 10-6 delete display option, 1-8 description of tests, 10-7 DEVICE not on, not connect, wrong addrs, 10-52diagnose **softkey**, 10-7 diagnostic error terms, 11-1 diagnostic LEDs for A15, 5-4 diagnostic routines for phase lock, 7-39 diagnostics internal, 10-2 diagnostics of analyzer, 4-3 diagnostic tests, 6-17 diagram A4 sampler/mixer to phase lock cable, 7-7 digital control group, 6-3 diagram of HP 87533, 419 diagram of power supply, 5-25 DIF Control, 10-9 DIF Counter, 10-9 digital control **A10 digital** IF, 12-10 **A16** rear panel, 12-12 **A18** display, 12-11 A19 GSP, 12-12

Al front panel, 12-10 A27 inverter, 12-12 A2 front panel processor, 12-10 A9 CPU, 12-10 digital signal processor, 12-11 EEPROM, 12-11 main CPU, 12-10 main RAM, 12-11 theory of operation, 12-8 digital control block diagram, 6-3 digital control check, 4-11 digital control lines observed using L INTCOP as trigger, 8-10 digitai control signals A14-to-A13 check, 7-29 digital control sign& check, 7-23 digitai control signals generated from A14,7-31 digitai control troubleshooting chapter, 6-1 digital data lines observed using L INTCOP as trigger, 8-10 digital IF, 10-33, 12-30 digital control, 12-10 digital voltmeter, 1-3 directivity (EDF and EDR), 11-11 disable shutdown circuitry, 5-16 DISK not on, not connected, wrong addrs, 10-52disk drive check, 4-7 disk drive (external) HP-ID address, 46disk drive replacement, 14-46 disk (floppy), 1-3 DISK HARDWARE PROBLEM, 10-52 DISK MESSAGE LENGTH ERROR, 10-52DISK READ/WRITE ERROR, 10-53 Disp 2 Ex., **10-13 Disp/cpu** corn., 10-15

display digital control, 12-11 power, 12-8 displayed spurs with a filter, 3-30 display intensity, 6-7 display tests, 10-3, 10-15 DISPLAY TESTS, 10-5 DIV FRAC N, 10-25 Divide-by-N Circuit Check, 7-29 DONE, 10-6 **DRAM cell**, 10-15 DSP ALU, 10-9 DSP Control, 10-9 DSP Intrpt, 10-9 DSP RAM. 10-9 DSP Wr/Rd, 10-9

E

earth ground wire and static-control table mat, **1-4** EDIT, **10-6** edit list menu, 10-6 equipment automated system verification, 2-8 cavity **oscillator** frequency adjustment, 3-28 display intensity correction constants adjustment, 6-7 EEPROM backup dish procedure, 3-38 external source mode frequency range, 2-21 fractional-N frequency range adjustment, 3-45 fractional-N spur avoidance and FM sideband adjustment, 3-54 frequency accuracy adjustment, 3-48high/low band transition adjustment, 3-52

IF **amplifier** correction constants adjustment, 3-16 minimum R channel level, 2-31 RF output power correction constants adjustment, 3-11 sampler magnitude adjustment, 3-18 source spur avoidance tracking adjustment, 3-58 test port frequency range and accuracy test, 2-18 test port input noise floor level, 2 - 37test port output power accuracy, $\bar{2}$ -24 test port output power range and linearity, 2-27 equipment for service, 1-1 error **BATTERYFAILED.STATEMEMORY** CLEARED, 10-50 BATTERY LOW! STORE SAVE REGS TO DISK, 10-50 CALIBRATION ABORTED, 10-50 CALIBRATION REQUIRED, 10-51 CORRECTION CONSTANTS NOT STORED.10-51 CORRECTION TURNED OFF, 10-51 CURRENT PARAMETER NOT IN CAL SET, 10-51 DEADLOCK, 10-51 DEVICE: not on, not connect, wrong addrs, 10-52 DISKHARDWARE PROBLEM, 10-52DISK MESSAGE LENGTH ERROR, 10-52DISK: not on, not connected, wrong addrs, **10-52** DISK READ/WRITE ERROR, 19-53 **INITIALIZATION FAILED, 10-53**

INSUFFICIENT MEMORY, PWR MTR CAL OFF, 10-53

- NO CALIBRATION CURRENTLY IN PROGRESS, 10-53
- NO IF FOUND: CHECK R INPUT LEVEL, 10-54
- NO PHASE LOCK: CHECK R INPUT LEVEL, 19-54
- NO SPACE FOR NEW CAL. CLEAR REGISTERS, **10-54**
- NOT ALLOWED DURING POWER METER CAL, **10-55**
- NOT ENOUGH SPACE ON DISK FOR STORE, **10-53**
- OVERLOAD ON INPUT A, POWER REDUCED,10-55
- OVERLOAD ON INPUT B, POWER REDUCED,10-55
- OVERLOAD ON INPUT R, POWER REDUCED,10-55
- PARALLEL PORT NOT **AVAILABLE** FOR COPY, **10-56**
- PARALLEL PORT NOT AVAILABLE FOR GPIO, **10-55**
- PHASE LOCK CAL FAILED, 10-56
- PHASE LOCK LOST, 10-56
- POSSIBLE FALSE LOCK, 10-57
- POWER METER INVALID, 10-57 POWER METER NOT SETTLED,
- 10-57
- POWER SUPPLY HOT!, 10-57
- POWER SUPPLY SHUT DOWN!, 10-57
- POWER UNLEVELED, 10-58
- PRINTER: error, **10-58**
- PRINTER: not handshaking, 10-58
- PRINTER: not on, not connected, wrong addrs, **10-58**
- PROBE POWER SHUT DOWN!, 10-58

PWR MTR: NOT ON/CONNECTED OR WRONG ADDRS, 10-59 SAVE FAILED. INSUFFICIENT MEMORY.10-59 SELF TEST #n FAILED, 10-59 SOURCE POWER TURNED OFF. RESET UNDER POWER MENU, 10-59 SWEEP MODE CHANGED TO CW **TIME SWEEP**, **10-60** TEST ABORTED. 10-60 TROUBLE! CHECK SETUP AND **START OVER, 10-60** WRONG DISK FORMAT, INITIALIZE DISK. 10-60 error-correction procedure, 11-3 error message for phase lock, 7-4 error messages, 10-1, 10-50 error messages for receiver failure, 8-3 error term inspection, 9-3 error terms, 11-1 directivity (EDF and EDR), 11-11 isolation (crosstalk, EXF and EXR), 11-14 load Match (ELF and ELR), 11-15 reflection Tracking (ERF and ERR), 11 - 13source match (ESF and ESR), 11-12 transmission tracking (ETF and ETR), 11-16 E-terms, 1 l-l external source, 1-3 external source mode frequency range, 2-21 external tests, 10-3, 10-11 EXTERNAL TESTS, 10-4

F

failure

A11 phase lock and A3 source check. 7-8 A1/A2 front panel, 6-13 key stuck, 6-14 phase lock error, 7-4 receiver, 8-3 RF power from source, 7-3 failures HP-IB, 6-19 fan air flow detector, 12-7 variable fan circuit, 12-7 fan speeds, 5-22 fan troubleshooting, 5-22 fan voltages. 5-22 faulty **analyzer** repair, 42 faulty cables, 9-1 faulty calibration devices or connectors, 9-1 faulty data, 417 faulty group isolation, 49 filter (low pass), 1-3 firmware revision softkey, 10-47 floor level test, 2-37 floppy disk, 1-3 **FM Coil** – plot with 3 point sweep, 7 - 37**FM** sideband and spur avoidance adjustment, 3-54 FN count., **10-10** FN LO at A12 check, 7-19 FN LO waveform at A12J1, 7-19 FRAC N, 10-25 frac-N analog source, 12-14 Frac N Cont., 10-9 frac-N digitai source, 12-14 FRACN TUNE mode HI OUT. signal, 7-34FRACN TUNE ON OFF, 10-18

Fractional-N Check, 7-24 fractional-N (digital), 10-43 fractional-N frequency range adjustment, 3-45 Fractional-N Frequency Range Adjustment Sequence, 3-62 fractional-N spur avoidance and FM sideband adjustment, 3-54 Fractional-N Spur Avoidance and FM Sideband Adjustment Sequence. 3-62frequency accuracy adjustment, 3-48 frequency counter, 1-3, 10-23 frequency output in SRC tune mode, 7 - 8frequency range and accuracy test. 2 - 18frequency range for external source mode, 2-21 frequency range of fractional-N adjustment, 3-45 front panel assembly replacement, 148 digital control, 12-10 part numbers, 13-29-22 front panel key codes, 6-14 front panel probe power voltages. 5 - 19front panel processor digital control, 12-10 front panel troubleshooting, 6-13 Fr Pan Diag., 10-11 Fr Pan Wr/Rd, 10-9 full two-port error-correction procedure, 11-3 functional group fault location, 49 functional groups theory of operation, 12-4 fuse check, 5-7

G

good trace display, 8-5 green LED on A15 power supply shutdown, 12-6 green LEDs on A8, 12-7 GSP digital control, 12-12

H

hardkeys, 10-2 hardware bottom view, 13-30 disk drive, 13-36 front view, 13-32 memory deck, 13-38 part numbers, **13-28-40** preregulator, 13-40 test set deck, 13-34 top view, 13-28 HB FLTR SW ON OFF, 10-19 Hewlett-Packard servicing, 42 high band REF signal, 7-17 high/low band transition adjustment, 3 - 52High/Low Band Transition Adjustment Sequence, 3-62 high quality comb tooth at 3 GHz, 7-33 high **stability** frequency reference assembly replacement, 1458 part numbers, 13-26 HI OUT signal in FRACN TUNE mode, 7-34 H MB line, 7-31 how to adjust ADC offset correction constants, 3-17 adjust **analog** bus correction constants, 3-9 adjust cavity **oscillator** frequency correction constants, 3-28

adjust fractional-N frequency range, 3 - 45adjust fractional-N spur avoidance and FM sideband, 3-54 adjust frequency accuracy, 3-48 adjust high/low band transition, 3 - 52adjust IF amplifier correction constants, 3-16 adjustment the analyzer, **3-1** adjust option numbers correction constants, 3-36 adjust RF output power correction constants, 3-11 adjust sampler **magnitude** correction constants, 3-18 adjust serial number correction constants, 3-34 adjust source default correction constants, 3-7 adjust source pretune correction constants, 3-10 adjust source pretune default correction constants, 3-8 adjust source spur avoidance tracking, 3-58 adjust the **analyzer** using sequences, 3-62 backup the EEPROM disk, 3-38 check display intensity, 6-7 clean connectors, 1-5 identify the **faulty** functional group, 4-9 initialize **EEPROMs**, 3-37 load sequences from disk, 3-62 position the A9 Switch, 3-5 repair the analyzer, 4-1 retrieve correction constant data from EEPROM backup disk, 3 - 40

set up the fractional-N frequency range adjustment, 3-63

set up the fractional-N spur avoidance and FM sideband adjustment, 3-64

set up the high/low band transition adjustments, 3-63

test **external** source mode frequency range, 2-21

test frequency range and accuracy, 2-18

test **minimum** R channel level, 2-31

test port input noise floor level, 2 - 37

test port output frequency range and accuracy, 2-18

test port output power accuracy, 2 - 24

test port output power range and linearity, 2-27

troubleshoot, 41

troubleshoot accessories, 9-1

troubleshoot broadband power problems, 7-39

troubleshoot **digital** control group, 6-1

troubleshoot receiver, 8-1

troubleshoot source group, 7-1 verify an analyzer system

automatically, 2-8

HP 8753Eadjustments, 3-1

HP 8753E block diagram, 4-19

HP-IB addresses, 46

HP-IB cable, 1-4

HP-IB Failures, 6-19

HP-IB mnemonic for service, 10-1

HP-IB service mnemonic definitions, 10-48

HP-IB system check, 46

T

IF **amplifier** correction constants adjustment, 3-16 IF GAIN AUTO, 10-21 IF GAIN OFF, 10-21 **IF GAIN ON, 10-21** IF Step Cor., **10-13** improper calibration technique, 9-1 Init EEPROM, 10-14 **INITIALIZATION FAILED, 10-53** initiaiize EEPROMs, 3-37 initial observations, 43 input noise floor level test, 2-37 inputs (A and B) check, 8-4 input traces check, 416 inspect cables, 6-16 inspect error terms, 9-3 inspection of test port connectors and calibration devices, 9-3 inspect the accessories, 9-3 INSUFFICIENT MEMORY, PWR MTR CAL OFF, **10-53** Inten DAC., 10-15 internal diagnostics, 10-2 internal diagnostic tests, 6-17 internal tests, **10-3**, **10-7** INTERNAL TESTS, 10-4 inverter digital control, 12-12 invoking tests remotely, 10-48 isolation (crosstalk, EXF and EXR), 11-14

Κ

key codes, 6-14 key **failure** identification, 6-14 keys in service menu, **10-1** kit re-certification, 2-7 kits calibration kit 7 mm, 500, 1-3 calibration kit Type-N, 750, 1-3 tool, 1-3 verification kit 7 mm, 1-3

L

LED front panel, 12-26 L ENREF line, 7-23 L HB and L LB Lines, 7-24 light occluder, 1-3 LIMITS NORM/SPCL, 10-5 linearity and range of power test, 2 - 27line fuse check. 5-7 line power module theory of operation, 12-6 line voltage check, 5-7 L INTCOP as trigger to observe control lines, 8-10 L INTCOP as trigger to observe data lines, 8-10 L LB and L **HB** Lines, 7-24 LO (2ND) waveforms, 7-21 load device verification, 9-4 load Match (ELF and ELR), 11-15 location diagnostic LEDs for A15, 5-4 post regulator test points, 5-5 power supply cable, 5-8 lock error, 7-4 LO OUT waveform at A14J2, 7-28 LOSS/SENSRLISTS, 10-5 low band REF signal, 7-18 low pass filter, 1-3

M

magnitude of sampler adjustment, 3-18 main ADC, **10-23** Main DRAM, **10-8** MAIN PWR DAC, **10-19** Main VRAM, **10-15** major assemblies

bottom view, 13-8 part numbers, 13-6-8 rebuilt-exchange, 13-3 top view, 13-6 measurement calibration coefficients, 11-1 measurement calibration procedure, 11-3mechanical adjustment sequences, 3-62 memory INSUFFICIENT MEMORY, PWR **MTR CAL OFF, 10-53** menu analog in, **10-24** edit list, 10-6 peek/poke, 10-46 service keys, 10-18 service modes, 10-21 test options, 10-5 tests, 10-3 menus for service, 10-1 message BATTERY FAILED. STATE MEMORY CLEARED. 10-50 BATTERY LOW! STORE SAVE REGS TO DISK, 10-50 CALIBRATION ABORTED, 10-50 CALIBRATION REQUIRED, 10-51 CORRECTION CONSTANTSNOT STORED, 10-51 **CORRECTION TURNED OFF, 10-51** CURRENT PARAMETER NOT IN CAL SET, 10-51 DEADLOCK, 10-51 DEVICE: not on, not connect, wrong addrs, 10-52 DISK HARDWARE PROBLEM, 10-52DISK MESSAGE LENGTH ERROR, 10-52

DISK: not on, not connected, wrong addrs. 10-52 DISK READ/WRITE ERROR, 10-53 error, 10-50 **INITIALIZATION FAILED, 10-53** NO CALIBRATION CURRENTLY IN PROGRESS.10-53 NO IF FOUND: CHECK R INPUT LEVEL. 10-54 NO PHASE LOCK: CHECK R INPUT LEVEL. 10-54 NO SPACE FOR NEW CAL, CLEAR REGISTERS. 10-54 NOT ALLOWED DURING POWER **METER CAL. 10-55** NOT ENOUGH SPACE ON DISK FOR STORE, 10-53 OVERLOAD ON INPUT A, POWER **REDUCED**, 10-55 OVERLOAD ON INPUT B, POWER **REDUCED**, 10-55 OVERLOAD ON INPUT R. POWER **REDUCED**, 10-55 PARALLEL PORT NOT AVAILABLE FOR COPY, 10-56 PARALLEL PORT NOT AVAILABLE FOR GPIO. 10-55 PHASE LOCK CAL FAILED, 10-56 PHASE LOCK LOST, 10-56 POSSIBLE FALSE LOCK. 10-57 POWER METER INVALID, 10-57 POWER METER NOT SETTLED, 10-57 POWER SUPPLY HOT!, 10-57 POWER SUPPLY SHUT DOWN!, 10-57POWER UNLEVELED, 10-58 PRINTER: error, 10-58 PRINTER: not handshaking, 10-58 PRINTER: not on, not connected, wrong addrs, 10-58

PROBE POWER SHUT DOWN!. 10-58PWR MTR: NOT ON/CONNECTED OR WRONG ADDRS, 10-59 SAVE FAILED. INSUFFICIENT MEMORY.10-59 SELF TEST #n FAILED, 10-59 SOURCE POWER TURNED OFF. RESET UNDER POWER MENU. 10-59 SWEEP MODE CHANGED TO CW **TIME SWEEP. 10-60** TEST ABORTED, 10-60 TROUBLE! CHECK SETUP AND **START OVER, 10-60** WRONG DISK FORMAT, INITIALIZE DISK. 10-60 message for phase lock error, 7-4 messages error, 10-1 meter (power), 1-3 microprocessor theory of operation, 12-3 microwave connector care, 1-5 minimum loss pad, 1-4 minimum R channel level, 2-31 mnemonic definitions. 10-48 mnemonics for service keys, 10-1 monitor ABUS node 16 for power. 4 - 15motherboard check, 5-13

N

NO CALIBRATION CURRENTLY IN PROGRESS, **10-53** nodes for analog bus, 10-26 NO FILE(S) FOUND ON DISK, **10-54** NO IF FOUND CHECK R INPUT LEVEL, **7-4**, **7-38**, **10-54** noise floor level test, 2-37 NO PHASE LOCK

CHECK R INPUT LEVEL, **7-4**, **7-38**, 10-54

Normal and **Alter** switch position adjustment, 3-5

NO SPACE FOR NEW CAL. CLEAR REGISTERS, **10-54**

NOT ALLOWED DURING POWER METER CAL, **10-55**

NOT ENOUGH SPACE ON DISK FOR STORE, **10-53**

number (option) adjustment, 3-36 number (serial) adjustment, 3-34

0

offset (ADC) adjustment, 3-17 open and short device verification, 9-6open loop compared to phase locked output in SRC tune mode, 7-9 operating temperature check, 5-13 operation check of A9 CPU, 6-4 operation verification, 2-1 post-repair, 3-2, 1462 Operator's Check, 4-4 option 1DT, delete display, 1-8 Option **1D5** assembly replacement, 1458 part numbers, 13-26 Option Cor., **10-14** option numbers correction constants adjustment, 3-36 options 002 harmonic mode, 1-7 006 6 GHz operation, 1-7 010 time domain, **1-7** 011 receiver configuration, 1-7 075 **75Ω** impedance, **1-8 1CM** rack mount flange kit without handles, 1-8

1CP rack mount flange kit with handles, **1-8** 1D5 high stability frequency reference, 1-7 descriptions of, 13-48 options available, 1-7 osciiioscope, 1-3 oscilloscope check of reference frequencies, 7-15 output frequency in SRC tune mode, 7-8 overall block diagram, 419 OVERLOAD ON INPUT A, POWER **REDUCED**, **10-55** OVERLOAD ON INPUT B, POWER **REDUCED**, 10-55 OVERLOAD ON INPUT R, POWER **REDUCED**, 10-55

P

P?. 10-58 panel key codes, 6-14 PARALLEL PORT NOT AVAILABLE FOR COPY, 10-56 PARALLEL PORT NOT AVAILABLE FOR GPIO, 10-55 patterns test, **10-16** PEEK, 10-46 **PEEK/POKE**, 10-46 PEEK/POKE ADDRESS, 10-46 peek/poke menu, 10-46 performance test record types, 2-6 performance tests 1. Test Port Output Frequency Range and Accuracy, 2-18 2. External Source Mode Frequency Range, 2-21 **3. Test** Port Output Power Accuracy, 2-24

4. Test Port Output Power Range and Linearity, 2-27

5. Minimum R Channel Level, 2-31 6. Test Port Input Noise Floor Level, 2-37 chapter, 2-1 description of, 2-1 post-repair, 3-2, 1462 peripheral equipment theory of operation, 12-3 peripheral HP-IB addresses, 4-6 peripheral troubleshooting, 4-8 phase lock, **10-34** source, 12-15 phase lock (All) check, 7-35 phase lock and A3 source check, 7-8 PHASE LOCK CAL FAILED, 7-4, 7-38, 10-56 phase locked output compared to open loop in SRC tune mode, 7-9phase lock error, 7-4 phase lock error messages, 7-38 phase lock error messages check, 413PHASE LOCK LOST., 7-4, 7-38, 10-56 photometer probe, 1-3 PLL AUTO ON OFF, **10-20 PLL** DIAG ON OFF, **10-20** PLL PAUSE, 10-20 plotter HP-IB address, 46 plotter or printer check, 47 PLREF waveforms, 7-17 POKE, 10-46 Port 1 Op Chk., 10-11 Port 2 Op chk., 10-11 port input noise floor level test, 2-37 port output power accuracy test, 2-24POSSIBLE FALSE LOCK, 10-57 Post Reg., 10-9 post regulator air flow detector, 12-7

display power, 12-8 green LEDs, 12-7 probe power, 12-8 shutdown circuit, 12-7 theory of operation, 12-7 variable fan circuit, 12-7 post regulator test point locations, 5 - 5post-repair procedures, 3-2, 14-62 power accuracy test, 2-24 power from source, 7-3 POWER LOSS, 10-6 power meter (HP-IB), 1-3 power meter HP-IB address, 46 POWER METER INVALID, 10-57 POWER METER NOT SETTLED, 10-57 power output check, 413 power problems (broadband), 7-39 power range and linearity test, 2-27 power sensor, 1-3 power splitter, 1-4 power supply theory of operation, 12-5 power supply block diagram, 5-25 power supply cable location, 5-8 power supply check, 410 power supply functional group block diagram, 5-3 POWER SUPPLY HOT!, 10-57 power supply shutdown **A15** green LED, 12-6 A15 red LED, 12-6 theory of operation, 12-6 POWER SUPPLY SHUT DOWN!, 10-57 power supply troubleshooting chapter, 5 - 1POWER UNLEVELED, 10-58 power up sequence check, 411 precision frequency reference assembly replacement, 1458

part numbers, 13-26 preregulated voltages theory of operation, 12-6 preregulator theory of operation, 12-5 prereguiator **LEDs** check, 4-10 preregulator voltages, 5-10 PRESET, 10-7 preset sequence, 4-3, 6-14 Pretune Cor., 10-13 Pretune Def., **10-13** preventive maintenance, 1 l-l principles of microwave connector care. 1-5 printer, 1-3 PRINTER error, **10-58** not handshaking, 10-58 not on, not connected, wrong addrs, 10-58 printer HP-IB address, 46 probe power, 12-8 probe (photometer), 1-3 PROBE POWER SHUT DOWN!, 10-58 probe power voltages, 5-19 procedure spur search with a filter, 3-30 spur search without a filter, 3-31 procedures A9 Switch Positions, 3-5 ADC Offset Correction Constants (Test 52), 3-17 Analog Bus Correction Constant (Test 46), 3-9 Cavity Oscillator Frequency Correction Constants (Test 54), 3-28 EEPROM Backup Disk, 3-38 **external** source mode frequency range, 2-21

Fractional-N Frequency Range Adjustment, 3-45 Fractional-N Spur Avoidance and PM Sideband Adjustment, 3-54 Frequency Accuracy Adjustment, 3-48High/Low Band Transition Adjustment, 3-52 IF **Amplifier** Correction Constants (Test 51), 3-16 Initialize EEPROMs (Test 58), 3-37 minimum R channel level, 2-31 **Option Numbers Correction** Constant (Test 56), 3-36 retrieve correction constant data from EEPROM backup disk, 3-40**RF** Output Power Correction constants (Test 47), 3-11 Sampler Magnitude and Phase Correction Constants (Test 53), 3-18Sequences for Mechanical Adjustments, 3-62 Serial Number Correction Constant (Test 55), 3-34 Source Default Correction Constants (Test 44), 3-7 Source Pretune Correction Constants (Test **48**), 3-10 Source Pretune **Default** Correction Constants (Test 45), 3-8 Source Spur Avoidance Tracking Adjustment, 3-58 Test Port Input Noise Floor Level, 2-37test port output frequency range and accuracy, 2-18 test port output power accuracy, 2-24

test port output power range and linearity, 2-27 Unprotected Hardware Option Numbers Correction Constants, **3-60** verify an analyzer system (automated), 2-8 pulse generator source, 12-15 pulse generator (A7) check, 7-32 pulses (100 kHz), 7-16 PWR LOSS, 10-5 PWRMTR NOT ON/CONNECTED OR WRONG ADDRS, 10-59

R

range and accuracy of frequency, 2-18R channel level, 2-31 rear panel assembly replacement, 1416 digital control, 12-12 part numbers, 13-24-26 Rear Panel, 10-9 rear panel interface assembly replacement, 14-20 rear panel LEDs check, 410 rebuilt-exchange assemblies, 13-3 receiver digital IF, 12-30 sampler/mixer, 12-29 theory of operation, 12-3, 12-28 receiver check, 416 receiver error messages, 417 receiver failure error messages, 8-3 receiver troubleshooting chapter, 8-1 RECORD ON OFF, 10-5 red LED on A15 power supply shutdown, 12-6

REP (4 MHz) signal check, 8-7 reference source, 12-14 reference, A12, 10-40 reference (A12) check, 7-13 reference frequencies check using analog bus, 7-13 reference frequencies check using oscilloscope, 7-15 reference signal (4 MHz), 7-20 reflection Tracking (ERF and ERR), 11 - 13REP signal At A11TP9, 7-17 removing **A8**, 5-14 line fuse, 5-7 repair procedure, 41 REPEAT ON OFF, 10-5 replaceable parts, 13-1 abbreviations, 13-48 battery, 13-8 cables, bottom, 13-12 cables, front, 13-14 cables, rear, 13-16 cables, source, 13-18 cables, top, 13-10 chassis, inside, 13-44 chassis, outside, 13-42 documentation, 13-46 ESD supplies, 1347 front panel, inside, 13-22 front panel, outside, 13-20 fuse, preregulator, 13-40 fuses, post regulator, **13-47** fuses, rear panel, 13-24 handles, 13-47 hardware, bottom, 13-30 hardware, disk drive support, 13-36 hardware, front, 13-32 hardware, memory deck, 13-38 hardware, preregulator, 13-40

hardware, test set deck, 13-34 hardware, top, 13-28 major assemblies, bottom, 13-8 major assemblies, top, 13-6 miscellaneous, 1346, 13-47 option descriptions, 13-48 ordering, 13-3 rear panel, 13-24 rear panel, Option 1D5, 13-26 rebuilt-exchange assemblies, 13-3 reference designations, 13-48 service tools, 13-46 touch-up paint, 1347 upgrade kits, 13-46 required tools, I-I RESET MEMORY, 10-46 return **analyzer** for repair, 42 revision (firmware) softkey, 10-47 RF cable set, 1-4 RF output power correction constants adjustment, **3-1** 1 RF power from source, 7-3 RGB outputs, 10-15 ROM, 10-7

S

Sampler Cor., 10-13
SAMF'LER COR ON OFF, 10-21
sampler correction off when checking the trace, 8-12
sampler magnitude correction constants adjustment, 3-18
sampler/mixer, 12-29
2nd LO signal, 12-29
high band, 12-29
low band, 12-29
low band, 12-29
super low band, 12-29
SAVE FAILED. INSUFFICIENT MEMORY, 10-59
search for spurs with a filter, 3-30

search for spurs without a filter, 3-31 SEGMENT, 10-6 selector switch check, 5-7 self diagnose softkey, 10-7 self-test, 4-3 SELF TEST #n FAILED, 10-59 sensor (power), 1-3 sequence check for power up, 4-11 sequence contents, 3-64 sequence contents for **Fractional**-N Avoidance and FM Sideband Adjustment, 3-66 sequence contents for Fractional-N Frequency Range Adjustment, 3-65sequence contents for High/Low Band Transition Adjustment, 3-64 sequence contents for VCO adjustment, 3-65 sequences **Fractional-N Frequency Range** Adjustment, 3-62 Fractional-N Spur Avoidance and FM Sideband Adjustment, 3-62 High/Low Band Transition Adjustment, 3-62 Serial Cor., 10-13 serial number correction constants adjustment, 3-34 service and support options, 1-9 service center procedure, 42 service features, **10-18** service key menus, **10-1** service features, **10-18** service key mnemonics, 10-1 service mnemonic definitions, **10-48** SERVICE MODES, 10-18 service modes more menu, 10-21 service test equipment, l-l service tools list, l-l servicing the **analyzer**, 42

setup cavity oscillator frequency correction constant routine, 3-29external source mode frequency range, 2-22 fractional-N spur avoidance and FM sideband adjustment, 3-55 frequency accuracy adjustment, 3-49insertion loss measurement, 3-20 intensity check, 6-9 minimum R channel level, 2-32 mismatch device verification, 2-16 phase lock error troubleshooting, 7-4 **RF** output correction constants, 3-14sampler correction routine, 3-22 source power check, 414 test port frequency range and accuracy test, 2-19 test port input noise floor level, 2-38test port output power accuracy, 2-25test port output power range and linearity, 2-28 transmission calibration, 2-13 setup check for disk drive, 4-7 setup check for plotter or printer, 47short and open device verification, 9-6shutdown circuit post regulator, 12-7 shutdown circuit on A8, 12-7 shutdown circuitry disable, 5-16 signal examination for phase lock, 7-36signal separation

built-in test set, 12-26 theory of operation, 12-26 signals required for A10 assembly operation, 8-8 SLOPE DAC, 10-19 softkeys, 10-2 source All phase lock, 12-15 **A12** reference, 12-14 **A13** frac-N analog, 12-14 **A14** frac-N digital, 12-14 A3 source, 12-15 A7 pulse generator, 12-15 external source mode, 12-23 frequency offset, 12-22 harmonic analysis, 12-22 high band theory, 12-19 low band theory, 12-16 operation in other modes, 12-22 source, 12-15 super low band theory, 12-15 theory of operation, 12-2, 12-14 tuned receiver mode, 12-25 source and All phase lock check, 7-8source attenuator theory of operation, 12-2 source check, 413 Source Cor., 10-13 Source Def., 10-13 source default correction constants adjustment, 3-7 Source Ex., 10-11 source (external), 1-3 source group assemblies, 7-1 source group troubleshooting appendix, 7-38 source match (ESF and ESR), 11-12 source mode frequency range, 2-21 SOURCE PLL ON OFT, 10-19 source power, 7-3

SOURCE POWER TURNED OFF, RESET UNDER POWER MENU, 10-59source pretune correction constants adjustment, 3-10 source **pretune** default correction constants adjustment, 3-8 source spur avoidance tracking adjustment, 3-58 source troubleshooting chapter, 7-1 specifications external source mode frequency range, 2-21 minimum R channel level, 2-31 test port input noise floor level, 2-37test port output frequency range and accuracy, 2-18 test port output power accuracy, 2-24test port output power range and linearity, 2-27 spectrum analyzer, 1-3 speed fan, 5-22 spikes display (acceptable versus excessive), 3-59 splitter (power), **1-4** spur avoidance and PM sideband adjustment, 3-54 spur avoidance tracking adjustment, 3-58 SPUR AVOID ON OFF, 10-22 spurs displayed with a filter, 3-30 spur search with a filter, 3-30 spur search without a filter, 3-31 SPUR TEST ON OFF, 10-21 **SRAM** RAM, **10-8** SRC ADJUST DACS, 10-19 SRC ADJUST MENU, 10-19 SRC TUNE FREQ, 10-19

SRC tune mode frequency output, 7-8 SRC tune mode phase locked output compared to open loop, 7-9 SRC tune mode waveform integrity, 7-9 SRC TUNE ON OFF, 10-19 stable HI OUT signal in **FRACN** TUNE mode, 7-34 Start Troubleshooting chapter, 4-1 static-control table mat and earth ground wire, 1-4 status terms for test, **10-4** step attenuator, 1-3 STORE EEPR ON OFF, 10-21 stuck key identification, 6-14 support and service options, 1-9 SWEEP MODE CHANGED TO CW TIME SWEEP, **10-60** Sweep Trig., 10-10 switch position adjustment, 3-5 symbol conventions, 10-48 system performance uncorrected, 11-9 system verification description of, 2-1 post-repair, 3-2, 14-62 system verification (automated), 2-8 system verification cycle, 2-7 system verification tests, 10-3, 10-12 Sys Ver hut., 10-12 SYSVER TESTS, 10-4

Т

table of service tools, l-l temperature check, 5-13 terms for test status, **10-4** test 44, 3-7, **10-13** test 45, 3-8, **10-13** test 46, 3-9, **10-13** test 47, 3-11, **10-13**

test 48, 3-10, 10-13 test 50, 10-13 test 51, 3-16, 10-13 test 52, 3-17, 10-13 test 53, 3-18, 10-13 test 54, 3-28, 10-13 test 55, 3-34, 10-13 test 56, 3-36, 10-14 test 57, 10-14 test 58, 3-37, 10-14 test 59, 10-15 test 60, 10-15 test 61, 10-15 test 62, 10-15 test 63, 10-15 test 64, 10-15 test 65, **10-15** test 66, 10-16 test 67-69, 10-16 test 70, **10-16** test 71. 10-16 test 72, 10-16 test 73, 10-16 test 74, 10-16 test 75, 10-17 test 76, 10-17 test 77, 10-17 test 78, 10-17 test 79-80, 10-17 TEST ABORTED, 10-60 test cables, 9-5 test descriptions, 10-7 test equipment for service, 1-1 TEST OPTIONS, 10-5 test options menu, 10-5 Test Pat 1., 10-16 Test Pat 10., 10-17 Test Pat 11., 10-17 Test Pat 12., 10-17 Test Pat 13.. 10-17 Test Pat 14-15., 10-17

Test Pat 2-4., 10-16 Test Pat 5., 10-16 Test Pat 6., 10-16 Test Pat 7., 10-16 Test Pat 8., 10-16 **Test** Pat 9, **10-16** test patterns, 10-3 test port connector inspection, 9-3 test port couplers, 12-26 test port input noise floor level, 2-37 test port output frequency range and accuracy test, 2-18 test port output power accuracy, 2-24test port output power range and linearity, 2-27 test record types, 2-6 tests 1. Test Port Output kequency Range and Accuracy, 2-18 2. External Source Mode Frequency Range, 2-21 adjustments, 10-13 chapter, 2-1 display, 10-15 external, 10-11 internal, 10-7 minimum R channel level, 2-31 patterns, 10-16 system verification, 10-12 Test Port Input Noise Floor Level, 2-37**Test** Port Output Power Accuracy, 2-24Test Port Output Power Range and Linearity, 2-27 tests (diagnostics), 6-17 test set, 12-26 LED front panel, 12-26 test port couplers, 12-26 test set interface, 12-26

theory of operation, 12-3 transfer switch, 12-26 test set interface, 12-26 tests menu, 10-3 test status terms, 104 theory of operation, 12-1 +5 V digital supply, 12-6 **A15** green LED, 12-6 A15 preregulator, 12-5 A15 red LED, 12-6 **A3** source, 12-2, 12-14 **A8** green **LEDs**, 12-7 A8 post regulator, 12-7 A8 shutdown circuit, 12-7 air flow detector, 12-7 digital control, 12-8 display power, 12-8 functional groups, 124 line power module, 12-6 microprocessor, 12-3 peripheral equipment, 12-3 power supply, 12-5 power supply shutdown, 12-6 preregulated voltages, 12-6 probe power, 12-8 receiver, 12-3, 12-28 signal separation, 12-26 source attenuator, 12-2 test set. 12-3variable fan circuit, 12-7 tool kit, **1-3** tools for service, 1-1 trace (good) display, 8-5 trace with sampler correction on and off, 8-13 tracking for source spur avoidance adjustment, 3-58 transfer switch, 12-26 transmission tracking (ETF and ETR), 11-16

TROUBLE! CHECK SETUP AND START OVER, 10-60 troubleshooting **1st** LO signal at sampler/mixer, 8-14 A10 by substitution or signal examination, 8-8 All phase lock, 7-35 All phase lock and A3 source check, 7-8 A12 reference, 7-13 A13/A14 Fractional-N, 7-24 A14 Divide-by-N Circuit Check, 7-29A15 preregulator, 5-9 **A1/A2** front panel, 6-13 A7 pulse generator, 7-32 accessories, 4-18, 9-1 broadband power problems, 7-39 diagnostics, 4-3 digital control, 6-1 disk drive, 47 fan. 5-22 faulty data, 417 faulty group identification, 4-9 **first** step, 41 front panel, 6-13 **HP-IB** systems, 46 one or more inputs look good, 8-1 1 phase lock error, 74 plotters or printers, 47 receiver, 8-1 receiver error messages, 4-17 self-test, 43 source, 7-1 start, 41 systems with controllers, 4-8 systems with multiple peripherals, 48 when all inputs look bad, 8-6

YO coil drive check with analog bus, 7-11 troubleshooting power supply, **5-1** troubleshooting source group appendix, 7-38 two-port error-correction procedure, 11-3

U

uncorrected performance, 1 1-9 unprotected hardware option numbers correction constants, 3-60 USE SENSOR A/B, 10-6

V

post regulator, 12-7 voltages A15 preregulator check, 5-10 A8, 5-14 fan, 5-22 front panel probe power, 5-19 YO- and YO+ coil drive voltage differences with& SOURCE PLL OFT, 7-13 voltages for post regulator, 5-5 voltmeter, 1-3 VRAM bank., 10-15 VRAM/video, 10-15

W

warranty explanation, 42 waveform integrity in SRC tune mode, 7-9 wrist strap and cord (antistatic), 14 WRONG DISK FORMAT, **INITIALIZE** DISK, **10-60**

Y

- YO **coil** drive check with analog bus, 7-11
- YO- and YO+ coil drive voltage differences with& SOURCE PLL OFT, 7-13