Errata Title & Document Type: 8131A Programmable Pulse Generator **Operating and Programming Manual** Manual Part Number: 08131-90011 **Revision Date:** 1989-02-01 #### **HP References in this Manual** This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. #### **About this Manual** We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website. #### **Support for Your Product** Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website: #### www.tm.agilent.com Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available. ## HP 8131A PROGRAMMABLE PULSE GENERATOR INCLUDING OPTIONS: 001 and 020 ## OPERATING and PROGRAMMING MANUAL #### **Serial Numbers:** This manual applies to instruments with serial number 2839 G00148 and following Manual updating: contact an HP Sales Office. Manual backdating: see Appendix D. Edition 1 Update 4 Incorporated 10689 Manual Part Number: 08131-90011 Microfiche Part Number: 08131-95011 Printed in FRG, 07/89 ### **NOTICES** #### SUBJECT MATTER The information in this document is subject to change without notice. Hewlett Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. #### **COPYRIGHT** This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett Packard GmbH. © Copyright 1988, 1989 by: Hewlett Packard GmbH Herrenberger Str. 130 7030 Boeblingen Federal Republic of Germany ## front cover photograph 11 The instrument photograph on the front cover shows the HP 8131A with OPTION 020 installed. HP 8131A-Notice Update 1, 02/89 ### PRODUCT WARRANTY This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett Packard will, at its option, either repair or replace products which prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by Hewlett Packard. Buyer shall prepay shipping charges to Hewlett Packard and Hewlett Packard shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Hewlett Packard from another country. Hewlett Packard warrants that its software and firmware designated by Hewlett Packard for use with an instrument will execute its programming instructions when properly installed on that instrument. Hewlett Packard does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free. #### LIMITATION OF WARRANTY The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. No other warranty is expressed or implied. Hewlett Packard specifically disclaims the implied warranties of Merchantability and Fitness for a Particular Purpose. ## **EXCLUSIVE REMEDIES** The remedies provided herein are Buyer's sole and exclusive remedies. Hewlett Packard shall not be liable for any direct, indirect, special, incidental, or consequential damages whether based on contract, tort, or any other legal theory. #### **CERTIFICATION** Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, NIST (formerly the United States National Bureau of Standards, NBS) to the extent allowed by the Bureau's calibration facility and to the calibration facilities of other International Standards Organization members. iv ## **PRINTING HISTORY** | PRINTING
HISTORY | EDITION | DATE | PART NUMBER | CODE | |---------------------|-----------|----------|-------------|-------| | | Edition 1 | 12/01/88 | 08131-90011 | E1288 | | | Update 1 | 02/15/89 | | U0289 | | | Update 2 | 03/15/89 | | U0389 | | | Update 3 | 03/20/89 | | U0389 | | | Update 4 | 06/29/89 | | U0689 | ## LIST OF EFFECTIVE PAGES This table lists only pages that are changes to Edition 1. | PAGE | DATE | PAGE | DATE | |----------------|----------|------------|----------| | | | 5-1 | 03/15/89 | | Title Page (i) | 03/20/89 | 5-6 | 03/15/89 | | ii | 02/89 | 5-8 | 02/89 | | iv | 02/89 | 5-9 | 03/15/89 | | V | 03/15/89 | 5-10 | 03/15/89 | | vi | 03/15/89 | 5-11 | 03/15/89 | | | | 5-13 | 03/15/89 | | | | 5-14 | 03/15/89 | | 1-1 | 02/89 | 5-15 | 03/15/89 | | | | 5-16 | 03/15/89 | | 2-1 | 03/15/89 | 5-28 | 03/15/89 | | 2-3 | 03/15/89 | 5-29 | 03/15/89 | | 2-4 | 03/15/89 | 5-30 | 03/15/89 | | | | 5-42 | 03/15/89 | | | | 5-46 | 03/15/89 | | | | 6-8 | 02/89 | | 3-1 | 03/15/89 | 7-34 | 03/15/89 | | 3-4 | 02/89 | A-1 to A-8 | 03/15/89 | | 3 -7 | 03/15/89 | B-2 | 02/89 | | | | C-13 | 03/15/89 | | | | D-1 to D-3 | 02/89 | | 4-6 | 02/89 | D-4 | 03/15/89 | | | | E.0-1 | 02/89 | | | | E.2-1 | 02/89 | | | | E.3-1 | 02/89 | | | | E.4-1 | 02/89 | | | | E.9-4 | 03/15/89 | | | | E.10-3 | 06/29/89 | | | | G-8 to G-9 | 03/15/89 | | | | G-10 | 02/89 | HP 8131A-Effective Pages Update 4, 06/29/89 vi #### RADIO FREQUENCY INTERFERENCE STATEMENT DEUTSCHE BUNDESPOST FEDERAL REPUBLIC OF GERMANY ONLY #### HERSTELLER-BESCHEINIGUNG Hiermit wird bescheinigt, dass das Geraet, Pulsgenerator-HP 8131A, in Uebereinstimmung mit den Bestimmungen von Postverfuegung 1046/1984 funkentstoert ist. Der Deutschen Bundespost wurde das Inverkehrbringen dieses Geraetes angezeigt und die Berechtigung zur Ueberpruefung der Serie auf Einhaltung der Bestimmungen eingeraeumt. Zusatzinformation fuer Mess- und Testgeraete: Werden Mess- und Testgeraete mit ungeschirmten Kabeln und/oder in offenen Messaufbauten verwendet, so ist vom Betreiber sicherzustellen, dass die Funk-Entstoerbestimmungen unter Betriebsbedingungen an seiner Grundstuecksgrenze eingehalten werden. ## MANUFACTURER'S DECLARATION This is to certify that the HP 8131A pulse generator operates in accordance with the radio frequency interference requirements of Deutsche Bundespost (German Post Office) Directive FTZ 1046/1984. The German Post Office was notified that this equipment was put into circulation. The German Post Office retains the right to check future Hewlett-Packard model HP 8131A instruments for compliance with directive FTZ 1046/1984. Additional information for test and measurement equipment: If test and measurement equiment is operated with unshielded cables and/or used for measurements on open set-ups, the user must assure that, under operating conditions, the radio interference limits are still met at the border of his premises. HP 8131A-RFI Statement ix ### INTRODUCTION #### The manual information is arranged into four categories: #### **INSTRUMENT DESCRIPTION** Descriptions of selected operating principles: Chapters 1-4. #### **QUICK REFERENCE GUIDES** Local control and remote control programming information: Chapters 5-7. #### REFERENCE DATA Supporting information of a non-operational nature: Appendicies A-G. #### **CUSTOMER ASSISTANCE** Sales and Service information: Customer Assistance Information Sales and Support Offices Directory. Application programming level knowledge of <u>IEEE Standards 488.1-1987</u> and 488.2-1987 is desirable for remote control programming of the HP 8131A. Appendix G contains cross reference information for earlier instrument languages and the HP 8131A language which is based on IEEE Draft Standard 488.2-1987. Viel Spass! Hewlett-Packard GmbH HP 8131A-Introduction хi ## **CONTENTS** | INSTRUMENT DESCRIPTION | | |------------------------------------|---------| | Features | 1-1 | | Getting Started | 2-1 | | Remote Messages | 3-1 | | Operating State | 4-1 | | QUICK REFERENCE GUIDES | | | Local Control Programming | | | Local (Front Panel) Functions | 5-1 | | Remote Control Programming | | | Common Commands | 6-1 | | Device Dependent Commands | 7-1 | | REFERENCE DATA | | | Specifications | A-1 | | Options and Accessories | B-1 | | Installation and Maintenance | C-1 | | Backdating | D-1 | | Peformance Tests | E-1 | | Language Cross References | F-I | | Errors | G-1 | | INDEX | Index-1 | | CUSTOMER ASSISTANCE | | | Customer Assistance Information | CA-1 | | Sales and Support Office Directory | SSO-1 | HP 8131A-Contents $\mathbf{x}\mathbf{v}$ ### **CHAPTER 1** ## INSTRUMENT FEATURES #### INTRODUCTION The HP 8131A is a 500 MHz pulse generator providing differential output signals from 100 mVpp to 5.00Vpp with fixed transition times of <= 200 ps. The standard instrument contains one channel; a non-retrofitable second channel is available. Specifications: Appendix A. Options and Accessories: Appendix B. INSTRUMENT FEATURES INPUT DIFFERENTIAL OUTPUT External Input State Manual
Polarity Single PulsE Polarity Threshold TRIGGER OUTPUT MODES Automatic Trigger Automatic Recall setting Gate Burst External Width Transducer SET (calculated setting) PULSE Period, Width, Duty Cycle Delay, Double Pulse High Level, Low Level, Limit Amplitude, Offset Update 1, 02/89 HP 8131A-Description 1-1 Jitter: Short term timing instability: rms jitter is based on 1000 measurements and is identical to the standard deviation. ## CHAPTER 2 GETTING STARTED | CONTENTS | Introduction | 2-3 | |----------|----------------------------|-----| | | Power-on | 2-3 | | | Power-on Test | 2-3 | | | Normal State | 2-3 | | | Abnormal State | 2-3 | | | Power-off | 2-3 | | | Instrument Setting | 2-4 | | | Local Control Programming | 2-4 | | | Function Selection | 2-4 | | | Data Entry | 2-4 | | | Device Errors | 2-4 | | | Remote Control Programming | 2-5 | | | Program Messages | 2-5 | | | Response Messages | 2-5 | | | Under-programming | 2-5 | | | Interface | 2-6 | | | Status Indicators | 2-6 | | | Address | 2-6 | | | Displaying | 2-6 | | | Changing | 2-6 | | | EXT INPUT | 2-6 | | | Outputs | 2-6 | | | Channel 1 and 2 | 2-6 | | | TRIG OUTPUT | 2-6 | #### **POWER-ON** At power-on, the instrument: - 1. Performs a power-on test and - 2. Enters the normal or abnormal state. ### Power-on Test The instrument performs the following tests. - 1. Processor board tests - 2. Parametric board Tests See Appendix G, Table G-1, for the scope of the power-on test. #### **Normal State** In the normal state (operating error free condition): - 1. The instrument is initialized and enters the IDLE state. - 2. The instrument's setting is restored: - To the setting stored at power-off, however, the outputs are disabled. The power-off address is restored. - To the standard setting if the internal memory data is invalid. The instrument's address is set to 11, the default address. #### **Abnormal State** In the abnormal state (operating error condition exists): - Processor board test failure: the instrument can not be operated. The error condition code is reported at the instrument's display in the format Fnnn. See Appendix G, Table G-1, for a list of the Fnnn type errors. - Parametric board test failure: the instrument is operable, however, parametric capability is restricted. The error condition code is reported at the instrument's display in the format Ennn. See Appendix G, Table G-1, for a list of the Ennn type errors. #### **POWER-OFF** At power-off, the instrument's setting and interface address are stored in battery supported internal memory. Update 2, 03/15/89 HP 8131A-Getting Started 2-3 #### INSTRUMENT SETTING The instrument setting contains the complete operating state of the instrument. The setting can also be stored in or recalled from internal memory (There are 19 user storage locations.) which is battery supported at power off. ## LOCAL CONTROL PROGRAMMING In the local mode, the instrument is programmed with the front panel controls. The front panel controls and functions are described in Chapter 5. #### Function Selection and Data Entry To select a function, press the corresponding key and an LED lights to indicates the function is active. If data is to be changed, use the up or down vernier or range keys to make the changes. #### **Device Errors** Device errors are indicated at the front panel by blinking LEDs. For a description of the parametric relationships describing the conflicts, see Chapter 5. 2-4 HP 8131A-Getting Started Update 2, 03/15/89 ## REMOTE CONTROL PROGRAMMING The instrument is programmed via program messages and returns test, operating state, setting data, and identification information in response messages. #### Program Messages The program messages are: - 1. Defined in Chapter 3 - 2. Diagrammed in Chapters 6 and 7. - a. Common commands: Chapter 6 - b. Device commands: Chapter 7 #### Response Messages The response messages are: - 1. Defined in Chapter 3 - 2. Listed in Chapters 6, 7, and Appendix G. - a. Common commands: Chapter 6. - b. Device commands: Chapter 7 - c. Error responses: Appendix G. **UNDER-PROGRAMMING** Period and width under-programming is allowed. See Chapters 5 and 7. HP 8131A-Getting Started #### **INTERFACE** The interface, HP-IB, is a byte-serial, bit-parallel, asynchronous, digital interface. The interface port is located on the rear panel. #### Status Indicators The following three indicators on the front panel show interface status. - I. RMT (remote) indicates when the instrument is in the remote control programming mode. - 2. ADS (address) indicates when the instrument is listen or talk addressed. - 3. SRQ (service request) indicates when a service request is pending; the interface SRQ control line is asserted. #### Address Displaying The instrument address can be read on the front panel display by pressing the LCL (local) key while in the local operating mode only. #### Address Changing To change the address (local control programing mode only): - 1. Depress the LCL key - 2. Change the address in the display with a vernier key. - 3. Release the LCL key. The address cannot be changed if the instrument is talk or listen addressed, a service request is pending or in the remote control mode. ## EXTERNAL INPUT External input is the signal input for the trigger, gate, burst, external width, or transducer instrument trigger modes. Each mode is described in Chapter 5. #### CHANNEL 1/2 OUTPUTS Each channel has differential outputs. The standard instrument has one channel. Channel 2 is an optional second channel; note however, it is not a retrofitable option. #### TRIGGER OUTPUT Trigger output is the reference signal for the channel 1 and 2 output waveforms. 2-6 HP 8131A-Getting Started ## CHAPTER 3 REMOTE MESSAGES | CONTENTS | Introduction | 3-3 | |----------|---------------------------|-----| | | Message Types | 3-3 | | | Language Cross Reference | 3-3 | | | Coupled Commands | 3-3 | | | Short Form/Long Form | 3-3 | | | Program Message Syntax | 3-4 | | | Response Message Syntax | 3-5 | | | Reading Response Messages | 3-5 | | | Conventions | 3-6 | | | | | | FIGURE | Device Commands | 3-7 | #### INTRODUCTION Messages, commands, and syntax are described in this chapter. #### **MESSAGE TYPES** Two types of messages are used. - 1. Program messages which are sent from a remote controller to the HP 8131A. - 2. Response messages which are sent from the HP 8131A to the controller. HP 8112A HP 8160A/61A COMMAND CROSS REFERENCE The language used by the HP 8131A is based on IEEE Standard 488.2-1987 and is different from the languages used in the HP 8112A, HP 8160A, and HP 8161A. To assist in converting programs from one language to the other, Appendix F contains cross referenced examples of the HP 8112A/60A/61A and HP 8131A instrument commands. ## COUPLED COMMANDS The following commands are coupled. :PULS:LEV:HIGH, :PUL:LEV:LOW, :PULS:LEV:AMPL, and :PULS:LEV:OFFS The relationships of the coupled commands are given in Chapter 5. #### SHORT FORM LONG FORM The instrument will accept the short and long forms of the commands in upper and lower case. #### **EXAMPLE**: Long form = :INPut:TRIGger:STATe ON Short Form = :INP:TRIG:STAT ON #### PROGRAM MESSAGE SYNTAX Program messages = <ASCII-string><pmt>: <ASCII-string> is one or more program message units. Message units are separated by a program message unit separator (pmus> = ;). Each path in the syntax diagrams of Chapters 6 and 7 represent a complete program message unit 2. <pmt> = program message terminator There are three possible <pmt>: - 1. <lf> - 2. <^END> - 3' <lf><^END> ''' indicates that the END message is asserted at the last byte of the program message on the general interface management bus, signal line end or identify (EOI). NOTE: <lf> is equivalent to NL (New LINE). PROGRAM MESSAGE EXAMPLE OUTPUT 711: "*RST: :PULSe:TIMing:DELay 20 ns; WIDT 200us; :pulse:level:high 3.5V; low 1" #### RESPONSE MESSAGE SYNTAX Response messages = <ASCII-string><rmt> 1. <ASCII-string> is one or more response message units. The message units are defined in Chapters 6 and 7. 2. <rmt> = response message terminator <f><^END> is the only <rmt> used by the instrument. '^' indicates that the 'END' message is asserted at the last byte of the response message on the general interface management bus, signal line end or identify (EOI). NOTE: <lf> is equivalent to NL. Responses return values only; the base units are implied. See Chapters 6 and 7 for examples. #### READING RESPONSE MESSAGES A query response must be read before the next program message is parsed or the message is deleted from the output queue. #### RESPONSE MESSAGE EXAMPLE **OUTPUT 711; "*RST"** OUTPUT 711;":PULSe:LEVel:HIGH?" ENTER 711; A\$ PRINT A\$ ----> 0.50 HP 8131A-Messages #### SYNTAX DIAGRAM CONVENTIONS Non-terminals, substitute the required characters: wsp, value, unit, data, code. **Terminals**: all terms not defined as non-terminals are terminals and are input as given. Short and long forms of the commands are allowed. The instrument accepts character strings in upper and/or lower case equally. #### **MIN** = minimum. - 1. MIN in a program message unit sets up the minimum setting allowed for that parameter. - 2. MIN in a query message unit returns the minimum value allowed for that parameter. #### **MAX** = maximum. The action is the same as for MIN except that maximum values are used. ``` value = integer (12), decimal (85.5), exponential format (99.9E-9) (E-12, E-9, E-6, or E-3 are allowed.) ``` #### unit bypass and base units: ``` S (seconds) V (volts) PCT (percent) ``` ``` units = ps/PS, ns/NS, us/US, ms/MS, s/S uv/UV, mv/MV, v/V ``` ``` NL = ASCII < lf >. ``` ``` | = either/or (a|b = either a or b but not both at the same time) <...> = non-terminal [...] = optional ``` white space, wsp = ASCII control characters and the space but excludes the newline. # CHAPTER 4 OPERATING STATE | CONTENTS | Introduction | 4-3 | |----------|----------------------------|------| | OOMILMIO | Power-on | 4-3 | | | Parser Operation
 4-3 | | | Error types | 4-4 | | | Local Messages | 4-5 | | | Remote Messages | 4-5 | | | Polling | 4-6 | | | STB Message | 4-7 | | | Status Byte Register (STB) | 4-8 | | | Service Request Enable | | | | Register (SRE) | 4-9 | | | Standard Event Status | | | | Register (ESR) | 4-10 | | | Standard Events Status | | | | Enable Register (ESE) | 4-11 | | | Input Buffer | 4-12 | | | Output Queue | 4-12 | | | Error Queue | 4-12 | | | Key Queue | 4-12 | | | Register bit assignment | 4-13 | | | Synchronization | 4-13 | | | | | | FIGURE | Status Reporting | 4-14 | HP 8131A-State 4-1 #### INTRODUCTION Power-on, parser operation, and status data structures are described in this chapter. #### **POWER-ON** At power-on, the instrument: - 1. Initializes itself: - a. The input buffer is cleared. - b. The output queue is cleared. - c. The key queue is cleared. - d. STB, SRE, ESR, ESE and the error queue are cleared. - e. The parser is reset. - f. The execution Control is reset. - g. The response formatter is reset. - 2. Enters the IDLE state awaiting a command. - 3. The setting at power-off is restored as the current setting; however, the outputs are disabled. - 4. The power-off address is also restored. NOTE, if the RAM data is invalid, the power-off setting cannot be restored. In this case, the standard setting and the default address, 11, are restored. #### PARSER OPERATION Normally, the instrument removes all DABs, END, and GET bytes from the interface. Then it parses the bytes in the input buffer. The exception is when the input buffer is full, and additional bytes remain to be input. In this case, the parser removes one byte from the input buffer and parses it. Then a byte is removed from the interface. If additional bytes remain to be input, the process of parsing one byte and inputting one byte continues until all bytes are input. Then the entire input buffer is parsed. #### **ERROR TYPES** There are four categories of instrument errors. All errors are listed in Appendix G. - 1. Power-on test errors identify microprocessor and output board failures occuring at power-on. See Appendix G, Table G-1 for the extent of the test. - 2. Self-test (*TST?) errors identify output board failures. The test is identical to the output board test performed at power-on. See Appendix G, Table G-2. - 3. Command, execution, device dependent, and query error events are reported in the standard event status register (ESR). These errors can be read in response to the :SYST:ERR? query. See Appendix G, Table G-3. - 4. Device dependent error conditions are reported in bit 0 of the status byte register. These errors can be read in response to the :SYST:DERR? query. See Appendix G, Table G-4 or G-5. The device dependent errors are reported on the front panel by blinking LEDs and are referred to as conflicts in the manual. HP 8131A-State 4-4 #### LOCAL MESSAGES Power-on error messages are displayed immediately after the power-on tests are completed. See Appendix G, Table G-1 for a list of messages. There are two types: 1. Processor board test failure: the instrument can not be operated. The error condition code is reported at the instrument's display in the format **Fnnn**. 2. Parametric board test failure: the instrument is operable, however, parametric capability is restricted. The error condition code is reported at the instrument's display in the format **Ennn**. #### REMOTE MESSAGES Remote error messages can be read in response to the following queries: - 1. *TST? (See Appendix G, Table G-2). - 2. :ERR? (See Appendix G, Table G-3) - 3. :DERR? (See Appendix G, Table G-4) #### **POLLING** The instrument's interface talker subset is T6. Thus, the serial poll method of requesting service is used. #### Polling: STB Bit 0 Behavior Bit 0 of the status byte register always reflects the actual state of the device. If a conflict is present, Bit 0 will be set. If all conflicts are cleared, Bit 0 will also be cleared. If Bit 0 is set (1), a service request is generated if a service request is not pending (bit 0 of the service request enable register must be set). #### **STB MESSAGE** The status message is transmitted in bits 7 and 5-0 of the status byte register. Bit 7: not used Bit 5: ESB (Event Status Bit) Bit 4: MAV (Message Available) Bit 3: not used Bit 2: not used Bit 1: not used Bit 0: H (hardware error summary-condition-bit) The errors related to bit 0 are reported in response to a :DERR? query: See Appendix G, Table G-4 for a listing of the :SYST:DERR? query errors. ### STB ## STATUS BYTE REGISTER The status byte register (STB) is described in the following figure. The Master Summary Status (MSS) message is true when any enabled bit of the STB register is set excluding Bit 6. #### [BIT 7] [BIT 6] [BIT 5] [BIT 4] [BIT 3] [BIT 2] [BIT 1] [BIT 0] - Bit 7: Not used, value = 0 - Bit 6: RQS / MSS (Request Service / Master Summary Status) - Bit 5: ESB (Event Status Bit) - Bit 4: MAV (Message Available) - Bit 3: Not used, value = 0 - Bit 2: Not used, value = 0 - Bit 1: Not used, value = 0 - **Bit 0:** H (Hardware error summary-condition-bit) #### READING THE STB REGISTER After reading the status byte register with: - 1. An *STB? query: - a. The status byte, RQS message, and the master summary message, MSS, are not directly altered as a result of the query. - b. MSS is reported in bit six of the status byte register. NOTE: MSS can be indirectly altered by the query when MAV is enabled. - 2. A serial poll: - a. The request for service, RQS, message is cleared; the status byte and the MSS message are not altered as a result of the query. - b. RQS is reported in bit six of the status byte register. 4-8 HP 8131A-State SRE #### SERVICE REQUEST ENABLE REGISTER The service request enable register (SRE) allows enabling of status byte register (STB) bits. See Chapter 6, *SRE command. Bit six of the status byte register cannot be disabled. Thus, the bit value of sixty-four, if transmitted in an *SRE message, will be ignored. The register is masked with the *SRE command and cleared with an '*SRE 0' message. #### [BIT 7] [BIT 6] [BIT 5] [BIT 4] [BIT 3] [BIT 2] [BIT 1] [BIT 0] Bit 7: Not used, value = 0 Bit 6: Not used, value = 0 Bit 5: ESB (Event Status Byte) Bit 4: MAV (Message Available) Bit 3: Not used, value = 0 Bit 2: Not used, value = 0 Bit 2: Not used, value = 0 Bit 1: Not used, value = 0 **Bit 0:** H (Hardware error summary-condition-bit) #### READING THE SRE REGISTER The service request enable register (SRE) is non-destructively read with the *SRE? query. ### **ESR** #### STANDARD EVENT STATUS REGISTER The standard event status register (ESR) is described in the following figure. #### [BIT 7] [BIT 6] [BIT 5] [BIT 4] [BIT 3] [BIT 2] [BIT 1] [BIT 0] Bit 7: PON, Power-on Bit 6: Not used, value = 0 Bit 5: CME, Command Error Bit 4: EXE, Execution Error Bit 3: DDE, Device Dependent Error Bit 2: QYE, Query Error Bit 1: Not used, value = 0 **Bit 0:** OPC, Operation Complete #### READING THE STANDARD EVENTS STATUS REGISTER The standard events status register is read with the *ESR? query. The register is cleared after being read. Additional CME, EXE, DDE, and QYE status is obtained with the :SYST:ERR? query. See Chapter 7 and Appendix G, Table G-3. 4-10 HP 8131A-State STANDARD EVENT STATUS ENABLE REGISTER The standard events status enable register(ESE) described in the following figure, enables bits of the standard events status register, ESR. The register is masked with the *ESE command and cleared with an '*ESE 0' message. ### [BIT 7] [BIT 6] [BIT 5] [BIT 4] [BIT 3] [BIT 2] [BIT 1] [BIT 0] Bit 7: PON, Power-on Bit 6: Not used, value = 0 Bit 5: CME, Command Error Bit 4: EXE, Execution error Bit 3: DDE, Device Dependent Error Bit 2: QYE, Query Error Bit 1: Not used, value = 0 Bit 0: OPC, Operation Complete READING THE ESE REGISTER The standard event status enable (ESE) register is non-destructively read with the *ESE? query. #### **INPUT BUFFER** The input buffer is: - 1. FIFO buffer (first-in first-out) - 2. 100 bytes long. #### **OUTPUT QUEUE** The output queue is: - 1. FIFO queue (first-in first-out) - 2. 40 response messages long The message available, MAV, message is reported in bit four of the status byte when the output queue contains a message. The output queue and the MAV message are cleared when a new program message is received directly after a program message terminator. #### **ERROR QUEUE** The error queue is a: - 1. FIFO queue (first-in first-out) - 2. 10 errors long If the queue overflows, message '-350 <too many errors>' overlays the last message in the queue. #### **KEY QUEUE** The key queue records real key presses, not :SYST:KEY simulated key presses. The key queue is a: - 1. FIFO queue (first-in first-out) - 2. 1 key long If the queue is empty, message '0' is returned in response to the :SYST:KEY? query. The key queue is cleared after pon or *RST. 4-12 HP 8131A-State | REGISTER | |-------------------| | BIT | | ASSIGNMENT | | ВІТ | WEIGHT | SIGNIFICANCE | INTERFACE
ASSIGNMENT | |---------|--------|--------------|-------------------------| | [BIT 7] | 128 | Most (MSB) | DIO8 | | [BIT 6] | 64 | | DIO7 | | [BIT 5] | 32. | | DIO6 | | [BIT 4] | 16 | | DIO5 | | [BIT 3] | 8 | | DIO4 | | [BIT 2] | 4 | | DIO3 | | [BIT 1] | 2 | | DIO2 | | [BIT 0] | 1 | Least (LSB) | DIO1 | NOTE: Unused register bits have a value of zero or are ignored. #### **SYNCHRONIZATION** All commands are sequential commands. If *OPC or *OPC? is parsed, a delay of two seconds occurs before the OPC bit is set or an ASCII coded '1' is placed in the output queue. See Chapter 6. If *WAI is parsed, a delay of two seconds occurs before executing any other commands. See Chapter 6. At the end of two seconds, all operations are complete. HP 8131A-State #### FIGURE 4-1. STATUS REPORTING 4-14 HP 8131A-State # CHAPTER 5 LOCAL FUNCTIONS | CONTENTS | 1 PULSE (single pulse) ADDRESS (See LCL.) ADS (addressed) AMPL (amplitude) AUTO (automatic) BURST COMP (complement) COUNT DCYC (duty cycle)
DEL (delay) DISABLE (output) DOUB (double pulse) ERROR E. WIDTH (external width) EXT INPUT (external input) GATE HIGH LCL (local) LIMIT LOW | MAN (manual) MEM (memory) OFFS (offset) OUTPUT (differential) PERIOD POWER OFF/ON RANGE RCL (recall setting) RMT (remote) SAVE (save setting) SET (calculated setting) SINGLE PULSE (See I SLOPE (external input) SRQ (service request) THRE (threshold) TRANS (transducer) TRIG (trigger) TRIG OUTPUT (trigger) UNITS VERNIER WIDTH | · | |----------|---|--|------| | FIGURE | 5-1 Overvoltage Window | | 5-13 | | TABLE | 5-1 Period, Delay, Double, and \ | Vidth Ranges | 5-47 | HP 8131A-Local Functions 5-1 Update 2, 03/15/89 ### 1 PULSE ### **FUNCTION** #### 1 PULSE Single Pulse ### **DESCRIPTION** TRIG operating mode One pulse or double pulse is generated per key press. ### **GATE** operating mode One pulse or double pulse is generated per key press. ### **BURST** operating mode One pulse or double pulse is generated per key press. Device command: none HP 8131A-Local Functions ### **DESCRIPTION** #### **ADDRESSED** The ADS indicator (lighted LED) indicates when the instrument is listen or talk addressed. The interface address cannot be changed when the instrument is talk or listen addressed. Device command: none Interface commands: MLA, MTA, UNL, UNT ### **AMPL** ### **FUNCTION** ### **DESCRIPTION** **AMPLITUDE** 0.10 V <= AMPLITUDE <= 5.00 V Resolution: 0.01 V Default: 1.00 V Amplitude, offset, high level, and low level are coupled. Amplitude = High - Low OVERVOLTAGE DISABLING: See DISABLE. Device command: :PULSe:LEVel:AMPLitude <value>|MIN|MAX HP 8131A-Local Functions ### **DESCRIPTION** #### **AUTO** #### **AUTOMATIC** operating mode: A continuous waveform (free run mode) is generated. Select the AUTO mode by pressing the mode select key. The AUTO LED lights when the AUTO mode is active. The mode is common to channels 1 and 2 in dual channel instruments. The external input is disabled when the AUTO operating mode is active. Device command: :INPut:TRIGger:MODE AUTO ### **BURST** ### **FUNCTION** ### **DESCRIPTION** #### **BURST** #### **BURST** operating mode: A specified number of pulses or double pulses (1-9999) are generated for each burst trigger signal. #### PERIOD-BURST RELATIONSHIP #### IF PERIOD < 5.00 ns THEN BURST mode is not allowed. Burst trigger signals: - 1. External Input (See EXT INPUT.) - 2. Manual key press (SEE MAN.) - 3. *TRG (See Chapter 6.) The mode is common to channels 1 and 2 in dual channel instruments. The number of pulses or double pulses per burst is set with the COUNT function. Device command: :INPut:TRIGger:MODE BURSt Related command: :PULSe:COUNt <value>|MIN|MAX Common command: *TRG 5-6 HP 8131A-Local Functions Update 2, 03/15/89 ### COMP ### **FUNCTION** ### **DESCRIPTION** #### **COMPLEMENT** #### Disabled, default The OUTPUT pulse or double pulse is output as specified by the setting. ### **Enabled, LED lighted** The OUTPUT pulse or double pulse is inverted with respect to the setting. In both cases, disabled or enabled, the COMPLEMENT OUTPUT is the inverted form of OUTPUT. Device command: :OUTPut:PULSe:POLarity NORM|COMP ### COUNT ### **FUNCTION** ### **DESCRIPTION** **COUNT** 1 <= COUNT <= 9999 Resolution: 1 Default: 1 The COUNT function sets the number of pulses or double pulses contained in the burst. The burst count is common to channels 1 and 2 in dual channel instruments. Device command: :PULSe:COUNt <value>|MIN|MAX Related command: :INPut:TRIGger:MODE BURSt Common command: *TRG ### **DESCRIPTION** **DUTY CYCLE** 1% <= DUTY CYCLE <= 99% Resolution: 1 Default: mode = OFF duty cycle = 50 percent If DOUBLE PULSE is inactive: WIDTH = PERIOD * DCYC / 100 K-HTDIW-Y TUSTUO If DOUBLE PULSE is active: WIDTH = PERIOD * DCYC 200 CHIDIM- CHIDIM- TUPTUO Device command: :PULSe:TIMing:DutyCYCle <value>|MIN|MAX :PULSe:TIMing:DutyCYCle:MODE ON|OFF|1|0 Related comand: :PULSe:TIMing:PERiod <value>|MIN|MAX Update 2, 03/15/89 **HP 8131A-Local Functions** ### **DCYC** ### **FUNCTION** ### **DESCRIPTION** PERIOD-DCYC RELATIONSHIP PERIOD < 5.00 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.5 ns 5 ns <= PERIOD < 20.0 ns WIDTH $\leftarrow 0.7*PERIOD - 1.00 \text{ ns}$ PERIOD >= 20.0 ns WIDTH <= 0.90*PERIOD - 5.00 ns DOUB-DCYC RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.6 ns DCYC-TRIG RELATIONSHIP DCYC and TRIG are incompatible. 5-10 HP 8131A-Local Functions Update 2, 03/15/89 ### **DESCRIPTION** **DELAY** 0.00 ps <= PULSE DELAY <= 99.9 ms Resolution: See Table 5-1, page 5-47. Default: 0.00 ps Delay = Programmed DELAY + fixed delay (20 ns) PERIOD-DELAY RELATIONSHIP IF PERIOD < 2.00 ns THEN DELAY = 0.00 NS **IF** 2.00 ns <= PERIOD < 5.00 ns THEN DELAY <= 0.5 PERIOD - 1.00 ns **IF** 5.00 NS <= PERIOD < 20.0 NS THEN DELAY <= 0.7*PERIOD - 2.00 NS IF PERIOD >= 20.0 ns THEN DELAY <= 0.9*PERIOD - 6.00 ns Device command: :PULSe:TIMing:DELay <value>|MIN|MAX Related command: :PULSe;TIMing;DOUBle;MODE ON|OFF|1|0 (OFF = DEL / ON = DOUB) Update 2, 03/15/89 HP 8131A-Local Functions ### **DISABLE** ### **FUNCTION** ### **DESCRIPTION** #### **DISABLE** Disabled state, LED lighted, default OUTPUT or COMPLEMENT OUTPUT is disabled. Enabled state, led not lighted OUTPUT or COMPLEMENT OUTPUT is enabled. Each output has an independent disable function. The output amplifier is switched off during the time an output is enabled or disabled. #### OUTPUT and COMPLEMENT OUTPUT are disabled: - 1. At power-on - 2. After a reset (*RST) - 3. When the standard setting is recalled (*RCL 0) - 4. When an overvoltage occurs. See the following page for additional information. Device commands: OUTPUT :OUTPut:PULSe:STATe ON|OFF|1|0 COMPLEMENT OUTPUT :OUTPut:PULSe:CSTate ON|OFF|1|0 5-12 **HP 8131A-Local Functions** ### **DESCRIPTION** The window in the following diagram defines the output voltage conditions under which an enabled output will remain enabled. A voltage that exceeds a window limit causes an output to be automatically disabled. If an output drives into an open circuit, the output voltage is doubled. The instrument disables the outputs if the voltage > +/-6.5V # Maximum Voltage at the output FIGURE 5-1. OUTPUT VOLTAGE WINDOW Update 2, 03/15/89 HP 8131A-Local Functions ### **DESCRIPTION** #### **DOUBLE PULSE (delay)** #### 2.0 ns <= DOUBLE PULSE DELAY <= 99.9 ms Resolution: See Table 5-1. page 5-46. Default: mode = OFF double pulse delay = 200 us Pulse delay (first pulse delay with respect to the trigger output) is not available. However, there is a fixed delay of 20 ns. #### **DOUBLE PULSE (width)** ### If duty cycle is inactive. WIDTH = programmed value of WIDTH If duty cycle is active. WIDTH = PERIOD*DCYC/200 k-WIDTH→ HTCIW Device commands: :PULSe:TIMing:DOUBle <value>|MIN|MAX :PULSe:TIMing:DOUBle:MODE ON|OFF|1|0 (OFF = DEL / ON = DOUB) 5-14 HP 8131A-Local Functions Update 2, 03/15/89 ### **DOUB** ### **FUNCTION** ### **DESCRIPTION** PERIOD-DOUB RELATIONSHIP IF PERIOD < 5.00 ns THEN DOUB is not possible. IF $5.00 \text{ ns} \le PERIOD \le 10.0 \text{ ns}$ THEN DOUB <= 0.5*PERIOD IF PERIOD >= 10.0ns THEN DOUB <= 0.9*PERIOD - 4.00 ns IF WIDTH < 1.00 ns THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.50 ns IF 1.00 ns <= WIDTH < 10.0 ns THEN WIDTH \leftarrow 0.7(PERIOD-DOUB) - 1.00 ns IF WIDTH \geq 10.0 ns THEN WIDTH \leftarrow 0.85(PERIOD-DOUB) - 2.50 ns WIDTH-DOUB RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH \geq 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.6 ns DOUB-DCYC RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH \geq 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.6 ns Update 2, 03/15/89 HP 8131A-Local Functions ### **ERROR** ### **FUNCTION** ### **DESCRIPTION** #### **POWER-ON ERRORS** #### F-TYPE F-type errors indicate that the instrument cannot operate under the conditions represented by the error code. See Appendix G, Table G-1 for a description of the error codes. #### **E-TYPE** E-type errors indicate that the capability of the instrument is restricted, but the instrument can still operate. See Appendix G, Table G-1, for a description of the error codes and how the capability of the instrument is restricted. #### **DEVICE ERRORS** #### **PARAMETRIC CONFLICTS** An attempt has been made to exceed the physical limits of the instrument. Blinking LEDs indicate when and which error is present in the instrument. See Appendix G, Table G-5 or one of the function listings in this chapter for a description of the parametric relationships. 5-16 **HP 8131A-Local Functions** Update 2, 03/15/89 ### E. WIDTH ### **FUNCTION** ### **DESCRIPTION** #### **EXTERNAL WIDTH** ### **EXTERNAL WIDTH operating mode** The pulse width and period are controlled by a signal applied at the EXT INPUT. #### E. WIDTH external input signal: Input bandwidth: DC to 500 MHz Input transitions: < 50 ns Minimum amplitude: >= 300 mVpp Select the E. WIDTH mode by pressing the mode select key. The E. WIDTH led lights when the E. WIDTH is active. The mode is common to channels 1 and 2 in the dual channel instrument. Device command: :INPut:TRIGger:MODE ExternalWIDth ### **EXT INPUT** ### **FUNCTION** ### **DESCRIPTION** **EXTERNAL INPUT** EXT INPUT is the signal input for the TRIG, GATE, BURST, E. WIDTH, and TRANS operating modes. The external input is disabled when the AUTO operating mode is active. Slope POS
(positive), default The TRIG, GATE, and BURST operating modes are triggered on a positive slope. The gate closes on the negative slope of the trigger signal in the GATE operating mode. **NEG** (negative) The TRIG, GATE, and BURST operating modes are triggered on a negative slope. The gate closes on the positive slope of the trigger signal in the GATE operating mode. **Threshold** -5.0 V <= THRESHOLD <= 5.0V Resolution: 0.1 V Default: 0.0 V Device commands: :INPut:TRIGger:MODE AUTO|TRIG|GATE BURS|EWID|TRAN :INPut:TRIGger:SLOPe POS|NEG :INPut:TRIGger:THReshold <value>|MIN|MAX 5-18 HP 8131A-Local Functions ### **DESCRIPTION** #### **GATE** #### **GATE** operating mode A continuous waveform is generated for the duration of the gate signal. #### GATE signal: - 1. External Input (EXT INPUT) - 2. Manual key (MAN) The first pulse generated is synchronous with the leading edge of the gate signal. The last pulse gated is always completed. Select the GATE mode by pressing the mode select key. The GATE LED lights when the GATE mode is active. The mode is common to Channels 1 and 2 in dual channel instruments. Device command: :INPut:TRIGger:MODE GATE ### HIGH ### **FUNCTION** ### **DESCRIPTION** **HIGH LEVEL** -4.90V <= HIGH LEVEL <= 5.00V Resolution: 0.01V Default: 0.50V High level, low level, amplitude, and offset are coupled. High Level = Offset + Amplitude / 2 OVERVOLTAGE DISABLING: See DISABLE. Device command: :PULSe:LEVel:HIGH <value>|MIN|MAX 5-20 HP 8131A-Local Functions ### **DESCRIPTION** LOCAL # If the instrument is in the remote control programming mode, the instrument is returned to local control operation unless local lockout is active. Local lockout is cleared by the interface command GTL or at power-on. # If the instrument is in the local control programming mode, the instrument's interface address is displayed, for example, A11. Address range: 0 to 30 To change the interface address (local control mode only): - 1. Depress the LCL key. - 2. Change the address with the vernier keys. The address cannot be changed: - 1. If the instrument is talk or listen addressed - 2. If a service request is pending. - 3. If the instrument is in the remote control state Device command: none Interface commands: GTL, LLO, SPD< SPE HP 8131A-Local Functions ### LIMIT ### **FUNCTION** ### **DESCRIPTION** #### LIMIT High and low level limits are set for OUTPUT and COMPLEMENT OUTPUT. Enabling the limit function (The LIMIT key LED is lighted.) makes the current levels the limit levels. To change the limits: - 1. Disable the LIMIT function if it is enabled. - 2. Set the levels required for the limit values. - 3. Enable the LIMIT function. If the LIMIT function is active, incrementing or decrementing stops when the limit is reached. NOTE: The high level, low level, amplitude, and offset are coupled. Device command: :PULSe:LEVel:LIMit ON|OFF|1|0 Related command: :PULSe:LEVel:HIGH;LOW;AMPL;OFFS 5-22 HP 8131A-Local Functions ### **DESCRIPTION** **LOW LEVEL** -5.00V <= LOW LEVEL <= 4.90V Resolution: 0.01V Default: -0.50V Low level, high level, amplitude and offset are coupled. are coupled. Low Level = Offset - Amplitude / 2 OVERVOLTAGE DISABLING: See DISABLE. Device command: :PULSe:LEVel:LOW <value> ### MAN ### **FUNCTION** ### **DESCRIPTION** #### **MANUAL** The manual function simulates an external input signal in the TRIG, GATE, and BURST operating modes. The external input (EXT INPUT) is disabled during manual (MAN) operations. #### TRIG operating mode One pulse or double pulse is generated per key press. #### **GATE** operating mode A continuous pulse stream is generated during the time the MAN key is depressed. #### **BURST** operating mode One pulse or double pulse burst is generated per key press. #### E. WIDTH operating mode A continuous pulse stream is generated during the time the MAN key is depressed. Device command: none ### **DESCRIPTION** #### **MEMORY** #### SAVE or RCL (recall) memory operations #### SAVE The instrument's setting is stored in internal memory. #### SAVE execution: - 1. Press MEM (memory). - 2. Enter the location (1-19). - 3. Press SAV (save). #### **RCL** (recall) A setting is copied from internal memory and made the instrument's current setting. #### RCL execution: - 1. Press MEM (memory). - 2. Enter the location (0-20). - Press RCL (recall). Location 0 contains the standard setting. See *RST, Chapter 6 for a description of the standard setting. Locations 1-19 are user stored settings. Device command: none Common commands: *SAV <location> *RCL <location> **HP 8131A-Local Functions** ### **OFFS** ### **FUNCTION** ### **DESCRIPTION** **OFFSET** -4.95 V <= OFFSET <= 4.95 V Resolution: 0.01 V Default: 0.00 V Offset, amplitude, high level, and low level are coupled. Median offset, see page 1-2. Offset = (High Level + Low Level) / 2 OVERVOLTAGE DISABLING: See DISABLE. Device command: :PULSe:LEVel:OFFSet <value>|MIN|MAX 5-26 HP 8131A-Local Functions ### **OUTPUT** ### **FUNCTION** ### **DESCRIPTION** **OUTPUT** **OUTPUT** is the normal format of the output signal defined by the setting. OUTPUT has a seperate DISABLE function. The COMPLEMENT and LIMIT functions apply to OUTPUT and COMPLEMENT OUTPUT. Device commands: :OUTPut:PULSe:STATe ON|OFF|1|0 Related commands: :OUTPut:PULSe:POLarity NORM|COMP :PULSe:LEVel:LIMit ON|OFF|1|0 **COMPLEMENT OUTPUT** **COMPLEMENT OUTPUT** is the inverted format of the **OUTPUT** signal defined by the setting. COMPLEMENT OUTPUT has a seperate DISABLE function. The COMPLEMENT and LIMIT functions apply to OUTPUT and COMPLEMENT OUTPUT. Device commands: :OUTPut:PULSe:CSTate ON|OFF|1|0 Related commands: :OUTPut:PULSe:POLarity NORM|COMP :PULSe:LEVel:LIMit ON|OFF|1|0 **HP 8131A-Local Functions** # **PERIOD** # **FUNCTION** # **DESCRIPTION** ### **PERIOD** ### 1.50 ns <= **PERIOD** <= 99.9 ms Range: 2.00 ns to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 1.00 ms NOTE: The differential outputs are delayed approximately 20 ns (fixed delay) with respect to the trigger output signal. Device command: :PULSe:TIMing:PERiod <value>|MIN|MAX 5-28 HP 8131-Local Functions Update 2, 03/15/89 # **PERIOD** # **FUNCTION** # **DESCRIPTION** PERIOD-BURST RELATIONSHIP IF PERIOD < 5.0 ns THEN BURST mode is not allowed. PERIOD-WIDTH RELATIONSHIP PERIOD < 5.00 ns F WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.50 ns IF $5 \text{ ns} \leq PERIOD \leq 20.0 \text{ ns}$ THEN WIDTH <= 0.70*PERIOD - 1.00 ns IF PERIOD >= 20.0 ns THEN WIDTH <= 0.9*PERIOD - 5.00 ns PERIOD-DELAY RELATIONSHIP IF PERIOD < 2.00 ns DELAY = 0.0 NS IF $2.00 \text{ ns} \leq \text{PERIOD} \leq 5.00 \text{ ns}$ THEN DELAY <= 0.5*PERIOD - 1.00 ns IF 5.00 NS <= PERIOD < 20.0 ns $DELAY \leftarrow 0.70*PERIOD - 2.00 ns$ IF PERIOD >= 20.0 NS THEN DELAY <= 0.9*PERIOD - 6.00 NS # **PERIOD** # **FUNCTION** # **DESCRIPTION** # PERIOD-DCYC RELATIONSHIP PERIOD < 5.00 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.50 ns $5.00 \text{ ns} \le PERIOD \le 20.0 \text{ ns}$ WIDTH $\leftarrow 0.7*PERIOD - 1.00 \text{ ns}$ PERIOD >= 20.0 ns WIDTH \leftarrow 0.9*PERIOD - 5.00 ns # PERIOD-DOUB RELATIONSHIP IF PERIOD < 5.00 ns THEN DOUB is not possible. IF 5.00 ns <= **PERIOD** < 10.0 ns THEN DOUB <= 0.5*PERIOD IF PERIOD >= 10.0 ns THEN DOUB <= 0.9*PERIOD - 4.00 ns IF WIDTH < 1.00 ns THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.50 ns IF $1.00 \text{ ns} \le \text{WIDTH} \le 10.0 \text{ ns}$ THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.00 ns IF WIDTH \geq 10.0 ns THEN WIDTH <= 0.85(PERIOD-DOUB) - 2.50 ns # POWER-OFF/ON # **FUNCTION** # **DESCRIPTION** **POWER-OFF** The instrument's setting and interface address are stored in internal memory. **POWER-ON** The setting and interface address stored at power-off are restored; however, the outputs are disabled. NOTE, if the internal memory data is invalid at power-on, the power-off setting cannot be restored. In this case, the standard setting and the default interface address, 11 are restored. Power-on errors (F or E type): See ERROR. Device command: none # **RANGE** # **FUNCTION** # **DESCRIPTION** **RANGE** The range function increments or decrements the displayed value by a factor of ten (10). Device command: :SYSTem:KEY 5-32 # **FUNCTION** # **DESCRIPTION** ### **RECALL** A setting is copied from internal memory and made the instrument's setting. #### Execution: - 1. Press MEM (memory). - 2. Specify the location (0-20). - 3. Press RCL (recall). Location 0 contains the standard setting. See *RST, Chapter 6 for a description of the standard setting. Locations 1-19 are user stored settings. RCL is identical to *RCL; see Chapter 6. Device command: :SYSTem:KEY 35 (:KEY 33 is also required>) Common command: *RCL <location) Related command: *SAV <location> # **RMT** # **FUNCTION** # **DESCRIPTION** ### REMOTE The RMT LED indicates when the instrument is remotely enabled. The front panel controls are inactive except for LCL unless local lockout is active. Device command: Interface command: REN Related commands: GTL, LLO 5-34 ### **FUNCTION** # **DESCRIPTION** SAVE # The instrument's setting is stored in internal memory. SAVE execution: - 1. Press MEM (memory). - 2. Enter the location (1-19). - 3. Press SAV (save). Saving to location 0 (standard setting) is not allowed. The scope of the saved setting is identical to the scope of the standard setting; see Chapter 6, *RST. SAVE is identical to *SAV; see Chapter 6. Device command: :SYSTem:KEY 34 (:KEY 33 is also required.) Common command: *SAV <location) Related command: *RCL <location> # SET # **FUNCTION** # **DESCRIPTION** SET ### The instrument setting is set as follows: PERIOD: no change* WIDTH: PERIOD / 2 DELAY: 0.00 ps DOUB: Mode = OFF Delay = no change* DCYC: Mode = no change* Duty cycle = 50 percent Operating Mode: **AUTO** Levels: no change* Output Format: no change* * The values are the programmed values prior to the SET operation. NOTE: Set is not related to the device command:SYSTem:SET. Device command: none 5-36 # SLOPE #
FUNCTION # **DESCRIPTION** #### SLOPE Slope sets the trigger slope of the external input signal. ### POS (positive), default The TRIG, GATE, E. WIDTH, and BURST operating modes are triggered on a positive slope. The gate closes on the negative slope of the trigger signal in the GATE operating mode. ### **NEG** (negative) The TRIG, GATE, E.WIDTH, and BURST operating modes are triggered on a negative slope. The gate closes on the positive slope of the trigger signal in the GATE operating mode. Selecting both slopes is not allowed. Device command: :INPut:TRIGger:SLOPe POS|NEG # SRQ # **FUNCTION** # **DESCRIPTION** ### **SERVICE REQUEST** The SRQ LED indicates when a service request is pending. The interface line SRQ is in the asserted state. The interface address cannot be changed when a service request is pending. Device command: none Related commands: SPE, SPD, *STB? 5-38 # **THRE** # **FUNCTION** # **DESCRIPTION** ### **THRESHOLD** -5.0 V <= THRESHOLD <= 5.0 V Resolution: 0.1 V Default: 0.0 V Input impedance: 50 ohm Threshold sets the trigger level for the external input signal. Device command: :INPut:TRIGger:THReshold <value>|MIN|MAX # **TRANS** # **FUNCTION** # **DESCRIPTION** #### **TRANSDUCER** ### **TRANSDUCER** operating mode: A rectangular waveform is generated from a sine wave applied at the EXT INPUT. ### TRANS sine wave external input signal: Frequency: 10 MHz to 1GHz Minimum amplitude: >= 600 mVpp External Input = ac coupled The function applies to both channels in dual channel instruments. The transition times are fixed. The output levels are programmable. The period is controlled by the external input signal. Device command: :INPut:TRIGger:MODE TRAN 5-40 ### **FUNCTION** # **DESCRIPTION** #### TRIGGER ### TRIGGER operating mode: One pulse or double pulse is generated for each trigger signal. The mode is common to channels 1 and 2 in dual channel instruments. ### Trigger signals: - 1. External Input (See EXT INPUT.) - 2. Manual key press (See MAN.) - 3. *TRG (See Chapter 6.) - 4. Single pulse (See 1 PULSE.) The period is controlled by the external input signal. Conflict: The DCYC function and the TRIG (trigger) operating mode are incompatible. Device command: :INPut:TRIGger:MODE TRIG Common command: *TRG # TRIG OUTPUT ### **FUNCTION** # **DESCRIPTION** ### TRIGGER OUTPUT # TRIGGER OUTPUT is the reference signal for the differential output signals. The trigger ouput signal is an EECL level signal. The differential outputs are delayed approximately 20 ns (fixed delay) with respect to the trigger output signal. The trigger output signal is delayed approximately 16 ns (fixed delay) with respect to the external input signal. Device command: none 5-42 HP 8131A-Local Functions Update 2, 03/15/89 # **UNITS** #### **DESCRIPTION FUNCTION UNITS** E-12 ps pico seconds, E-9 nano seconds, ns micro seconds, E-6 us = milli seconds, E-3 ms = Volts PCT =percent Device command: none # **VERNIER** # **FUNCTION** # **DESCRIPTION** #### **VERNIER** The vernier keys are used to set parameter values or change the interface address. Each key corresponds to a display segment as shown in the figure. Increment values with the up arrow keys. Decrement values with the down arrow keys. If the LIMIT function is active, incrementing or decrementing a level function stops when the limit is reached. See LCL for changing the interface address. Device command: :SYSTem:KEY 5-44 # **FUNCTION** ### **DESCRIPTION** #### **WIDTH** ### 0.30 ns <= WIDTH <= 99.9 ms Range: 0.50 ns to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 100 us NOTE: The differential outputs are delayed approximately 20 ns (fixed delay) with respect to the trigger output signal. Device command: :PULSe:TIMing:WIDth <value>|MIN|MAX Related commands: :PULSe:TIMing:DutyCYCle <value>|MIN|MAX :PULSe:TIMing:PERiod <value>|MIN|MAX # **WIDTH** # **FUNCTION** # **DESCRIPTION** # PERIOD-WIDTH RELATIONSHIP PERIOD < 5.0 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.50 ns **5.00** ns **<= PERIOD < 20.0** ns WIDTH **<=** 0.70*PERIOD - 1.00 ns PERIOD >= 20.0 ns WIDTH <= 0.9*PERIOD - 5.00 ns ### WIDTH-DOUB RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.60 ns TABLE 5-1. PERIOD, DELAY, DOUBLE, AND WIDTH RANGES | RANGE
NUMBER | RANGE | | | RESOLUTION | |-----------------|---------|---|---------|------------| | 1 | *** | _ | 9.99 ns | 0.01 ns | | 2 | 10.0 ns | - | 99.9 ns | 0.1 ns | | 3 | 100 ns | - | 999 ns | l ns | | 4 | 1.00 us | - | 9.99 us | 0.01 us | | 5 | 10.0 us | - | 99.9 us | 0.1 us | | 6 | 100 us | - | 999 us | 1 us | | 7 | 1.00 ms | - | 9.99 ms | 0.01 ms | | 8 | 10.0 ms | - | 99.9 ms | 0.1 ms | | | | | | | *** PERIOD: 2.00 ns DELAY: 0.00 ns DOUBLE: 2.00 ns WIDTH: 0.50 ns # CHAPTER 6 COMMON COMMANDS **CONTENTS** *CLS Clear Status *ESE Standard Event Status Enable *ESE? Standard Event Status Enable Query *ESR? Standard Event Status Register Query *IDN? Identification Query *LRN? Learn Device Setup Query *OPC Operation Complete ***OPC?** Operation Complete Query *RCL Recall *RST Reset *SAV Save *SRE Service Request Enable *SRE? Service Request Enable Query *STB? Read Status Byte Query *TRG Trigger *TST? Self Test Query *WAI Wait to Continue HP 8131A-Commands # *CLS ### **CLEAR STATUS COMMAND** # ----*CLS----- #### **DEFINITION** The *CLS command clears the following: - 1. Error queue - 2. Standard event status register (ESR) - 3. Status byte register bit 5 (STB) - 4. A service request - 5. OCAS and OQAS No changes are made to the following: - 1. Status byte register bits 6, 4, 2-0 (STB) - 2. Output queue - 3. Event status enable register (ESE) - 4. Service request enable register (SRE) - 5. Key Queue State: - 1. IDLE state - 2. Setting prior to *CLS - 3. *OPC/*OPC? actions are cancelled. If the *CLS command occurs directly after a program message terminator, the output queue and MAV, bit 4, in the status byte register are cleared, and if condition bits 2-0 of the status byte register are zero, MSS, bit 6 of the status byte register is also zero. Interface command: SDC ### **EXAMPLE** OUTPUT 711;"*CLS" 6-2 HP 8131A-Common # STANDARD EVENT STATUS ENABLE COMMAND ----*ESE--<wsp>--<value>----- 0 <= value <= 255 ### **DEFINITION** The *ESE command sets bits in the standard event status enable register (ESE) which enable the corresponding bits in the standard event status register (ESR). The register is cleared: - 1. At power-on - 2. By sending a value of zero The register is not changed by the *RST and *CLS commands. | BIT | MNEMONIC | BIT VALUE | |-----|-----------------|-----------| | 7 | PON | 128 | | 6 | Not used | 0 | | 5 | CME | 32 | | 4 | EXE | 16 | | 3 | DDE | 8 | | 2 | QYE | 4 | | 1 | Not used | 0 | | 0 | OPC | 1 | Related commands: *ESE? EXAMPLE OUTPUT 711;"*ESE 21" HP 8131A-Common 6-3 # *ESE? # STANDARD EVENT STATUS ENABLE QUERY ----*ESE?---- **DEFINITION** The standard event status enable query returns the contents of the standard event status enable register. 0 <= contents <= 255 | BITS | MNEMONICS | BIT VALUE | | |-------------|------------------|-----------|--| | 7 | PON | 128 | | | 6 | Not used | 0 | | | 5 | CME | 32 | | | 4 | EXE | 16 | | | 3 | DDE | 8 | | | 2 | QYE | 4 | | | 1 | Not used | 0 | | | 0 | OPC | 1 | | | | | | | Related commands: *ESE **EXAMPLE** OUTPUT 711;"*ESE?" ENTER 711; A\$ 6-4 HP 8131A-Common # STANDARD EVENT STATUS REGISTER QUERY ----*ESR?---- ### **DEFINITION** The standard event status register query returns the contents of the standard event status register. The register is cleared after being read. 0 <= contents <= 255 | BITS | MNEMONICS | BIT VALUE | | |------|------------------|-----------|--| | 7 | PON | 128 | | | 6 | Not used | 0 | | | 5 | CME | 32 | | | 4 | EXE | 16 | | | 3 | DDE | . 8 | | | 2 | QYE | 4 | | | 1 | Not used | 0 | | | 0 | OPC | 1 | | | | | | | Related commands: *ESR **EXAMPLE** OUTPUT 711;"*ESR?" ENTER 711; A\$ # *IDN? ### **IDENTIFICATION QUERY** ----*IDN?----- **DEFINITION** The identification query commands the instrument to identify itself over the interface. Response: HEWLETT-PACKARD, 8131A, 0, n.n HEWLETT-PACKARD = manufacturer 8131A = instrument model number 0 = indicates serial numbers are not provided. n.n = firmware revision level **EXAMPLE** DIM A\$ [100] OUTPUT 711;"*IDN?" ENTER 711; A\$ 6-6 HP 8131A-Common # **LEARN DEVICE SETUP QUERY** # ----*LRN?----- ### **DEFINITION** The learn query returns the status of the instrument's setting. The response message can be retransmitted as a program message without requiring any alterations. The returned commands are listed in Table 7-1. The learn response message is a single ASCII string without image specifiers. The format of Table 6-1 is for legibility only. ### **EXAMPLE** DIM A\$ [1000] OUTPUT 711;"*LRN?" ENTER 711; A\$ # *LRN? ### TABLE 6-1. PULSE *LRN? NOTES: Channel 2 command paths apply only to dual channel instruments. For definitions of <value>, see Chapter 7. :INPut:TRIGger :STATe ON|OFF; MODE AUTO|TRIGGER|GATE|BURST|EWIDTH|TRANSDUCER; SLOPe POS|NEG; THReshold <value; :PULSe:COUNt <value>; :PULSe:TIMing :PERiod <value; :PULSe2:TIMing :WIDTh <value>; DELay <value>; DOUBle <value>; DutyCYCle <value>; DutyCYCle:MODE ONIOFF; :PULSe2:TIMing :DOUBle:MODE ON|OFF; :PULSe2:LEVel :HIGH <value>; LOW <value>; LIMit ON|OFF; :OUTPut2:PULSe :POLarity NORM|COMP; STATe ON|OFF; CSTate ON|OFF; # *LRN? :PULSe1:TIMing :WIDTh <value>; DELay <value>; DOUBle <value>; DutyCYCle <value>; DutyCYCle:MODE ON|OFF; :PULSe1:TIMing :DOUBle:MODE ON|OFF; PULSe1:LEVel :HIGH <value>; LOW <value>; LIMit ON|OFF; :OUTPut1:PULSe :POLarity NORM|COMP STATe ON|OFF; CSTate ON|OFF; # *OPC ### **OPERATION COMPLETE COMMAND** ### ----*OPC---- #### **DEFINITION** The instrument parses all program message units in the message and after a wait period of two seconds, sets the operation complete bit in the standard event status register (ESR). The following actions cancel *OPC
(device goes to OCIS): - 1. pon - 2. dcas - 3. *CLS - 4. *RST Related commands: *OPC?, *WAI ### **EXAMPLE** OUTPUT 711;"*CLS;*ESE 1;*SRE 32" OUTPUT 711;"*OPC" 6-10 HP 8131A-Common # **OPERATION COMPLETE QUERY** ----*OPC?---- #### **DEFINITION** The instrument parses all program message units in the message and after a wait period of two seconds, places an ASCII 'l' in the output queue. The following actions cancel *OPC? (device goes to OCIS): - I. pon - 2. dcas - 3. *CLS - 4. *RST Related commands: *OPC, *WAI ### **EXAMPLE** OUTPUT 711;"*OPC?" ENTER 711;A\$ # *RCL ### **RECALL COMMAND** ----*RCL--<wsp>--<location>---- $0 \le location \le 19$ **DEFINITION** A setting stored in RAM is made the instrument setting. The instrument can recall twenty settings, locations 0-19. Location 0 = standard setting, see *RST. Location 1-19 = user stored settings, see *SAV. The *RCL command is identical to the local function RCL (recall); see Chapter 5. Related commands: *SAV **EXAMPLE** OUTPUT 711;"*RCL 3" 6-12 HP 8131A-Common ### **RESET COMMAND** # ----*RST----- #### **DEFINITION** The reset setting (standard setting) stored in ROM is made the instrument setting. Pending *OPC/*OPC? actions are cancelled. Instrument state: the instrument is placed in the IDLE state awaiting a command. The *RST command clears the key queue. The following are not changed: - 1. HP-IB (interface) state - 2. Instrument interface address - 3. Output queue - 4. Service request enable register (SRE) - 5. Standard event status enable register (ESE) The commands and parameters of the reset state are listed in the following table. Related commands: none ### **EXAMPLE** OUTPUT 711;"*RST" HP 8131A-Common 6-13 # *RST **TABLE 6-2. RESET STATE (STANDARD SETTING)** | COMMANDS | PARAMETERS
(DEFAULTS) | CHANNEL (Channel 2: in dual channel instruments) | |------------|--------------------------|--| | :INPut | | | | :TRIGger | | | | :STATe | OFF | | | :MODE | AUTO | | | :SLOPe | POS | | | :THREshold | 0.0V | | | :PULSe | | | | :COUNt | 1 | | | :TIMing | | | | :PERiod | 1.00ms | | | :WIDTh | 100us | 1/2 | | :DELay | 0.00ps | 1/2 | | :DOUBle | 200us | 1/2 | | :MODE | OFF | 1/2 | | :DutyCYCle | 50 PCT | 1/2 | | :MODE | OFF | 1/2 | | :LEVel | | · | | :HIGH | +0.50V | 1/2 | | :LOW | -0.50V | 1/2 | | :AMPLitude | 1.00V | 1/2 | | :OFFSet | 0.00V | 1/2 | | :LIMit | OFF | 1/2 | | :OUTPut | | | | :PULSe | | | | :POLarity | NORM | 1/2 | | :STATe | OFF | 1/2 | | :CSTate | OFF | 1/2 | 6-14 HP 8131A-Common ### **SAVE COMMAND** ----*SAV--<wsp>--<location>---- 1 <= location <= 19 **DEFINITION** The instrument setting is stored in RAM. The instrument can store nineteen settings, locations 1-19. The scope of the saved setting is identical to the scope of the standard setting. The *SAV command is identical to the local function SAVE; see Chapter 5. Related commands: *RCL **EXAMPLE** OUTPUT 711;"*SAV 3" ### *SRE #### SERVICE REQUEST ENABLE REGISTER ----*SRE--<wsp>--<value>---- 0 <= value <= 255 #### **DEFINITION** The service request enable command sets bits in the service request enable register which enable the corresponding status byte register bits The register is cleared: - 1. At power-on - 2. By sending a value of zero. The register is not changed by the *RST and *CLS commands. | BITS | MNEMONICS | BIT VALUE | |------|------------------|-----------| | 7 | Not used | 0 | | 6 | RQS/MSS | 64 | | 5 | ESB | 32 | | 4 | MAV | 16 | | 3 | Not used | 0 | | 2 | Not used | 0 | | 1 | Not used | 0 | | 0 | Н | 1 | | | | | Related commands: *SRE?, *STB? **EXAMPLE** OUTPUT 711;"*SRE 48" 6-16 HP 8131A-Common #### SERVICE REQUEST ENABLE QUERY #### ----*SRE?---- #### **DEFINITION** The service request enable query returns the contents of the service request enable register. 0 <= contents <= 255 | BITS | MNEMONIC | BIT VALUE | |------|-----------------|-----------| | 7 | Not used | 0 | | 6 | MSS/RQS | 64 | | 5 | ESB | 32 | | 4 | MAV | 16 | | 3 | Not used | 0 | | 2 | Not used | 0 | | 1 | Not used | 0 | | 0 | Н | . 1 | Related commands: *SRE, *STB? #### **EXAMPLE** OUTPUT 711;"*SRE?" ENTER 711; A\$ ### *STB? #### **READ STATUS BYTE QUERY** ----*STB?---- #### **DEFINITION** The read status byte query returns the contents of the status byte register. 0 <= contents <= 255 The MSS message is reported in bit six of the status byte register. | BITS | MNEMONICS | BIT VALUE | |------|------------------|-----------| | 7 | Not used | 0 | | 6 | MSS | 64 | | 5 | ESB | 32 | | 4 | MAV | 16 | | 3 | Not used | 0 | | 2 | Not used | 0 | | 1 | Not used | 0 | | 0 | Н | 1 | | | | | Related commands: *SRE, *SRE? #### **EXAMPLE** OUTPUT 711;"*STB?" ENTER 711; A\$ 6-18 HP 8131A-Common #### TRIGGER COMMAND #### ----*TRG----- **DEFINITION** The trigger command has the same effect as a GROUP EXECUTE TRIGGER (GET). If operating mode trigger or burst is selected, a trigger event occurs, and one pulse, double pulse, burst is generated. :INPut:TRIGger:STATe ON changes to :STATE OFF when *TRG processed. Related commands: GET (interface command) **EXAMPLE** OUTPUT 711;"*TRG" ### *TST? #### **SELF-TEST QUERY** #### ----*TST?---- #### **DEFINITION** The self-test query commands the instrument to perform a self-test and place the results of the test in the output queue. Returned value: 0 <= value <= 657. A value of zero indicates no errors. Explanations of the non-zero results of the self-test are given in Appendix G, Table G-1. No entries are allowed while the test is running. The instrument is returned to the setting that was active at the time the self-test query was processed. The self-test does not require operator interaction beyond sending the *TST? query. Related command: none #### **EXAMPLE** OUTPUT 711;"*TST?" ENTER 711; A\$ 6-20 HP 8131A-Common #### **WAIT-TO-CONTINUE-COMMAND** ----*WAI----- **DEFINITION** The wait-to-continue command prevents the instrument from executing any further commands for two seconds. All pending operations commands for two seconds. An pending operations are completed during the wait period. Related commands: *OPC, *OPC? **EXAMPLE** OUTPUT 711;"*WAI" # CHAPTER 7 DEVICE COMMANDS | CONTENTS | Command List Command Descriptions :INPut:TRIGger path :OUTput:PULSe path :PULSe:COUNt path :PULSe:LEVel path :PULSe:TIMing path :SYSTem path | 7-3
7-7
7-13
7-19
7-21
7-29
7-39 | |----------|--|--| | TABLE | Key Codes | 7-43 | | FIGURES | SYNTAX DIAGRAMS :INPut:TRIGger path :OUTput:PULSe path :PULSe:COUNt path :PULSe:LEVel path :PULSe:TIMing path :SYSTem path | 7-7
7-13
7-19
7-21
7-29
7-39 | ## :INPut ### COMMAND PARAMETER :INPut :TRIGger :MODE AUTO|TRIG|GATE|BURS|EWID|TRANS :MODE? :SLOPe POSitive | NEGative :SLOPe? :STATe ON|OFF|1|0 :STATe? :THReshold <value>|MIN|MAX :THReshold? ## :OUTPut ### COMMAND PARAMETER :OUTPut :PULSe :CSTate :CSTate? :POLarity :POLarity? :STATe :STATe? ON|OFF|1|0 NORMal | COMPlement ON|OFF|1|0 # :PULSe | COMMAND | <u>PARAMETER</u> | |-------------------------|---| | :PULSe | dual and Indiana w | | :COUNt
:COUNt? | <value> MIN MAX</value> | | :LEVel
:AMPLitude | <value> MIN MAX</value> | | :AMPLitude?
:HIGH | • • | | :HIGH? | <value> MIN MAX</value> | | :LIMit
:HIGH? | ON OFF 1 0 | | :LOW? | | | :AMPLitude?
:OFFSet? | | | :LIMit?
:LOW | <value> MIN MAX</value> | | :LOW? | | | :OFFSet
:OFFSet? | <value> MIN MAX</value> | | :TIMing
:DELay | <value> MIN MAX</value> | | :DELay? | | | :DOUBle
:MODE | <pre><value> MIN MAX ON OFF 1 0</value></pre> | | :MODE?
:DOUBle? | | | :DutyCYCle | <value> MIN MAX</value> | | :MODE
:MODE? | ON OFF 1 0 | | :DutyCYCle?
:PERiod | ∠valuo> MINIMAV | | :PERiod? | <value> MIN MAX</value> | | :WIDTh
:WIDTh? | <value> MIN MAX</value> | # :SYSTem #### COMMAND #### **PARAMETER** :SYSTem :DERRor? :ERRor? :KEY :KEY? :SET :SET? [NUMeric | STRing] [NUMeric | STRing] <code> <data> HP 8131A-Device # :INPut:TRIGger # :INPut:TRIGger:MODE #### :MODE #### AUTO, default mode A continuous waveform (free run mode) is generated. The external input is disabled. #### **TRIGger** One pulse or double pulse signal is generated per trigger signal: EXT INPUT or *TRG command. Conflict: <Trigger-DCYC> :INPut:TRIGger:MODE TRIGger and :PULse:TIMing:DutyCYCle:MODE ON are incompatible. #### GATE Pulses or double pulses are generated for the duration of the gate. #### **BURSt** A specified number of pulses or double pulses are generated for each burst trigger signal: EXT INPUT or *TRG command. Conflict: <Period-Burst> IF :PULSe:TIMing:PERiod < 5.00 ns THEN :INPut:TRIGger:MODE BURSt is not allowed. Related command: :PULSe:COUNt <value>|MIN|MAX 7-8 # :INPut:TRIGger:MODE #### ExternalWiDth The pulse width and period are controlled by a signal applied at the EXT INPUT. #### **TRANsducer** A rectangular waveform is generated from a sine wave applied at the EXT INPUT. All modes are common to channels 1 and 2 in dual channel instruments. Local Functions: AUTO, TRIG, GATE, BURST, E. WIDTH, TRANS, and EXT INPUT :MODE? Response:AUTO|TRIGGER|GATE|BURST|EWIDTH| TRANSDUCER **EXAMPLES** OUTPUT 711;":INP:TRIG:MODE AUTO" OUTPUT 711;":INP:TRIG:MODE?" ENTER 711;A\$ # :INPut:TRIGger:SLOPe :SLOPe POSitive, default mode Positive edge triggering **NEGative** Negative edge triggering Selecting both POS and NEG is not allowed. Local Functions: SLOPE, EXT INPUT :SLOPe? **Response: POSITIVE or NEGATIVE** **EXAMPLES** OUTPUT 711;":INP:TRIG:SLOP POS" OUTPUT 711:":INP:TRIG:SLOP?" ENTER 711; A\$ 7-10 # :INPut:TRIGger:STATe :STATe OFF | 0, default state The external input is disabled. ON | 1 The external input is enabled. The state is common to channels 1 and 2 in dual channel instruments. If a *TRG command is processed, :STATE ON changes to :STATE OFF.
Local Function: EXT INPUT :STATe? Response: OFF | ON **EXAMPLES** OUTPUT 711;":INP:TRIG:STAT ON" OUTPUT 711;":INP:TRIG:STAT?" **ENTER 711;A\$** HP 8131A-Device # :INPut:TRIGger:THReshold :THReshold -5.0 <= value <= 5.0 | MIN | MAX Range: -5.0V to 5.0V Resolution: 0.1V Default: 0.0V Local Functions: THRE, EXT INPUT :THReshold? Response:threshold value in decimal form Example: 3.5 **EXAMPLES** OUTPUT 711;":INP:TRIG:THR 3.5V" OUTPUT 711;":INP:TRIG:THR?" ENTER 711;A\$ 7-12 # :OUTPut:PULSe # :OUTPut <channel> :OUTPut Bypass Channel 1 Channel 1 2 Channel 2 ### :OUTPut:PULSe:CSTate :CSTate OFF | 0, default CSTate = complement state The specified channel's COMPLEMENT OUTPUT is disabled. ON | 1 CSTate = complement state The specified channel's COMPLEMENT OUTPUT is enabled. COMPLEMENT OUTPUT is disabled at power-on and after a reset. Local Function: DISABLE :CSTate? Response:OFF | ON **EXAMPLES** OUTPUT 711;":OUTP1:PULS:CSTate ON" OUTPUT 711;":OUTP1:PULS:CSTate? ENTER 711;A\$ # :OUTPut:PULSe:POLarity :POLarity NORMal, default The OUTPUT signal is output as specified by the other setting parameters.. **COMPlement** The OUTPUT signal is inverted with respect to the other setting parameters. In both cases (NORM or COMP) COMPLEMENT OUTPUT is the inverted form of OUTPUT. Local Function: COMP :POLarity? **Response: NORMAL or COMPLEMENT** **EXAMPLES** OUTPUT 711;":OUTP1:PULS:POL COMP" OUTPUT 711;":OUTP1:PULS:POL?" ENTER 711;A\$ 7-16 ### :OUTPut:PULSe:STATe :STATe OFF | 0, default The specified channel's OUTPUT is disabled. 0N | 1 The specified channel's OUTPUT is enabled. Local Function: DISABLE :STATe? Response: OFF | ON **EXAMPLES** OUTPUT 711;":OUTP1:PULS:STAT ON" OUTPUT 711;":OUTP1:PULS:STAT?" ENTER 711;A\$ HP 8131A-Device # :PULSe:COUNt ### :PULSe:COUNt :COUNt 1 <= COUNT <= 9999 | MIN | MAX Range: 1 to 9999 Resolution: 1 Default: 1 Count sets the number of pulses or double pulses contained in the burst. Related command: :INPut:TRIG:MODE BURSt Local Function: COUNT :COUNt? Response:count value in integer form Example: 999 **EXAMPLES** OUTPUT 711;":PULS:COUN 999" OUTPUT 711;":PULS:COUN?" ENTER 711;A\$ 7-20 ## :PULSe:LEVel HP 8131A-Device # :PULSe:LEVel <channel> :PULSe Bypass Channel 1 Channel 1 2 Channel 2 7-22 ### :PULSe:LEVel:AMPLitude :AMPLitude 0.10 <= value <= 5.0 | MIN | MAX Range: 0.10V to 5.00 V Resolution: 0.01V Default: 1.00V Amplitude, offset, high level, and low level are coupled. Amplitude = High Level - Low Level OVERVOLATAGE DISABLING: See DISABLE, Chapter 5. Local Function: AMPL :AMPLitude? Response:amplitude value in decimal form Example: 2.10 **EXAMPLES** OUTPUT 711;":PULS1:LEV:AMPL 2.10V" OUTPUT 711;":PULSI:LEV:AMPL?" **OUTPUT 711;A\$** HP 8131A-Device ## :PULSe:LEVel:HIGH :HIGH -4.90 <= value <= 5.00 | MIN | MAX Range: -4.90V to 5.00V Resolution: 0.01V Default: 0.50V High level, low level, amplitude, and offset are coupled. High Level = Offset + (Amplitude/2) High Level = Low Level + Amplitude OVERVOLTAGE DISABLING: See DISABLE, Chapter 5. Local Function: HIGH :HIGH? Response:high level value in decimal form Example: 1.55 **EXAMPLES** OUTPUT 711;":PULS1:LEV:HIGH 1.55V" OUTPUT 711;":PULS1:LEV:HIGH?" **ENTER 711;A\$** 7-24 ### :PULSe:LEVel:LIMit :LIMit OFF | 0, default The limit function is disabled. ON | 1 The limit function is enabled. High and low level limits are set for OUTPUT and COMPLEMENT OUTPUT. The high level, low level, amplitude, and offset commands are coupled commands and are processed before a limit enabling command within the same program message. The high and low level limits are set as follows: - 1. Disable the limit function if it is enabled. - 2. Set the levels to the required limit values. - 3. Enable the limit function. Local Function: LIMIT :LIMit? Response: OFF | ON **EXAMPLES** OUTPUT 711;":PULS:LEV:LIM ON" OUTPUT 711;":PULS:LEV:LIM?" ENTER 711;A\$ HP 8131A-Device # :PULSe:LEVel:LIMit :LIMit:HIGH? :LIMit:LOW? :LIMit:AMPLitude? Response:limit value queried in decimal form Example: 2.5 :LIMit:OFFSet? **EXAMPLE** OUTPUT 711;":PULS:LEV:LIM:OFFS?" **OUTPUT 711;A\$** 7-26 ### :PULSe:LEVel:LOW -5.00 <= value <= 4.90 | MIN | MAX Range: -5.00V to 4.90V Resolution: 0.01V Default: -0.50V Low level, high level, amplitude, and offset are coupled. Low Level = Offset - (Amplitude/2) Low Level = High Level - Amplitude OVERVOLTAGE DISABLING: See DISABLE, Chapter 5. Local Function: LOW :LOW? Response:low level value in decimal form Example: -.55 **EXAMPLES** OUTPUT 711;":PULS1:LEV:LOW -0.55V" OUTPUT 711;":PULS1:LEV:LOW?" ENTER 711;A\$ ## :PULSe:LEVel:OFFSet :OFFSet -4.95 <= value <= 4.95 | MIN | MAX Range: -4.95 V to 4.95 V Resolution: 0.01V Default: 0.00V Offset, amplitude, and the levels are coupled. Offset = (High Level + Low Level) / 2 OVERVOLTAGE DISABLING: See DISABLE, Chapter 5. Local Function: OFFS :OFFSet? Response:offset value in decimal form Example: .50 **EXAMPLES** OUTPUT 711;":PULS:LEV:OFFS 0.50V" OUTPUT 711;":PULS:LEV:OFFS?" ENTER 711:A\$ 7-28 # :PULSe:TIMing # :PULSe <channel> :PULSe Bypass Channel 1 Channel 1 2 Channel 2 7-30 HP 8131A-Device # :PULSe:TIMing:DELay :DELay $0.00 \le value (delay) \le 99.9 |MIN|MAX$ Range: 0.00 ps to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 0.00 ps Fixed delay (from the trigger output to the differential outputs): 20 ns Conflict: <Period-Delay> See Chapter 5 or Appendix G for a description of the timing relationships. Related command: :PULS:TIM:DOUB:MODE OFFON (OFF = delay/ON = double pulse) Local Function: DEL :DELay? Response:delay value in exponential form **Example**; 11.1**E**-9 **EXAMPLES** OUTPUT 711;":PULS1:TIM:DEL 11.1E-9" or OUTPUT 711;":PULS1:TIM:DEL 11.1NS" OUTPUT 711;":PULS:TIM:DEL?" **ENTER 711;A\$** # :PULSe:TIMing:DOUBle :DOUBle 2.00 <= value (double pulse delay) <= 99.9 | MIN | MAX Range(delay): 2.00 ns to 99.9 ms Resolution(delay): See Table 5-1, page 5-46. Default(delay): 200 us If DCYC is inactive: Double pulse width = WIDTH IF DCYC is active: Double pulse width = PERIOD*DCYC/200 Related commands: :PULS:TIM:DOUB:MODE OFF|ON :PULS:TIM:DCYC:MODE OFF|ON Conflicts: <Period-Double> <Width-Double> <Double-DCYC> See Chapter 5 or Appendix G for a description of the timing relationships. Local Functions: DOUB, DCYC :DOUBle? Response:double pulse delay value in exponential form Example: 211E-6 **EXAMPLES** OUTPUT 711;":PULS1:TIM:DOUB 211E-6" or OUTPUT 711;":PULS1:TIM:DOUB 211NS" OUTPUT 711;":PULS1:TIM:DOUB?" **ENTER 711;A\$** 7-32 HP 8131A-Device # :PULSe:TIMing:DOUBle:MODE :DOUBle:MODE OFF | 0, default mode Pulse delay is selected> ON | 1 Double pulse is selected Pulse delay (delay of the first pulse) with respect to TRIG OUTPUT is not available in the double pulse mode. Local Functions: DOUB, DEL :DOUBle:MODE? Response:OFF | ON **EXAMPLES** OUTPUT 711;":PULS1:TIM:DOUB:MODE ON" OUTPUT 711;":PULS1:TIM:DOUB:MODE?" ENTER 711;A\$ # :PULSe:TIMing:DutyCYCle :DutyCYCle 1 <= value <= 99|MIN|MAX Range: 1 PCT to 90 PCT Resolution: 1 Default: 50 PCT PCT = percent Conflicts: <Period-DCYC> <Double-DCYC> See Chapter 5 or Appendix G for a description of the timing for a description of the til relationships. Local Function: DCYC, DOUB :DutyCYcle? Repsonse:duty cycle value in integer form Example: 11 **EXAMPLES** OUTPUT 711;":PULS1:TIM:DCYC 11PCT OUTPUT 711;":PULS1:TIM:DCYC? ENTER 711;A\$ 7-34 HP 8131A-Device Update 2, 03/15/89 # :PULSe:TIMing:DutyCYCle:MODE :DutyCYCle:MODE OFF | 0, default mode Duty Cycle is disabled. The pulse width or double pulse width is specified by the WIDTH parameter. ON | 1 Duty cycle is enabled> If Double pulse is inactive: Pulse width = PERIOD*DCYC/100 If Double pulse is inactive: Double pulse width = PERIOD*DCYC/200 Conflict: <Trigger-DCYC> :INP:TRIG:MODE TRIG and :PULS:TIM:DCYC:MODE ON are incompatible. Related command: :PULS:TIM:DOUB:MODE OFFON (OFF = DEL / ON = DOUB) Local Function: DCYC :DutyCYCle:MODE? Response: OFF | ON **EXAMPLES** OUTPUT 711;":PULS1:TIM:DCYC:MODE ON" OUTPUT 711:":PULS1:TIM:DCYC:MODE?" **ENTER 711;A\$** HP 8131-Device 7-35 # :PULSe:TIMing:PERiod ### :PERiod ### 1.50 <= value <= 99.9 | MIN | MAX Range: 2.00 ns to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 1.00 ms In the TRIG, EWID, and TRAN operating modes the period is controlled by the EXT INPUT signal. The period parameter is common to Channels 1 and 2 in dual channel instruments. Conflicts: <Period-Burst> <Period-Width> <Period-Delay> <Period-DCYC> <Period-DOUB> See Chapter 5 or Appendix G for a description of the timing relationships. Local Function: PERIOD ### :PERiod? ### Response: the period value in exponential form **Example: 1.11E-3** ### **EXAMPLES** OUTPUT 711;":PULS2:TIM:PER 1.11E-3" or OUTPUT 711;":PULS2:TIM:PER 1.11MS" OUTPUT 711;":PULS2:TIM:PER?" **ENTER 711;A\$** 7-36 HP 8131A-Device # :PULSe:TIMing:WIDTh :WIDTh $0.30 \le value \le 99.9 |MIN|MAX$ Range: 0.50 ns to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 100 us Conflicts: <Period-Width> <Width-Double> See Chapter 5 or Appendix G for a description of the timing relationships. Local Function: WIDTH :WIDTh? Response:width value in exponential form Example: 111E-6 **EXAMPLES** OUTPUT 711;":PULS1:TIM:WIDT 111E-6" O1 OUTPUT 711;":PULS1:TIM:WIDT 111US" OUTPUT 711;":PULS1:TIM:WIDT?" ENTER 711;A\$ # :SYSTem # :SYSTem:DERRor? ### :DERRor? ### Bypass, default Device dependent error codes are returned, for example, -100. ### **NUMeric** Device dependent error codes are returned, for example, -100. ### **STRing** Device dependent error codes are returned plus a brief description of the error, for example, -100,<Period - Width Ch. 1>. See Chapter 4 for additional information. Appendix G contains a list of errors reported by the :DERR? query. Error code 0 = no errors ### **EXAMPLES** DIM A\$ [5000] OUTPUT 711;":SYST:DERR?" or OUTPUT 711;":SYST:DERR? NUM" or OUTPUT 711;":SYST:DERR? STR" **ENTER 711;A\$** 7-40 HP 8131A-Device # :SYSTem:ERRor? ### :ERRor? ### Bypass, default The oldest error code is returned, for example, -350. #### **NUMeric** The oldest error code
is returned, for example, -350. ### **STRing** The oldest error code plus a brief description of the error is returned, for example, -350,<Too Many Errors>. Only one error is returned per query. Appendix G contains a list of errors reported by the :ERR? query. Error code 0 = no errors ### **EXAMPLES** DIM A\$ [1000] OUTPUT 711;":SYST:ERR?" Of OUTPUT 711;":SYST:ERR? NUM" OI. OUTPUT 711;":SYST:ERR? STR" ENTER 711;A\$ HP 8131A-Device 7-41 # :SYSTem:KEY :KEY <code> The :KEY command simulates the pressing of a front panel key. The codes is a 16 bit integer value. The codes are listed in the following table. :KEY? Response:a key code in integer format EXAMPLE:13. Only real key presses are recorded in the key queue. The queue length is one code. If the queue is empty, an ASCII zero (0) is returned. The codes are listed in the following table. See Chapter 4 for additional information. **EXAMPLES** OUTPUT 711;"SYST:KEY 13" OUTPUT 711;":SYST:KEY?" **ENTER 711;A\$** 7-42 HP 8131A-Device # :SYSTem:KEY | CODE | KEY | | CODE | KEY | | |----------------------|---|--------------|----------------------|---|--------| | 1 | RANGE | down | 2 | RANGE | up | | 3 | VERNIER 1 | down | 4 | VERNIER 1 | up | | 5 | VERNIER 10 | down | 6 | VERNIER 10 | up | | 7 | VERNIER 100 | down | 8 | VERNIER 100 | up | | RIGH | Γ CHANNEL(single | or dual chan | nel instruments | s) | | | 9 | DELAY/DOUB | | 10 | WIDTH/DCYC | | | 11 | HIGH/AMPL | | 12 | LOW/OFFS | | | 13 | DISABLE (normal |) | 14 | LIMIT | | | 15 | COMP | | 16 | DISABLE (compl | ement) | | 17
19
21
23 | CHANNEL (dual che DELAY/DOUB HIGH/AMPL DISABLE (normal COMP | | 18
20
22
24 | WIDTH/DCYC
LOW/OFFS
LIMIT
DISABLE (compl | ement) | | CHAN | NEL INDEPENDE | NT | | | | | 33 | MEM | | 34 | SAV | | | 35 | RCL | | 36 | positive slope | | | 37 | negative slope | | 38 | THRE | | | 39 | MAN | | 40 | 1 PULSE | | | 41 | SET | | 42 | none | | | 43 | none | | 44 | MODE | | | 45 | LCL (address) | | 46 | PERIOD/COUNT | | HP 8131A-Device # :SYSTem:SET :SET <data> The :SYST:SET command transfers binary data. See the example for the application of :SYST:SET. NOTE: :SYSTem:SET is not related to the local function SET. :SET? Response:binary data is returned which contains the instrument's current setting. The block of data is identical to the block of data saved and recalled by the *SAV and *RCL commands. The scope of the command is identical to the scope of the *LRN? command. ## :SYSTem:SET ### **EXAMPLE:** ``` 10 DIM Query$[100],Setting$[200]BUFFER 20 30 ASSIGN @Hpib device TO 711 40 ASSIGN @Path TO BUFFER Setting$ 50 !Read current setting from the HP 8131A 60 Query$=":SYST:SET?" 70 GOSUB Fetch 80 90 100 !Write stored setting to the HP 8131A Count out=176 110 GOSUB Write 120 130 140 STOP 150 ! 160 Fetch:! 170 Output @Hpib device;Query$ TRANSFER @Hpib-device TO @Path;END,WAIT 180 190 RETURN 200 ! 210 Write:! 220 TRANSFER @Path TO @Hpib device; COUNT count_out, WAIT 230 RETURN 240 250 END ``` HP 8131A-Device 7-45 # A SPECIFICATIONS | CONTENTS | Specifications | A-2 | |----------|-------------------------------------|-----| | | Supplemental Specifications | A-2 | | | Restrictions | A-2 | | | Warranted Specifications: | | | | Differential Outputs | | | | Timing Parameters | | | | Period | A-3 | | | Delay | A-3 | | | Double Pulse | A-3 | | | Width | A-3 | | | Transition Times | A-3 | | | Level Parameters | A-5 | | | Performance Parameters | A-5 | | | Supplemental Specifications | | | | Differential Outputs | | | | Duty Cycle | A-5 | | | Amplitude | A-5 | | | Offset | A-5 | | | Impedance, source | A-5 | | | Skew | A-5 | | | Trigger Output | A-6 | | | External Input | A-6 | | | Interface | A-7 | | | Battery | A-8 | | | Environmental | A-8 | | | Power | A-8 | | | Weight | A-8 | | | Dimensions | A-8 | | | Calibration Period | A-8 | | | | , | | TABLES | A-I Width and Delay: Maximum Values | A-4 | | | A-2 Double Pulse: Maximum Values | A-4 | | | A-3 Programming Times | A-7 | | | 77 Trogramming Times | 7. | | | | | | | | | HP 8131A-Specifications A-I Update 2, 03/15/89 ### **SPECIFICATIONS** The specifications describe the instrument's warranted performance characteristics unless indicated as being supplemental or typical in nature. The performance tests and recommended test equipment listed in Appendix E can be used to verify the performance characteristics. ### Supplemental, Specifications Supplemental specifications are typical, non-warranted, performance characteristics provided for customer convenience. ### Restrictions The specifications apply to 50 ohm loads unless stated otherwise. Ambient temperature. 0 to 55 degrees Celcius: The first or only value specified is for this range. 20 to 30 degrees Celcius: The specified values for this range are given in brackets, [], following the 0 to 55 degree Celcius specification. The instrument warm-up period is 30 minutes. Period, width, delay, and double pulse are specified at the amplitude 50% points. Period and width underprogramming is allowed. See Chapters 5 and 7. Accuracy refers to the programmed values. A-2 **HP 8131A-Specifications** Update 2, 03/15/89 # WARRANTED SPECIFICATION: DIFFERENTIAL OUTPUTS ### **TIMING PARAMETERS** Resolution: 3 digits, best case = 10 ps Repeatability: factor of 4 better than accuracy Jitter(rms) 10 ns to 100 ns range: All other ranges: 0.05% of programmed value + 15 ps 0.025% of programmed value + 15 ps **Period** Range: 2 ns to 99.9 ms Accuracy: +/- 5% of programmed value +/- 100 ps Delay (between trigger output and differential outputs) Range: 0 ns to 99.9 ms Accuracy: Fixed Delay: +/- 5% of programmed value +/- 1.5 ns 20 ns (typical) **Double Pulse** Range: 2 ns to 99.9 ms Accuracy: +/- 5% of programmed value +/- 250 ps Width Range: 500 ps to 99.9 ms Accuracy: +/- 5% of programmed value +/- 250 ps **Transition Times** 10%-90% of amplitude: 20%-80% of amplitude: <200 ps, 300 mV to 3V range <200 ps, 100 mV to 5V range Update 2, 03/15/89 **HP 8131A-Specifications** A-3 TABLE A-1. WIDTH AND DELAY: MAXIMUM VALUES | PERiod (ns) | Width | Delay | | |-------------|---------------------|---------------------|--| | 2.00 | 500ps or 1ns | Ons | | | 2.01 2.99 | 50% of PER * | 50% of PER | | | 3.00 4.99 | 50% of PER | - 1ns | | | 5.00 19.99 | 70% of PER
- 1ns | 70% of PER
- 2ns | | | ≥20.0 | 90% of PER
- 5ns | 90% of PER
- 6ns | | TABLE A-2. DOUBLE PULSE: MAXIMUM VALUES | PERiod (ns) | Double Pulse | | | |-------------|---------------------|--|--| | 2.00 4.99 | n/a | | | | 5.00 9.99 | 50% of PER* | | | | ≥10.0 | 90% of PER
- 4ns | | | A-4 HP 8131A-Specifications Update 2- 03/15/89 ^{*}Width < 1 ns: maximum width is 50% of period - 0.5 ns ^{**}Period < 5.72 ns. double pulse < 50% of period LEVEL PARAMETERS Resolution: 3 digits, best case 10 mV Accuracy: +/- 1% of programmed value +/- 3% of amplitude +/- 40 mV Repeatibility: factor of 4 better than accuracy High Level: -4.90 V to +5.00 V Low Level: -5.00 V to +4.90 V Settling Time: 10 ns (typical) PERFORMANCE PARAMETERS Overshoot: < 15% of amplitude +/- 20 mV Ringing: < 15% of amplitude +/- 20 mV Reflections: < 10% at 1 GHz ### SUPPLEMENTAL SPECIFICATIONS ### **DIFFERENTIAL OUTPUTS** **Duty Cycle** Range: 1% to 99% Resolution: Amplitude: 100 mVpp to 5 Vpp into 50 ohm The output levels double when the output drives into an open circuit. The outputs are disabled if the output voltage > +/-6.5 V **Offset:** -4.95 V to 4.95 V into 50 ohm **Impedance** (source): 50 ohm +/- 1% **Skew:** < 100 ps between differential outputs of same channel Update 2, 03/15/89 HP 8131A-Specifications A-5 ### TRIGGER OUTPUT Levels: High = 0.0 V; Low = -0.6 V Impedance: 50 ohm +/- 10% Fixed Delay: 16 ns (between external input and trigger output) External Voltage: +/- 5V maximum ### EXTERNAL INPUT # Trigger, gate, burst, and external width operating modes Input impedance: 50 ohm +/- 5% Threshold: -5 V to +5 V Resolution: 100 mV Input voltage: +/- 10 V maximum Input transitions: < 50 ns Input frequency: dc to 500 MHz Pulse width: 1 ns minimum Input sensitivity: >= 300 mVp-p ### Transducer operating mode Input impedance: 50 ohm +/- 5% Input transition: < 50 ns Input frequency: 10 Mhz to 1 GHz Input sensitivity: >= 600 mVp-p ### **INTERFACE** **HP-IB** HP-IB conforms to IEEE Standard 488.1-1987, Digital Interface for Programmable Information. Subsets IEEE Std. 488 interface function subsets: AHI, SHI, T6, L4, SRI, RLI, PP0, DC1, DT1, CO. For information regarding interface codes, formats, protocols, and common commands, use IEEE Draft Standard 488.2-1987, <u>Codes, Formats, Protocols, and Common Commands,</u> as a guide. No claim of conformance is made. ### TABLE A-3. PROGRAMMING TIMES | Code | Binary | | | ASCII * | | | | |---|-----------------------------|------------|---------------------|---------|------------------------|----------|----------| | \ | upload | d download | | | download of parameters | | | | | of a complete parameter set | | | one | two | three | | | 8131A
version | transfer | transfer | implemen-
tation | total | transfer | + implem | entation | | 1 channel | 110 | 30 | 140 | 170 | <60 | <90 | <110 | | 2 channel | 110 | 30 | 190 | 220 | | ı | 1 | Milliseconds (ms) is the base unit for all times listed in the table above. Update 2, 03/15/89 HP 8131A-Specifications A-7 ^{*}Add 25 ms for "enable output" statements. **BATTERY** Memory is supported for 7 years. **ENVIRONMENTAL** Storage Temperature: Operating Temperature: Humidity: -40 to +65 degrees C 0 to 55 degrees C 95% R.H. (0 to 40 degrees C) **POWER** 100/120/220/240 Vrms ±10% 250 VA maximum 48-66 Hz Single phase **WEIGHT** Net: 20 kg (44.4 lb) Shipping: 28 kg (62.2 lb) **DIMENSIONS** height x width x depth 145 mm x 426 mm x 525 mm 5.7 in x 16.75 in x 20.65 in CALIBRATION PERIOD I year recommended # OPTIONS ACCESSORIES |
OPTIONS | | |---------|---| | 001 | Rear panel inputs and outputs | | 020 | Second Channel | | 908 | Rack Mounting Flange Kit (P/N 5061-9678) | | 910 | One Operating and Programming Manual and one Service Manual | | 915 | One Service Manual (P/N 08131-90001) | | 916 | One Operating and Programming Manual (P/N 08131-90011) | | W30 | Two additional years of Return-to-HP service | ### **ACCESSORIES** | TYPE | PART NUMBER | |---|-------------| | Adama ADC 25(w) 42 ADC 25(w) | 1250 1749 | | Adapter, APC 3.5(m) to APC 3.5(m) | 1250-1748 | | Adapter, APC 3.5(f) to APC 3.5(f) | 1250-1749 | | Adapter, APC 3.5(m) to APC 3.5(f) | 1250-1866 | | Adapter, SMA(m) to SMA(m) | 1250-1158 | | Adapter, SMA(f) to SMA(f) | 1250-1159 | | Adapter, SMA(m) to BNC(f) | 1250-1200 | | Attenuator, 10 dB, SMA | 8493A #10 | | Attenuator, 20 dB, SMA | 8493A #20 | | Cable, coaxial, SMA(m) to SMA(m) | 8120-4948 | | End Cap, Precision 3.5 and SMA, female | 1401-0202 | | End Cap, Precision 3.5 and SMA, male | 1401-0208 | | Manual, Microwave Connector Care | 08510-90064 | | Torque Wrench, Precision 3.5 connectors, 8 lb-in/90 N-cm, | 1250-1863 | | Torque Wrench, SMA connectors, 5 lb-in/56 N-cm, | 1250-1582 | | Transition Time Converter, 300ps | 15432A | | Transition Time Converter, 500ps | 15433A | | Transition Time Converter, 1 ns | 15434A | B-2 HP 8131A-Options/Accessories Update 1, 02/89 ### TRANSITION TIME CONVERTER ### MODEL 15432A / 15433A / 15434A ### **ACCESSORIES FOR** ### HP 8131A PROGRAMMABLE 500 MHZ PULSE GENERATOR ### **General Information** Figure 1: Transition Time Converters The transition time converter converts the fixed transition time of the HP 8131A (<200 ps) to a fixed transition time of 300 ps (HP 15432A), 500 ps (HP 15433A), 1 ns (HP 15434A). Due to the design of the converter and the slower transitions a better pulse performance results, thus reflection and overshoot sensitive applications can be satisfied by the combination of HP 8131A plus transition time converter. ### **Connector Characteristics:** The transition time converter has SMA (m,f) connectors. Connect the converter carefully with its SMA (m) connector to the HP 8131A's SMA (f) connector. When the converter is not in use, use the delivered caps to protect the connectors from mechanical damage. ### PRINTED: © Copyright 1989 by: Hewlett-Packard GmbH, Herrenbergerstr. 130, 7030 Boeblingen, Federal Republic of Germany Federal Republic of Germany, April 1989 B100, Part No: 15432-90020 # **Typical Performance Characteristics:** | | 15432A | 15433A | 15434A | | |----------------------------|-----------------------|---------|---------|--| | Output Transition Times | 300 ps | 500 ps | 1000 ps | | | Intrinsic Transition Times | 260 ps | 480 ps | 990 ps | | | 3 dB Corner Frequency | 1120 MHz | 660 MHz | 330 MHz | | | Input Voltage | < 10.0 V peak-to-peak | | | | | Insertion Loss | <0.2 dB | | | | | Overshoot and Ringing | < 5% | | | | | VSWR | < 2.0 | | | | Figure 2: Waveforms are plotted from the HP 54121T Digitizing Oscilloscope ### C # INSTALLATION and MAINTENANCE | CONTENTS | Satety | C-3 | |----------|---|------| | | AC Power | | | | Requirements | C-3 | | | Line Voltage Selection | C-4 | | | Line Fuse Selection | C-4 | | | Cord C-6 | | | | Cords, Types of | C-7 | | | Cord Modification | C-8 | | | Input and Output Port Connectors | C-9 | | | HP-IB (Interface) | | | | Networks | C-12 | | | Cable, Adapter | C-12 | | | Connector | C-13 | | | Operating Environment | C-14 | | | Mounting Hardware (OPTIONS AND ACCESSORIES) | C-14 | | | Preventive Maintenance | C-14 | | | Customer Self-service | C-14 | | | HP Service | C-14 | | | | | | FIGURES | C-1 Line Power Input Module | C-5 | | | C-2 AC Power Cord | C-7 | | | C-3 SMA and Precision Connectors | C-11 | | | C-4 HP-IB Connector | C-13 | | | | | ### **SAFETY** The HP 8131A is a Safety Class 1 instrument. It has an exposed metal chassis that is directly connected to earth potential through the line power cord. Before installing the instrument, review: - 1. The Safety Summary (red page) - 2. The Instrument Reference Manuals - 3. The instrument safety markings. ### ALTERNATING CURRENT (AC) POWER ### Requirements Nominal line power: - 1. 100/120/220/240Vac - 2. 250VA maximum - 3. 50-60 Hz - 4. Single Phase ### Fuses: - 1. 100/120Vac operation - a. Time Delay Fuse (T) - b. 3 Ampere (A) - c. 250 Volt (V) - 2. 220/240 Vac operation - a. Time Delay Fuse (T) - b. 1.5 Ampere (A) - c. 250 Volt (V) Line Voltage and Line Fuse Selection Before connecting the line power cord to the instrument, check the line voltage selector setting and the line fuse rating. ### WARNING Disconnect the line power cord from the instrument before opening the line power input module cover. See Figure C-1. To change the voltage selector: - 1. Pry open the cover at the position labeled slot in Figure C-1. - 2. Position the selector drum so that the required voltage appears in the cover window. - 3. Change the fuse, as described below, if the new voltage requires a fuse with a different rating. - 3. Close the cover. To check or change the line fuse: - 1. Pry open the cover at the position labeled slot in Figure C-1. - 2. Withdraw the fuse holder. - 3. After checking or changing the fuse, insert the fuse holder in the module with the arrow pointing to the right as indicated by the arrows on the fuse holder and cover. See Figure C-1. - 4. Close the cover. HP 8131A-Installation C-4 FIGURE C-1. LINE VOLTAGE INPUT MODULE HP 8131A-Installation C-5 ### **Line Power Cord** In accordance with international safety standards, this instrument is equipped with a three wire alternating current power cord. To prevent electrical shock injury, the following precautions must be followed: - If this instrument is to be energized via an auto transformer for voltage reduction, the common terminal must be connected to the earth terminal of the power source. - 2. The line power cord plug must only be inserted into an outlet with a protective earth contact. The protective earth action must not be interrupted. - 3. Before switching on the instrument, the protective earth terminal of the instrument must be connected to the protective earth conductor of the power cord. - This is accomplished by using the power cord which is supplied with the instrument. - 4. Intentional interruption of the protective earth connection is prohibited. C-6 HP 8131A-Installation See the following figure for the types of cords and part numbers of available line power cords. # FIGURE C-2. POWER CORDS | POWER CORD (MALE PLUG) OPTIONS | | | | | | | |---|---|---|---|---|--|--| | PLUG
CONFIGURATION* | SPEC. CONT. DWG.
MJR. USING ENTRYS | OPTION
NO. | PLUG
CONFIGURATION* | SPEC, CONT. DWG.
MJR. USING ENTRYS | | | | (E E E N | A-8120-9051-1
U.K. | 905 | | A-8120-9052-1
(SYSTEMS,
CABINET, USE) | | | | | A-8120-9085-1
AUSTRALIA,
NEW ZEALAND
CHINA | 906 | O ^L №0
○E | A-8120-9100-1
SWITZERLAND | | | | E E O E | A-8120-9059-1
EUROPEAN
CONTINENT | \$12 | Q U O P | A-8120-9134-1
DENMARK | | | | O E | A-8120-9050-1
 USA, CANADA (120 V), | \$17 | 0.00 | A-5120-9239-1
SOUTH AFRICA,
INDIA | | | | E E E E E E E E E E E E E E E E E E E | A-E120-0698-1
USA, CANADA (240 V) | 918 | Ο _ε | A-8120-9252-1
JAPAN** | | | | IDENTIFIED RELATE 4 WIRE, 416 Y CIRCUI QUIRES NO POLARITY AND "N" TERMINALS BE LINE TERMINALS. OPTION 918 | D TO 3 PHASE,
TS.
'BECAUSE BOTH
SARE CONSIDERED | | | | | | | | CONFIGURATION* OE OE N OUIRES NO POLARITY AND N TERMINALS OFTION 918 USE OPTION 918 USE OPTION 918 OFTION 918 OFTION 918 | PLUG CONFIGURATION* SPEC. CONT. DWG. MJR. USING ENTRYS A-8120-9061-1 U.K. A-8120-9061-1 U.K. A-8120-9085-1 AUSTRALIA, NEW ZEALAND CHINA CONTINENT E A-8120-9059-1 EUROPEAN CONTINENT E A-8120-9059-1 USA, CANADA (120 V), USA, CANADA (120 V), USA, CANADA (120 V) DETION NO. 904 REQUIRES NEUTRAL CONDUCTOR IDENTIFIED RELATED TO 3 PHASE, A-WIRE, 416-Y CIRCUITS. OUIRES NO POLARITY BECAUSE BOTH AND "N-TERMINALS. ARE CONSIDERED BE LINE TERMINALS. | PLUG CONFIGURATION* SPEC. CONT. DWG. OPTION MJR. USING
ENTRYS NO. DE A-8120-9051-1 U.K. 905 A-8120-9085-1 AUSTRALIA, NEW ZEALAND CHINA E A-8120-9059-1 EUROPEAN CONTINENT S12 OE A-8120-9050-1 USA, CANADA (120 V). 517 A-8120-9050-1 USA, CANADA (240 V) 918 DETION NO. 964 REQUIRES NEUTRAL CONDUCTOR IDENTIFIED RELATED TO 3 PHASE, A WIRE, 416 V CIRCUITS. QUIRES NO POLARITY BECAUSE BOTH AND "" TERMINALS ARE CONSIDERED BE LINE TERMINALS. OPTION 918 USE OPTION 918 USE OPTION 918 FOR CORD SETS ONLY. | PLUG CONFIGURATION* SPEC. CONT. DWG. MJR. USING ENTRYS A-8120-9051-1 U.K. 905 A-8120-9085-1 A-8120-9085-1 A-8120-9085-1 A-8120-9085-1 A-8120-9085-1 A-8120-9085-1 B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B- | | | *VIEW OF PLUG FACE. E = EARTH OR SAFETY GROUND N = NEUTRAL OR IDENTIFIED CONDUCTOR L = LINE OR ACTIVE CONDUCTOR # WARNING # **Power Cord Modification** Modification must be performed only by a qualified electrician. All local electrical codes must be observed. If a new plug is to be connected, the plug must meet local safety requirements and include: - 1. Adequate load carrying capacity (see the instrument Specifications). - 2. Three terminals - 1. Line - 2. Neutral - 3. Earth - 3. Cord Clamp. HP 8131A-Installation C-8 #### CONNECTORS # INPUT AND OUTPUT PORT CONNECTORS The HP 8131A uses SMA (Sub-Miniature, type A) connectors on the input and output ports. Thus, it is recommended that test cables be permanently connected to the instrument's SMA connectors to provide a connector saver function. If this is not practical and frequent connections are made, the use of connector savers (adapters) is recommended; see Appendix B, Accessories. #### PRECISION 3.5 CONNECTORS Precision 3.5 connectors are designed to allow mating with SMA connectors. However, remember; SMA connectors are semi-precision connectors and are constructed differently than precision 3.5 connectors. # CONNECTOR MATING When mating connectors, two points are important: - 1. The mating planes of the outer conductors must seat correctly. - 2. The center conductors of the connectors must engage correctly. SMA and precision 3.5 connectors require careful handling to prevent connector damage. HANDLING AND STORAGE, VISUAL INSPECTION, and MAKING CONNECTIONS and Figure C-3 provide information which will help preserve connectors. Cleaning, gauging, etc., of connectors is beyond the scope of this document. However, Hewlett-Packard manual Microwave Connector Care is an excellent reference which describes connector usage. It is listed in Appendix B, Options and Accessories. C-9 #### HANDLING AND STORAGE Keep connectors clean. Do not touch the mating plane surfaces. Do not set connectors contact-end down. Before storing, extend the sleeve or connector Use plastic end caps over the mating plane surfaces. Never store connectors loose in a box or drawer. # VISUAL INSPECTION Inspect all connectors carefully before every connection. Look for metal particles, scratches, dents, worn plating, deformed threads, bent/broken/misaligned center conductors. Never use a damaged connector. #### MAKING CONNECTIONS Align connectors carefully. Make a preliminary connection lightly. Turn the connector nut ONLY in making connections. Do not rotate devices in making connections. Use a torque wrench for the final connection; see Appendix B, Accessories. C-10 HP 8131A-Installation #### **SMA CONNECTORS** MALE FEMALE #### PRECISION 3.5mm CONNECTORS MALE **FEMALE** #### FIGURE C-3. SMA AND PRECISION CONNECTORS HP 8131A-Installation C-11 #### **HP-IB INTERFACE** #### **Networks** The network may be: - 1. A star network - 2. A linear network - 3. A combination star and linear network. #### Limitations: - 1. The total cable length cannot exceed 20 meters - 2. The maximum cable length per device is 2 meters - 3. No more than 15 devices may be interconnected on one bus. - 1. It is recommended that no more than three connectors be stacked one on top of the other. - 2. Hand tighten the connector lock screws. Do not use a screwdriver. # Cables and Adapter The HP-IB connector is compatible with the connectors on the following cables and adapter. - 1. HP-IB Cable, 10833A, 1 m (3.3 ft.) - 2. HP-IB Cable, 10833B, 2 m (6.6 ft.) - 3. HP-IB Cable, 10833C, 4 m (13.2 ft.) - 4. HP-IB Cable, 10833D, 0.5 m (1.6 ft.) - 5. HP-IB Adapter, 10834A, 2.3 cm. extender. C-12 HP 8131A-Installation #### Connector The following figure shows the connector and pin assignments. Connector Part Number: 1251-0293 #### FIGURE C-4 HP-IB CONNECTOR #### Connector Lock Screw Compatibility HP products delivered now are equipped with connectors having ISO metric-threaded lock screws and stud mounts (ISO M3.5x0.6) which are black in color. Earlier connectors may have lock screws and stud mounts with English-threaded lock screws and stud mounts (6-32 UNC) which have a shiny nickel finish. Update 2, 03/15/89 HP 8131A-Installation C-13 OPERATING ENVIRONMENT See appendix A. MOUNTING HARDWARE See appendix B. PREVENTIVE MAINTENANCE None required. CUSTOMER SELF-SERVICE The Service Manual contains the following service information: - 1. Performance Tests - 2. Adjustment Procedures - 3. Theory and schematics - 4. Replaceable Parts List. **HP SERVICE** HP offers the following services: - I. Performance Testing - 2. Adjustment - 3. Repair - 4. Calibration # D BACKDATING | CONTENTS | Introduction | D-1 | |----------|----------------------------|-----| | | Backdating | D-3 | | | | | | TABLE | BACKDATING: Serial Numbers | D-4 | | | | | Update 1, 02/89 Backdating D-1 #### **INTRODUCTION** If a manual applying to instruments with serial numbers less than the serial number listed on the Title Page (page ii) is required, consult Table I, and make the changes listed in that table. When backdating the manual, enter the control serial number on page ii for future reference. TABLE D-1. BACKDATING: SERIAL NUMBERS | FROM
(CONTROL)
SERIAL
NUMBER | TO
SERIAL
NUMBER | DELETE
PAGES | DATE | ADD
PAGES | DATE | |---------------------------------------|------------------------|-----------------|----------|--------------|----------| | 2839 G00100 | 2839 G00147 | 5-10 | 03/15/89 | 5-10 | 03/20/89 | | | | 5-11 | 03/15/89 | 5-11 | 03/20/89 | | | | 5-29 | 03/15/89 | 5-29 | 03/20/89 | | | | 5-30 | 03/15/89 | 5-30 | 03/20/89 | | | | 5-46 | 03/15/89 | 5-46 | 03/20/89 | | | | 7-34 | 03/15/89 | 7-34 | 03/20/89 | | | | A-1 | 03/15/89 | A-1 | none | | | | A-2 | 03/15/89 | A-2 | 03/20/89 | | | | A-3 | 03/15/89 | A-3 | none | | | | A-4 | 03/15/89 | A-4 | none | | | | A-5 | 03/15/89 | A-5 | none | | | | A-6 | 03/15/89 | | | | | | A-7 | 03/15/89 | | | | | | A-8 | 03/15/89 | | | | | | E.2-1 | 02/89 | E.2-1 | 03/20/89 | | | | E.4-1 | 02/89 | E.4-1 | 03/20/89 | | | | G-8 | 03/15/89 | G-8 | 03/20/89 | | | | G-9 | 03/15/89 | G-9 | 03/20/89 | D-4 Update 3, 03/20/89 ### **FUNCTION** ### **DESCRIPTION** **DUTY CYCLE** 1% <= DUTY CYCLE <= 99% Resolution: 1 Default: mode = OFF duty cycle = 50 percent If DOUBLE PULSE is inactive: WIDTH = PERIOD * DCYC / 100 K-HTQIW- If DOUBLE PULSE is active: WIDTH = PERIOD * DCYC / 200 K-HTGIW-) K-HTGIW- Device command: :PULSe:TIMing:DutyCYCle <value>|MIN|MAX :PULSe:TIMing:DutyCYCle:MODE ON|OFF|1|0 Related comand: :PULSe:TIMing:PERiod <value>|MIN|MAX Update 3, 03/20/89 HP 8131A-Local Functions 5-9 # **DCYC** # **FUNCTION** ### **DESCRIPTION** PERIOD-DCYC RELATIONSHIP PERIOD < 5.00 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.5 ns IF 5 ns <= PERIOD < 10.0 ns THEN WIDTH <= 0.7*PERIOD - 1.00 ns IF PERIOD >= 10.0 ns THEN WIDTH <= 0.90*PERIOD - 3.00 ns DOUB-DCYC RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH \geq 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.6 ns DCYC-TRIG RELATIONSHIP DCYC and TRIG are incompatible. 5-10 HP 8131A-Local Functions Update 3, 03/20/89 ### **FUNCTION** ### **DESCRIPTION** **DELAY** 0.00 ps <= PULSE DELAY <= 99.9 ms Resolution: See Table 5-1, page 5-47. Default: 0.00 ps DELAY = Programmed delay + fixed delay. PERIOD-DELAY RELATIONSHIP IF PERIOD < 5.00 ns THEN DELAY <= 0.5 PERIOD - 1.00 ns IF 5.00 NS <= PERIOD < 10.0 NS THEN DELAY <= 0.7*PERIOD - 2.00 NS IF PERIOD >= 10.0 ns THEN DELAY <= 0.9*PERIOD - 4.00 ns Device command: :PULSe:TIMing:DELay <value>|MIN|MAX Related command: :PULSe:TIMing:DOUBle:MODE ON|OFF|1|0 (OFF = DEL / ON = DOUB) # DISABLE ### **FUNCTION** ### **DESCRIPTION** #### **DISABLE** Disabled state, LED lighted, default OUTPUT or COMPLEMENT OUTPUT is disabled. **Enabled state, led not lighted**OUTPUT or COMPLEMENT OUTPUT is enabled. Each output has an independent disable function. The output amplifier is switched off during the time an output is enabled or disabled. #### OUTPUT and COMPLEMENT OUTPUT are disabled: - 1. At power-on - 2. After a reset (*RST) - 3. When the standard setting is recalled (*RCL 0) - 4. When an overvoltage occurs. See the following page for additional information. Device commands: OUTPUT :OUTPut:PULSe:STATe ON|OFF|1|0 COMPLEMENT OUTPUT :OUTPut:PULSe:CSTate ON|OFF|1|0 5-12 HP 8131A-Local Functions # **PERIOD** # FUNCTION DESCRIPTION PERIOD-BURST RELATIONSHIP IF PERIOD < 5.0 ns THEN BURST mode is not allowed. PERIOD-WIDTH RELATIONSHIP **PERIOD** < 5.00 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH \leftarrow 0.5*PERIOD - 0.50 ns IF 5 ns <= PERIOD < 10.0 ns THEN WIDTH <= 0.70*PERIOD - 1.00 ns IF PERIOD >= 10.0 ns THEN WIDTH <= 0.9*PERIOD - 3.00 ns PERIOD-DELAY RELATIONSHIP IF PERIOD < 5.00 ns THEN DELAY <= 0.5*PERIOD - 1.00 ns IF 5.00 NS <= PERIOD < 10.0 ns DELAY <= 0.70*PERIOD - 2.00 ns IF PERIOD >= 10.0 NS THEN DELAY <= 0.9*PERIOD - 4.00 NS # **PERIOD** # **FUNCTION** # **DESCRIPTION** #### PERIOD-DCYC RELATIONSHIP PERIOD < 5.00 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH \leftarrow 0.5*PERIOD - 0.50 ns $5.00 \text{ ns} \le PERIOD \le 10.0 \text{ ns}$ WIDTH $\leftarrow 0.7*PERIOD - 1.00 \text{ ns}$ PERIOD >= 10.0 ns WIDTH \leftarrow 0.9*PERIOD - 3.00 ns # PERIOD-DOUB RELATIONSHIP IF PERIOD < 5.00 ns THEN DOUB is not possible. IF $5.00 \text{ ns} \le
PERIOD \le 10.0 \text{ ns}$ THEN DOUB <= 0.5*PERIOD IF PERIOD >= 10.0 ns THEN DOUB <= 0.9*PERIOD - 4.00 ns IF WIDTH < 1.00 ns THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.50 ns IF $1.00 \text{ ns} \le \text{WIDTH} < 10.0 \text{ ns}$ THEN WIDTH $\leftarrow 0.7(PERIOD-DOUB) - 1.00 \text{ ns}$ IF WIDTH \geq 10.0 ns THEN WIDTH <= 0.85(PERIOD-DOUB) - 2.50 ns ## **FUNCTION** # **DESCRIPTION** **WIDTH** 0.30 ns <= WIDTH <= 99.9 ms Range: 0.50 ns to 99.9 ms Resolution: See Table 5-1, page 5-46. Default: 100 us NOTE: The differential outputs are delayed approximately 20 ns (fixed delay) with respect to the trigger output signal. Device command: :PULSe:TIMing:WIDth <value>|MIN|MAX Related commands: :PULSe:TIMing:DutyCYCle <value>|MIN|MAX :PULSe:TIMing:PERiod <value>|MIN|MAX # **WIDTH** # **FUNCTION** # **DESCRIPTION** PERIOD-WIDTH RELATIONSHIP PERIOD < 5.0 ns IF WIDTH >= 1.00 ns THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.50 ns $5.00 \text{ ns} \le PERIOD \le 10.0 \text{ ns}$ WIDTH <= 0.70*PERIOD - 1.00 ns PERIOD >= 10.0 ns WIDTH $\leftarrow 0.9*PERIOD - 3.00 \text{ ns}$ WIDTH-DOUB RELATIONSHIP IF WIDTH < 1.00 ns THEN WIDTH <= 0.8*DOUB - 1.10 ns IF WIDTH \geq 1.00 ns THEN WIDTH <= 0.8*DOUB - 0.60 ns # :PULSe:TIMing:DOUBle:MODE :DOUBle:MODE OFF | 0, default mode Pulse delay is selected> ON | 1 Double pulse is selected Pulse delay (delay of the first pulse) with respect to TRIG OUTPUT is not available in the double pulse mode. Local Functions: DOUB, DEL :DOUBle:MODE? Response:OFF | ON **EXAMPLES** OUTPUT 711;":PULSI:TIM:DOUB:MODE ON" OUTPUT 711;":PULS1:TIM:DOUB:MODE?" ENTER 711;A\$ # :PULSe:TIMing:DutyCYCle :DutyCYCle 1 <= value <= 99|MIN|MAX Range: 1 PCT to 99 PCT Resolution: 1 Default: 50 PCT MIN = 1 PCT MAX = 99 PCT PCT = percent Conflicts: <Period-DCYC> <Double-DCYC> See Chapter 5 or Appendix G for a description of the timing relationships. Local Function: DCYC, DOUB :DutyCYcle? Repsonse:duty cycle value in integer form Example: 11 **EXAMPLES** OUTPUT 7H::PULSETIM:DCYC HPCT OUTPUT 711;":PULS1:TIM:DCYC? ENTER 711;A\$ 7-34 HP 8131A-Device Update 3, 03/20/89 # **SPECIFICATIONS** #### INTRODUCTION The specifications describe the instrument's warranted performance characteristics unless indicated as being supplemental or typical in nature. The performance tests and recommended test equipment listed in Appendix E can be used to verify the performance characteristics. #### Supplemental, **Specifications** Supplemental specifications are typical, non-warranted, performance characteristics provided for customer convenience. #### Restrictions The specifications apply to 50 ohm loads unless stated otherwise. Ambient temperature. 0 to 55 degrees Celcius: The first or only value specified is for this range. 20 to 30 degrees Celcius: The specified values for this range are given in brackets, [], following the 0 to 55 degree Celcius specification. The instrument warm-up period is 30 minutes. Period, width, delay, and double pulse are specified at the amplitude 50% points. Period and width underprogramming is allowed. See Chapters 5 and 7. Accuracy refers to the programmed values. **HP 8131A-Specifications** A-1 ### WARRANTED SPECIFICATIONS #### **TIMING PARAMETERS** Resolution: 3 digits, best case = 10 ps Repeatability: factor of 4 better than accuracy Jitter(RMS): 10 ns to 100 ns range: 0.05% of programmed value + 15 ps All other ranges: 0.025% of programmed value + 15 ps NOTE: See Chapter 5 for the relationships governing the timing parameters maximum values. #### **PERIOD** Range: 2 ns to 99.9 ms Accuracy: +/- 5% of programmed value +/- 100 ps #### **DELAY** Range: 0 ns to 99.9 ms Fixed internal circuit delay: 20 ns (typical) Accuracy: +/- 5% of programmed value +/- 1.5 ns #### **DOUBLE PULSE** Range: 2 ns to 99.9 ms Accuracy: +/- 5% of programmed value +/- 250 ps #### WIDTH Range: 500 ps to 99.9 ms Accuracy: +/- 5% of programmed value +/- 250 ps #### **DUTY CYCLE** Range: 1% to 99% Resolution: 1 #### TRANSITION TIMES 10%-90% of amplitude: <200 ps, 300 mV to 3V range 20%-80% of amplitude: <200 ps, 100 mV to 5V range A-2 HP 8131A-Specifications Update 3, 03/20/89 #### **OUTPUT LEVELS** Resolution: 3 digits, best case 10 mV Repeatibility: factor of 4 better than accuracy Accuracy: +/- 1% of programmed value +/- 3% of amplitude +/- 40 mV HP 8131A-Specifications **HIGH LEVEL** Range: -4.90 V to +5.00 V **LOW LEVEL** Range: -5.00 V to +4.90 V #### **PULSE PERFORMANCE** Overshoot: < 15% of amplitude +/- 20 mV Ringing: < 15% of amplitude +/- 20 mV Reflections: < 10% an 1 GHz ### SUPPLEMENTAL SPECIFICATIONS #### **OUTPUTS AND INPUTS** ### **DIFFERENTIAL OUTPUTS** (main outputs) Amplitude: 100 mVpp to 5 Vpp into 50 ohm Offset: -4.95 V to 4.95 V into 50 ohm Source impedance: 50 ohm \pm 1% Output levels double when driving into open circuits. The instrument automatically disables an output if the output voltage exceeds 6 V. See Chapter 5, DISABLE. #### TRIGGER OUTPUT Levels: EECL (0 V and -0.6V) Source impedance: 50 ohm +/- 5% External input to trigger output delay: 16 ns Maximum external voltage: +/- 5V #### **EXTERNAL INPUT** ### Trigger, gate, burst, and external width operating modes: Input impedance: 50 ohm +/- 5% Threshold: -5 V to +5 V Resolution: 100 mV Maximum input voltage: +/- 10 V Input transitions: < 50 ns Input frequency dc to 500 MHz Minimum pulse width: 1 ns Input sensitivity: >= 300 mVp-p #### Transducer operating mode: Input impedance: 50 ohm +/- 5% Input transition: < 50 ns Input frequency: 10 Mhz to 1 GHz Input sensitivity: >= 600 mVp-p External input is ac coupled in the transducer operating mode HP 8131A-Specifications A-4 #### **INTERFACE** HP-IB conforms to IEEE Standard 488.1-1987, Digital Interface for Programmable Information. Subsets 1EEE Std. 488 interface function subsets: AHI, SHI, T6, L4, SRI, RLI, PP0, DC1, DT1, CO. For information regarding interface codes, formats, protocols, and common commands, use IEEE Draft Standard 488.2-1987, Codes, Formats, Protocols, and Common Commands, as a guide. No claim of conformance is made. #### **ADDITIONAL FEATURES** **Battery** Memory is supported for 7 years. Environmental Storage Temperature -40 to +65 degrees C Operating Temperature 0 to 55 degrees C Humidity 95% R.H. (0 to 40 degrees C) **Power** 100-120/220-240 Vrms ±10% 250 VA maximum 48-66 Hz Single phase Weight Net: 20 kg (44.4 lb) Shipping: 28 kg (62.2 lb) **Dimensions** height x width x depth 145 mm x 426 mm x 525 mm 5.7 in x 16.75 in x 20.65 in Recalibration Period 1 year recommended # 2. DELAY TEST This test consists of two parts: - 1. Minimum Delay Test - 2. Long Delay Test NOTES: Repeat the entire delay test procedure for the second channel, if installed. The specifications and tests are for the 50 % point of amplitude. #### **SPECIFICATIONS** Range: 0 ns to 99.9 ms Fixed Delay (Trigger Output to Main Output): 20 ns nominal. Maximum Delay: Period >= 10.0 ns: 0.90*Period - 4.00 ns Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 1.5 ns rms Jitter: 10 ns to 100 ns range: 0.05 % of prog. value + 15 ps All other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. HP 54120T Digitizing Oscilloscope with Accessory - 2. Pulse Generator - 3. Counter - 4. Cable, 50 ohm, BNC to BNC, coaxial, 2 each. #### PART 1 MINIMUM DELAY TEST #### **SET-UP** 1. Set Pulse Generator: ``` a. PER = 500 ns b. WID = 100 ns c. HIL = 0.5 V LOL = -0.5 V d. Fixed Transition Time ``` 2. Set the HP 8131A: ``` OPT 020 = TRIG MODE Slope positive : 0 ns 0 ns TIMING = DEL 10 ns : 100 ns WIDTH : 1.5 V 1.5 V = HIGH OUTPUT - 1.5 V : - 1.5 V LOW DISABLE ENABLE ``` - 4. Connect the Pulse Generator's Output via a 50 ohm feedthrough to the HP 8131A's EXT INPUT, use a BNC (f) to SMA (m) Adapter. - 5. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the Input 3 of the HP 54121A. - 6. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assembly to the Input 4 of the HP 54121A. - 7. Connect the Pulse Generator's Trigger Output via a BNC (f) to SMA (m) Adapter and an APC 3.5 mm 20 dB Attenuator (f-m) to the TRIG input of the HP 54121A. HP 8131A - Performance Tests ### 4. WIDTH TEST This test consists of two parts. - 1. Minimum Width Test - 2. Long Width Test NOTES: Repeat the entire width test procedure for the second channel, if installed. The specifications and tests are for the 50 % point of amplitude. #### **SPECIFICATIONS** Range: 500 ps to 99.9 ms Maximum Width: Period >= 10.0 ns: 0.9*Period - 3.00 ns Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 250 ps rms Jitter: 10 ns to 100 ns range: 0.05 % of prog. value + 15 ps All other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. HP 54120T Digitizing Oscilloscope with Accessory - 2. Counter - 3. Cable, 50 ohm, BNC to BNC, coaxial, 2 each. #### PART 1 MINIMUM WIDTH TEST #### SET-UP 1. Set the HP 8131A: ``` OPT 020 = AUTO MODE = PERIOD : 200 ns TIMING 0 \text{ ns} : 0 ns DEL : 10 ns 1 ns WIDTH + 1.5 V : + 1.5 \text{ V} OUTPUT = HIGH - 1.5 V LOW : - 1.5 V0 V DISABLE ENABLE ``` - 3. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 4. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assebly to the Input 4 of the HP 54121A. E.4-2 ### ERROR CODE COMMAND ERRORS The occurance of command errors also sets bit five (CME) of the standard event status register (ESR). #### -130 <Non-Numeric Argument Error> The non-numeric argument is invalid. #### -120 <Numeric Argument Error> The numeric argument is invalid. #### -100 <Command Error> The command is invalid. - 1. The required command is incorrectly transmitted. - 2. The command is not allowed in the command path transmitted. <mnemonic> = the command mnemonic. #### **ERROR FREE** 0 <No error> # TABLE G-4.
:SYSTem:DERRor? | ERR
CHANNEL | OR CODE
_ 1 CHANNEL 2 | ERROR MESSAGE | |----------------|--------------------------|---| | 50 | 50 | <period -="" count=""></period> | | | | IF PERIOD < 5.00 NS THEN BURST MODE IS NOT ALLOWED. | | 100 | 200 | <period -="" 1="" 2="" ch.="" width="" =""></period> | | | | PERIOD < 5.00 NS | | | | IF WIDTH >= 1.0NS THEN WIDTH <= 0.5*PERIOD | | | | ELSE WIDTH <= 0.5*PERIOD - 0.5NS | | | | 5.00 NS <= PERIOD < 10.0 NS
WIDTH <= 0.7*PERIOD - 1.00 NS | | | | PERIOD >= 10.0 NS WIDTH <= 0.9*PERIOD -3.00 NS | | | | | | 101 | 201 | <period -="" 1="" 2="" ch.="" delay="" =""></period> | | | | IF PERIOD < 5.00 NS THEN DELAY <= 0.5*PERIOD - 1.00 NS | | | | IF 5.00 NS <= PERIOD < 10.0 NS
THEN DELAY <= 0.7*PERIOD - 2.00 NS | | | | IF PERIOD >= 10.0 NS THEN DELAY <= 0.9*PERIOD - 4.00 NS | HP 8131A-Errors Update 3, 03/20/89 G-8 # ERROR CODE CHANNEL 1 CHANNEL 2 ERROR MESAGE 102 202 <Period - Dcyc Ch. 1 | 2> PERIOD < 5.00 NS IF WIDTH >= 1.00NS THEN WIDTH <=0.5*PERIOD ELSE WIDTH <=0.5*PERIOD - 0.50 NS 5.00 NS <= PERIOD < 10.0 NS THEN WIDTH <= 0.7*PERIOD - 1.00 NS PERIOD >= 10.0 NS WIDTH <= 0.9*PERIOD - 3.00 NS 103 203 < Period - Double Ch. 1 | 2> IF PERIOD < 5.00 NS THEN DOUBLE PULSE is not possible. IF 5.00 NS <= PERIOD < 10.0 NS THEN DOUB <= 0.5*PERIOD IF PERIOD >= 10.0NS THEN DOUB <= 0.9*PERIOD - 4.00 NS IF WIDTH < 1.00 NS THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.50 NS IF 1.00 NS <= WIDTH < 10.0 NS THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.00 NS IF WIDTH \geq 10.0 NS THEN WIDTH <= 0.85(PERIOD-DOUB) - 2.50 NS # ERROR CODE CHANNEL 1 CHANNEL 2 ERROR MESAGE | 104 | 204 | <width -="" 1="" 2="" ch.="" double="" =""></width> | | |-----|-----|--|--| | | | IF WIDTH < 1.00 NS THEN WIDTH <= 0.8*DOUB - 1.10 NS | | | | | IF WIDTH >= 1.00 NS THEN WIDTH <= 0.8*DOUB - 0.60 NS | | | 105 | 205 | <double -="" 1="" 2="" ch.="" dcyc="" =""></double> | | | | | IF WIDTH < 1.00 NS THEN WIDTH <= 0.8*DOUB - 1.10 NS | | | | | IF WIDTH >= 1.00 NS
THEN WIDTH <= 0.8*DOUB - 0.60 NS | | | 106 | 206 | <trigger -="" 1="" 2="" ch.="" dcyc="" =""></trigger> | | | | | :INPut:TRIG:MODE TRIGger and :PULSe:TIMing:DutyCYCle:MODE ON are incompatible. | | HP 8131A-Errors Update 1, 02/89 G-10 # E PERFORMANCE TESTS | CONTENTS | Introduction Safety | | E.0-3 | | | | |----------|---------------------|--|----------------------------|-------------|--|-------| | | | | E.0-3 | | | | | | • | Test Record | | | | | | | Performance Tests | | | | | | | | 1. | Period | E.1-1 | | | | | | 2. | Delay | E.2-1 | | | | | | 3. | Double Pulse | E.3-1 | | | | | | 4. | Width | E.4-1 | | | | | | 5. | Jitter | E.5-1 | | | | | | 6.
7.
8. | High Level, Low Level Transitions Pulse Aberration | E.6-1
E.7-1
E.8-1 | | | | | | | | | Test Record | | E.9-1 | | | | | | | | | | | TABLE | E-1 | Recommended Test Equipment | E.10-1 | | | | FIGURE | E-1 | 50 Ohm Feed-through | E.10.4 | | | | Update 1, 02/89 HP 8131A-Performance Tests E.0-1 #### **INTRODUCTION** The performance tests verify the instruments specified performance characteristics, They are suitable for incoming inspection, preventative maintenance, troubleshooting, and final test. Make the Performance Tests in the order of occurrence in the manual. Recommended test equipment is listed in Table 1. #### **SAFETY** The HP 8131A is a Safety Class 1 instrument. It has an exposed metal chassis that is directly connected to earth potential through the line power cord. Before testing the instrument review: - 1. The Safety Summary (red page) - 2. The Instrument Reference Manuals - 3. The instrument safety markings. # **TEST RECORD** A test record is located at the end of this chapter. The test results are identified as TR ENTRIES in the performance tests and on the test record. **HP 8131A-Performance Tests** # 1. PERIOD TEST #### **SPECIFICATIONS** Range: 2 ns to 99.9 ms Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 100 ps rms Jitter: 10 ns to 100 ns range: 0.05 % of progr. value + 15 ps all other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. Counter. - 2. Cable, 50 ohm, BNC to BNC, coaxial. # **SET-UP** - 1. Connect the HP 8131A's OUTPUT 1/2 to the Counter's channel A input (HP5335A) / FREQ input (HP5370B). - 2. Set the HP 8131A: | MODE | = AUTO | | OPT 020 | |--------|----------|--------------|-----------| | TIMING | = PERIOD | : 2.00 ns | İ | | | DEL | : 0 ns | 0 ns | | | WIDTH | : 1 ns | l ns | | OUTPUT | = HIGH | : + 1.5 V | + 1.5 V | | | LOW | : - 1.5 V0 V | - 1.5 V | | | ENABLE | | i DISABLE | - 4. Set Counter: - a. FUNCTION = PERIODb. CHANNEL A = 50 ohm - c. TRIGGER LEVEL = PRESET 1. Check the HP 8131A period at the following settings: | PERIOD | ACCEPTA | ABLE RANGE | TR ENTRY | |---------|----------|------------|----------| | 200 | 1.8 ns | 2.2 ns | 1-1 | | 2.00 ns | | 5.35 ns | 1-2 | | 5.00 ns | 4.65 ns | | 1-3 | | 10.0 ns | 9.4 ns | 10.6 ns | | | 50.0 ns | 47.4 ns | 52.6 ns | 1-4 | | 100 ns | 94.9 ns | 105.1 ns | 1-5 | | 500 ns | 474.9 ns | 525.1 ns | 1-6 | | 1.00 us | 949.9 ns | 1.05 us | 1-7 | | 5.00 us | 4.75 us | 5.25 us | 1-8 | | 10.0 us | 9.5 us | 10.5 us | 1-9 | | 50.0 us | 47.5 us | 52.5 us | 1-10 | | 100 us | 95 us | 105 us | 1-11 | | 500 us | 475 us | 525 us | 1-12 | | 1.00 ms | 950 us | 1.05 ms | 1-13 | | 5.00 ms | 4.75 ms | 5,25 ms | 1-14 | | | 9.5 ms | 10.5 ms | 1-15 | | 10.0 ms | | 52.5 ms | 1-16 | | 50.0 ms | 47.5 ms | | | | 99.9 ms | 94.9 ms | 104.9 ms | 1-17 | # 2. DELAY TEST This test consists of two parts: - 1. Minimum Delay Test - 2. Long Delay Test NOTES: Repeat the entire delay test procedure for the second channel, if installed. The specifications and tests are for the 50 % point of amplitude. #### **SPECIFICATIONS** Range: 0 ns to 99.9 ms Fixed Delay (Trigger Output to Main Output): 20 ns nominal. Maximum Delay: Period >= 20.0 ns: 0.90*Period - 6.00 ns Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 1.5 ns rms Jitter: 10 ns to 100 ns range: 0.05 % of prog. value + 15 ps All other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. HP 54120T Digitizing Oscilloscope with Accessory - 2. Pulse Generator - 3. Counter - 4. Cable, 50 ohm, BNC to BNC, coaxial, 2 each. E.2-1 Update 1, 02/89 HP 8131A - Performance Tests # PART 1 MINIMUM DELAY TEST #### **SET-UP** 1. Set Pulse Generator: ``` a. PER = 500 ns b. WID = 100 ns c. HIL = 0.5 V LOL = -0.5 V d. Fixed Transition Time ``` 2. Set the HP 8131A: - 4. Connect the Pulse Generator's Output via a 50 ohm feedthrough to the HP 8131A's EXT INPUT, use a BNC (f) to SMA (m) Adapter. - 5. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the Input 3 of the HP 54121A. - 6. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assembly to the Input 4 of the HP 54121A. - 7. Connect the Pulse Generator's Trigger Output via a BNC (f) to SMA (m) Adapter and an APC 3.5 mm 20 dB Attenuator (f-m) to the TRIG input of the HP 54121A. HP 8131A - Performance Tests - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - set TIME/DIV = 20 ns/div - select the Display menu and set the Screen function to Single set the Number of Averages to 64 - select the Delta V menu and turn the voltage markers On and assign marker 1 to channel 3 and marker 2 to channel 4 - set Preset Levels = 50-50% and press Auto Level Set - select the Delta t menu and turn the time markers On - set START ON EDGE = POS1 and STOP ON EDGE = POS1 - Press Precise Edge Find - 2. Press the Precise Edge Find key for each new Delay setting. - 3. Check the HP 8131A delay at the following settings: | DELAY | | ACCEPTA | ABLE RANGE | TR ENTRY | |-------|---------|---------|--------------|----------| | 1. | 0.00 ns | • | *fixed Delay | 2-1 | | 2. | 10.0 ns | 8.0 ns | 12.0 ns | 2-2 | | 3. | 20.0 ns | 17.5 ns | 22.5 ns | 2-3 | | 4. | 50.0 ns | 46.0 ns | 54.0 ns | 2-4 | | 5. | 80.0 ns | 74.5 ns | 85.5 ns | 2-5 | | 6. | 99.9 ns | 93.4 ns | 106.4 ns | 2-6 | ^{*} Record the value of the fixed Delay, and subtract it from the other readings. 4. Step with the Vernier up keys from: | 0 ps | to | 100 ps | in | 10 ps steps | |--------|----|--------|----|--------------| | 100 ps | to | 1 ns | in | 100 ps steps | | 1 ns | to | 10 ns | in | I ns steps | Check the function/variation on scope. # PART 2 MAXIMUM DELAY TEST # **SET-UP** 1. Set the HP 8131A: ``` OPT 020 MODE = AUTO TIMING = PERIOD : 95 us DEL : 100 ns 0 ns : 100 ns 1 ns WIDTH + 1.5 V : + 1.5 V OUTPUT = HIGH : - 1.5 V0 V - 1.5 V LOW ENABLE DISABLE ``` 2. Set the Counter: - a. FUNCTION = TI A to B b. START = 50 ohm, POS (+) slope, DC, X1 - c. STOP = 50 ohm, POS (+) slope, DC, X1 - d. Gate Time = as necessary - e. INPUT MODE = SEP (SEPARATE) - f. START/STOP trigger levels = preset - 3. Connect the HP 8131A TRIG OUTPUT to the Counter's START input. - 4. Connect the HP 8131A OUTPUT 1/2 to the Counter's STOP input. #### **PROCEDURE** 1. Check the HP 8131A delay at the following Period and Delay settings: | PERIOD DELAY | | ACCEPTABLE RANGE | | TR ENTRY | |--------------|--------|------------------|----------|----------| | *95 us | 100 ns | 93.5 ns | 106.5 ns | 2-7 | | *95 us | 500 ns | 473.5 ns | 526.5 ns | 2-8 | | *95 us | 999 ns | 947.55 ns | 1.051 us | 2-9 | | 99.9 ms | 100 us | 95 us | 105 us | 2-10 | | 99.9 ms | 1 ms | 950 us | 1.05 ms | 2-11 | | 99.9 ms | 80 ms | 76 ms | 84 ms | 2-12 | ^{*} Take the fixed delay into account. E.2-4 HP 8131A-Performance Test # 3. DOUBLE PULSE TEST This test consists of two parts: - 1. Minimum Double Pulse Test - 2. Long Double Pulse Test NOTES: Repeat the entire double pulse test procedure for the second channel, if installed. The
specifications and tests are for the 50 % point of amplitude. #### **SPECIFICATIONS** Range: 2 ns to 99.9 ms Maximum Double Pulse: Period >= 10.0 ns: 0.9*Period - 4.00 ns Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 250 ps rms Jitter: 10 ns to 100 ns range: 0.05 % of prog. value + 15 ps ns All other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. HP 54120T Digitizing Oscilloscope with Accessory - Counter - 3. Cable, 50 ohm, BNC to BNC, coaxial, 2 each. # PART 1 MINIMUM DOUBLE PULSE TEST # **SET-UP** 1. Set the HP 8131A: ``` OPT 020 MODE = AUTO : 200 ns TIMING = PERIOD 2 ns DOUB : 20 ns : 10 ns 1 ns WIDTH + 1.5 V = HIGH : + 1.5 \text{ V} OUTPUT : - 1.5 V0 V - 1.5 V LOW ENABLE DISABLE ``` - 2. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 3. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assebly to the Input 4 of the HP 54121A. HP 8131A - Performance Tests - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - select the Display menu and set the Number of Averages to 64 - select the Delta V menu and turn the voltage markers On - set Preset Levels = 50-50% and press Auto Level Set - select the Delta t menu and turn the time markers On - set START ON EDGE = POS1 and STOP ON EDGE = POS2 - 2. Press the Precise Edge Find key for each new Double setting. - 3. Check the HP 8131A double pulse delay at the following settings: | DOUBLE | ACCEPT | TR ENTRY | | |---------|----------|-----------|-----| | 20.0 ns | 18.75 ns | 21.25 ns | 3-1 | | 50.0 ns | 47.25 ns | 52.75 ns | 3-2 | | 80.0 ns | 75.75 ns | 84.25 ns | 3-3 | | 99.9 ns | 94.65 ns | 105.15 ns | 3-4 | - 4. Change the HP 8131A Width to 1 ns, and Double to 2 ns. - 5. Check the HP 8131A double pulse delay at the following settings: | DOUBLE | ACCEPTABLE RANGE | | TR ENTRY | |---------|------------------|----------|----------| | 2.00 ns | 1.65 ns | 2.35 ns | 3-5 | | 5.00 ns | 4.5 ns | 5.5 ns | 3-6 | | 10.0 ns | 9.25 ns | 10.75 ns | 3-7 | # PART 2 MAXIMUM DOUBLE PULSE TEST #### **SET-UP** 1. Set the HP 8131A: ``` OPT 020 MODE = AUTO = PERIOD : 95 us TIMING : 200 ns DOUB 2 ns WIDTH : 100 ns 1 ns OUTPUT = HIGH : + 1.5 \text{ V} + 1.5 V : - 1.5 V0 V - 1.5 V LOW DISABLE ENABLE ``` - 2. Set the Counter: - a. FUNCTION = TI A to B - b. START = 50 ohm, POS (+) slope, DC, X1 - c. STOP = 50 ohm, POS (+) slope, DC, X1 - d. Gate Time = as necessary - e. INPUT MODE = COM - f. START/STOP trigger levels = Preset - 3. Connect the HP 8131A OUTPUT 1/2 to the Counter's START input. # **PROCEDURE** 1. Check the HP 8131A double pulse delay at the following Period and Double settings: | <u>PERIOD</u> | DOUBLE | ACCEPTAI | ACCEPTABLE RANGE | | |---------------|--------|-----------|------------------|------| | 95 us | 200 ns | 189.75 ns | 210.25 ns | 3-8 | | 95 us | 1 us | 950 ns | 1.05 us | 3-9 | | 95 us | 10 us | 9.5 us | 10.5 us | 3-10 | | 99.9 ms | 100 us | 95 us | 105 us | 3-11 | | 99.9 ms | 1 ms | 950 us | 1.05 ms | 3-12 | | 99.9 ms | 10 ms | 9.5 ms | 10.5 ms | 3-13 | | 99.9 ms | 80 ms | 76 ms | 84 ms | 3-14 | # 4. WIDTH TEST This test consists of two parts. - 1. Minimum Width Test - 2. Long Width Test NOTES: Repeat the entire width test procedure for the second channel, if installed. The specifications and tests are for the 50 % point of amplitude. #### **SPECIFICATIONS** Range: 500 ps to 99.9 ms Maximum Width: Period >= 20.0 ns: 0.9*Period - 5.00 ns Resolution: 3 digits (best case: 10 ps) Accuracy: 5 % of programmed value ± 250 ps rms Jitter: 10 ns to 100 ns range: 0.05 % of prog. value +15 ps All other ranges: 0.025 % of programmed value + 15 ps Repeatability: Factor 4 better than accuracy #### **EQUIPMENT** - 1. HP 54120T Digitizing Oscilloscope with Accessory - 2. Counter - 3. Cable, 50 ohm, BNC to BNC, coaxial, 2 each. Update 1, 02/89 HP 8131A - Performance Tests E.4-1 # PART 1 MINIMUM WIDTH TEST #### **SET-UP** I. Set the HP 8131A; ``` MODE = AUTO OPT 020 TIMING = PERIOD : 200 ns : 0 ns DEL 0 ns WIDTH : 10 ns 1 ns OUTPUT = HIGH : + 1.5 V + 1.5 V : - 1.5 V0 V LOW - 1.5 V ENABLE DISABLE ``` - 3. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 4. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assebly to the Input 4 of the HP 54121A. E.4-2 HP 8131A - Performance Tests - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - select the Display menu and set the Number of Averages to 64 - select the Delta V menu and turn the voltage markers On - set Preset Levels = 50-50% and press Auto Level Set - select the Delta t menu and turn the time markers On - set START ON EDGE = POS1 and STOP ON EDGE = NEG1 - 2. Change the scope timebase to 500 ps/div. Change the HP 8131A Width to 500 ps. - 3. Press the Precise Edge Find key for each new Width setting. - 4. Check the HP 8131A pulse width at the following settings: | WIDTH | ACCEPT | TR ENTRY | | |---------|----------|-----------|-----| | 500 ps | 225 ps | 775 ps | 4-1 | | 800 ps | 510 ps | 1.09 ns | 4-2 | | 2.00 ns | 1.65 ns | 2.35 ns | 4-3 | | 5.00 ns | 4.5 ns | 5.5 ns | 4-4 | | 10.0 ns | 9.25 ns | 10.75 ns | 4-5 | | 20.0 ns | 18.75 ns | 21.25 ns | 4-6 | | 50.0 ns | 47.25 ns | 52.75 ns | 4-7 | | 80.0 ns | 75.75 ns | 84.25 ns | 4-8 | | 99.9 ns | 94.65 ns | 105.15 ns | 4-9 | 5. Step with the Vernier up keys from: | 500 ps | to | 600 ps | in | 10 ps steps | |--------|----|--------|----|--------------| | 600 ps | to | 1 ns | in | 100 ps steps | | 1 ns | to | 10 ns | in | 1 ns stens | Check the function/variation on scope. # PART 2 MAXIMUM WIDTH TESTS # **SET-UP** 1. Set the HP 8131A: ``` OPT 020 = AUTO MODE : 95 us TIMING = PERIOD 0 ns DEL : 0 ns : 500 ns 1 ns WIDTH + 1.5 V : + 1.5 \text{ V} OUTPUT = HIGH : - 1.5 V0 V - 1.5 V LOW DISABLE ENABLE ``` - 2. Set the Counter: - a. FUNCTION = TI A to B - b. START = 50 ohm, POS (+) slope, DC, X1 - c. STOP = 50 ohm, NEG (-) slope, DC, X1 - d. Gate Time = as necessary - e. INPUT MODE = COM - f. START/STOP trigger levels = Preset - 3. Connect the HP 8131A OUTPUT 1/2 to the Counter's START input. # **PROCEDURE** 1. Check the HP 8131A pulse width at the following Period and Width settings: | PERIOD | <u>WIDTH</u> | ACCEPTA | ACCEPTABLE RANGE | | |---------|--------------|-----------|------------------|------| | 95 us | 500 ns | 474.75 ns | 525.25 ns | 4-10 | | 95 us | 999 ns | 948.8 ns | 1.049 us | 4-11 | | 95 us | 10 us | 9.5 us | 10.5 us | 4-12 | | 99.9 ms | 100 us | 95 us | 105 us | 4-13 | | 99.9 ms | 1 ms | 950 us | 1.05 ms | 4-14 | | 99.9 ms | 80 ms | 76 ms | 84 ms | 4-15 | # 5. JITTER TESTS This test consists of three parts: Period Jitter, Delay Jitter, and Width Jitter. Repeat the tests for the second channel, if installed. # **SPECIFICATIONS** rms Jitter: 10 ns to 100 ns range: 0.05 % of programmed value + 15 ps All other ranges: 0.025% of programmed value + 15 ps # **EQUIPMENT** 1. HP 54120T Digitizing Oscilloscope with Accessory E.5-1 # PART 1 PERIOD JITTER TEST #### **SET-UP** 1. Set the HP 8131A: | MODE | = AUTO | | OPT 020 | |--------|---------------|--------------|---------| | TIMING | = PERIOD | : 50 ns | 1 | | | DEL | : 0 ns | 0 ns | | | WIDTH | : 25 ns | 500 ps | | OUTPUT | = HIGH | : + 1.0 V | + 1.0 V | | | LOW | : - 0.0 V0 V | - 0.0 V | | | ENABLE | | DISABLE | - 2. Connect an APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 3. Connect one output, APC 3.5 mm (f), of the Power Splitter HP 11667B via a SMA (m-m) Adapter to the 20dB Attenuator at the TRIG Input of the 54121A. - 4. Connect to the other output of the Power Splitter a SMA (m) BNC (f) Adapter and connect 4 BNC (m-m) cables (61 cm) together to this adapter (use BNC Adapters (f-f), 3 each). - 5. Connect this cable assembly via a BNC (f) SMA (m) Adapter to the Input 3 of the 54121A. - 6. Connect the 8115A OUTPUT 1/2 via a Cable assy-coaxial SMA (m-m) to the Input of the Power Splitter. HP 8131A-Performance Tests E.5-2 - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - select the Display menu and set the Number of Averages to 128 - select the Timebase menu and set the TIME/DIV to 10 ps/div - center the first positive going edge of the signal (approx. Delay = 17.8 ns) - select the Channel menu and set the Atten factor to 1 (Channel 3) - set the VOLT/DIV to 10 mV/div - select the Delta V menu and turn the V Markers On - set the Marker 1 Position to 240 mV and the Marker 2 Position to 245 mV - select the Delta t menu and turn the T Markers On - set START ON EDGE = POS1 and STOP ON EDGE = POS1 - press the Precise Edge Find key - 2. **RECORD** the delta t! It is the risetime of the ref. signal within a 1% amplitude window of the signal connected to Input 3. This value is needed later to calculate the correct jitter. - 3. Select the scopes Timebase menu and center the second positive going edge of the signal (actual Delay + 50.x ns = approx. Delay 66.x ns) - 4. Press More and Histogram. - 5. Select the Window submenu and set: Source is Channel 3 choose the time Histogram press WINDOW MARKER 1 and set it to 240 mV press WINDOW MARKER 2 and set it to 245 mV - 6. Select the Acquire submenu and set the Number of Samples to 1000. Press Start Acquiring. - 7. After the data for the time histogram is acquired (#Samples = 100%), select the Result submenu. - 8. Press Mean and Sigma. Notice the value of Sigma! - 9. The rms jitter has to be calculated as follows: 10. Maximum rms jitter (period = 50 ns) is 40 ps TR ENTRY 5-1 11. Set the HP 8131A: PER 500 ns 12. Repeat steps 3 to 9. NOTE: Time/Div 100 ps/div Delay Delay approx. 51x.x ns Maximum rms jitter (period = 500 ns) is 140 ps TR ENTRY 5-2 E.5-4 HP 8131A - Performance Tests #### PART 2 WIDTH JITTER TEST #### **SET-UP** - 1. Same set-up as before. - 2. Set the HP 8131A: TIMING = PER : 1 us WIDTH : 1 ns | 500 ps # **PROCEDURE** - 1. Setup HP 54120T
Oscilloscope: - press the More key - select the Display menu and set the #Avgs = 256 - select the Timebase menu and center the first negative going edge of the signal (Time/Div 10 ps/div, approx. Delay = 17.x ns) - select the Delta V menu and set the Marker I Position to 260 mV and the Marker 2 Position to 255 mV - select the Delta t menu and set START ON EDGE = NEG1 and STOP ON EDGE = NEG1 - press the Precise Edge Find key - 2. Notice the delta t! It is the falltime of the signal within a 1% amplitude window of the signal connected to Input 3. This value is needed later to calculate the correct jitter. - 3. Set the HP 8131A: WID 50 ns - 4. Select the scopes Timebase menu and center the first neg. going edge of the signal (Time/Div 20 ps/div, Delay approx. 66.x ns). - 3. Press More = Histogram. - Select the Window submenu and press WINDOW MARKER 1 and set it to 260 mV press WINDOW MARKER 2 and set it to 255 mV - 5. Select the Acquire submenu and press Start Acquiring. HP 8131A - Performance Tests E.5-5 - 6. After the data for the time histogram is acquired (#Samples = 100%), select the Result submenu. - 7. Press Mean and Sigma. Notice the value of Sigma! - 8. The rms jitter has to be calculated as follows: (Sigma x 6) - delta t of signal 6 9. Maximum rms jitter (width = 50 ns) is 40 ps TR ENTRY 5-3 10. Set the HP 8131A: WID 500 ns 11. Repeat steps 4 to 8. NOTE: Time/Div 100 ps/div, Delay 51 x.x ns Maximum rms jitter (width 500 ns) is 140 ps. TR ENTRY 5-4 12. DISABLE THE HP 8131A OUTPUTS! HP 8131A - Performance Tests E.5-6 # PART 3 DELAY JITTER TEST # SET-UP 1. Set the HP 8131A: | MODE | = AUTO | | 1 | OPT 020 | |--------|----------|----------|---|---------| | TIMING | = PERIOD | : 500 ns | Ì | | | | DEL | : 250 ns | ĺ | 0 ps | | | WIDTH | : 50 ns | Ì | 500 ps | | OUTPUT | = HIGH | : + 5 V | | + 5 V | | | LOW | : 0.0 V | | 0.0 V | | | DISABLE | | Ì | DISABLE | - 2. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 3. Connect the HP 8131A OUTPUT 1/2 via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20 dB Attenuator (f-m) to the Input 3 of the HP 54121A. - 4. ENABLE the output. - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - select the Display menu and set the #Avgs = 128 - select the Timebase menu and set the TIME/DIV = 50 ps/div - center the first positive going edge of the signal (approx. Delay = 26x.x ns) - select the Channel menu and set the VOLT/DIV = 10 mV/div - 2. Press More = Histogram. - 3. Select the Window submenu and press WINDOW MARKER 1 and set it to 240 mV press WINDOW MARKER 2 and set it to 245 mV - 4. Select the Acquire submenu and press Start Acquiring. - 5. After the data for the time histogram is acquired (#Samples = 100%), select the Result submenu. - 6. Press Mean and Sigma. Notice the value of Sigma! - 7. The rms jitter has to be calculated as follows: 8. Max. rms jitter (delay = 250 ns) is 67.5 ps **TR ENTRY 5-5** # 6. HIGH LEVEL AND LOW LEVEL TESTS Repeat the high level and low level tests for the second channel, if installed. #### **SPECIFICATIONS** NOTE: This specification applies to 50 ohm sources and 50 ohm loads. High Level: -4.90 V to 5.00 V. Low Level: -5.00 V to 4.90 V. Resolution: 3 digits (best case: 10.0 mV). Level Accuracy: 1% of programmed value ± 3% of pulse amplitude, ± 40 mV. Repeatability: Factor 4 better than accuracy Settling time: 10 ns + transition time. # **EQUIPMENT** 1. Multimeter - 2. 50 ohm feedthrough termination, 0.1%, 10 W - 3. Adapter, BNC to dual banana plug - 4. Cables, BNC to BNC, two each. - 5. Pulse Generator with a 50 ohm feedthrough termination HP 8131A - Performance Tests E.6-1 # **SET-UP** 1. Set the HP 8131A: ``` OPT 020 MODE = AUTO = PERIOD : 99.9 ms TIMING : 30 us 0 ps DEL 500 ps WIDTH : 50 ms = HIGH : + 5 V + 5 V OUTPUT 0.0 V LOW : 0.0 V DISABLE ENABLE ``` - 2. Set the Multimeter (HP 3478). - a. SGL TRIG = Single Trigger - b. Blue/AUTO ZERO = Auto Zero off - c. BLUE/4 = 4 digits - 3. Set the Pulse Generator: - a. Mode: Trigger - b. Trigger slope positive - c. Width: 500 ns - d. HIL: 2.0 V - 4. Connect the HP 8131A OUTPUT 1/2 via a SMA (m) to BNC (f)Adapter, a 50 ohm feedthrough (0.1%, 10 W), BNC (m-m) cable, and a BNC to dual banana plug adapter to the Multimeters Input. - 5. Connect the HP 8131A TRIG OUTPUT via a SMA (m) to BNC (f) to the Pulse Generators External Input. - 6. Connect the Pulse Generators Output via a 50 ohm feedthrough terminator to the Multimeters Trigger Input. E.6-2 HP 8131A - Performance Tests # **HIGH LEVEL TEST** 1. Check the HP 8131A high level at the following HIGH settings with the low level set to 0.00 V. | HIGH LEVEL | ACCEPT | TR ENTRY | | |------------|--------|----------|-----| | 5.0 V | 4.76 V | 5.24 V | 6-1 | | 3.0 V | 2.84 V | 3.16 V | 6-2 | | 1.0 V | 920 mV | 1.08 V | 6-3 | | 0.5 V | 440 mV | 560 mV | 6-4 | | 0.1 V | 56 mV | 144 mV | 6-5 | The low level 0.0 V may vary within \pm 3% of pulse amplitude, \pm 40 mV. # **LOW LEVEL TEST** # **SET-UP** 1. Set the HP 8131A: ``` OPT 020 = AUTO MODE = PERIOD : 99.9 ms TIMING 0 ps : 30 ms DEL WIDTH : 50 ms 500 ps OUTPUT = HIGH : 0.0 V 0.0 V - 0.1 V LOW : - 0.1 V DISABLE ENABLE ``` 2. Check the HP 8131A low level at the following LOW settings with the high level set to 0.00 V. | LOW LEVEL | ACCEPT | TR ENTRY | | |-----------|--------|----------|------| | - 0.1 V | 56 mV | 144 mV | 6-6 | | - 0.5 V | 440 mV | 560 mV | 6-7 | | - 1.0 V | 920 mV | 1.08 V | 6-8 | | - 3.0 V | 2.84 V | 3.16 V | 6-9 | | - 5.0 V | 4.76 V | 5.24 V | 6-10 | The high level 0.0 V may vary within \pm 3% of pulse amplitude, \pm 40 mV. # 7. TRANSITION TIME TEST Repeat the entire transition time test procedure for the second channel. # **SPECIFICATIONS** ``` 10\% - 90\% of amplitude: < 200 ps, 300 mv to 3 V range 20\% - 80\% of amplitude: < 200 ps, 100 mV to 5 V range ``` #### **EQUIPMENT** 1. HP 54120T Digitizing Oscilloscope with Accessory #### **SET-UP** 1. Set the HP 8131A: | MODE | = AUTO | | - 1 | OPT 020 | |--------|---------------|----------|-----|---------| | TIMING | = PERIOD | : 500 us | İ | | | | DEL | : 10 ns | i | 0 ps | | | DCYC | : 50 % | i | 50 % | | OUTPUT | = HIGH | : + 5 V | Ì | + 5 V | | | LOW | : 0.0 V | i | 0.0 V | | | ENABLE | | i | DISABLE | - 2. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 3. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assebly to the Input 4 of the HP 54121A. HP 8131A - Performance Tests E.7-1 - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - center one pulse horizontal and vertical on screen (for example, TIME/DIV = 50 us/div, DELAY = 375 us, VOLT/DIV = 800 mV/div, Offset = 2.5 V). - select the Display menu and set the Number of Averages to 64 - select the Channel menu and set the Atten factor to 10 - select the Delta V menu and turn the voltage markers On - set Preset Levels = 20-80% and press Auto Level Set - select the Timebase menu and set TIME/DIV = 20 ns, DELAY = 16 ns - select the Delta t menu and turn the time markers On - set START ON EDGE = POS1 and STOP ON EDGE = POS1 - 2. Set HP 8131A: Period: 250 ns - 3. While the Oscilloscope is in the Delta t menu, press the Precise Edge Find Key. - 4. Check for Risetime < 200 ps. TR ENTRY 7-1 - 5. Select the scopes Delta t menu and set START ON EDGE = NEG1 and STOP ON EDGE = NEG1. - 6. Press the Precise Edge Find key. - 7. Check for Falltime < 200 ps. TR ENTRY 7-2 8. Repeat steps 1 to 8. Set HP 8131A: HIGH = 3.0 V TR ENTRY 7-3 TR ENTRY 7-4 NOTES: Set the Voltage Marker in the Delta V menu to the 10-90% Levels. Take the scopes trace flatness error (GaAs input circuit) into account. # 8. PULSE ABERRATION TEST Repeat this test for the second channel, if installed. # **SPECIFICATIONS** Overshoot and Ringing: $\leq 15\%$ of the pulse amplitude ± 20 mV. # **EQUIPMENT** 1. HP 54120T Digitizing Oscilloscope with Accessory # SET-UP 1. Set the HP 8131A: | MODE | = AUTO | | 1 | OPT 020 | |--------|---------------|----------|---|---------| | TIMING | = PERIOD | : 500 us | Ì | | | | DEL | : 5 ns | į | 0 ps | | | DCYC | : 50 % | į | 50 % | | OUTPUT | = HIGH | : + 5 V | İ | + 5 V | | | LOW | : 0.0 V | İ | 0.0 V | | | ENABLE | | i | DISABLE | - 2. Connect the HP 8131A's TRIG OUTPUT via a Cable assy-coaxial SMA (m-m), and APC 3.5 mm 20dB Attenuator (f-m) to the TRIG Input of the HP 54121A. - 3. Connect the HP 8131A OUTPUT 1/2 via a same second accessory assebly to the Input 4 of the HP 54121A. HP 8131A - Performance Tests E.8-1 - 1. Setup HP 54120T Oscilloscope: - press AUTOSCALE - center one pulse horizontal and vertical on screen (e.g. TIME/DIV = 50 us/div, DELAY = 350 us, VOLT/DIV = 800 mV/div) - select the Display menu and set the Number of Averages to 64 - select the Channel menu and set the Atten factor to 10 - select the Delta V menu and turn the voltage markers On - set the VARIABLE LEVELS = 85-115% and press Auto Level Set - select the Channel menu and center vertical the pulse top (Offset = 5 V) - set the VOLTS/DIV to 500 mV/div - select the Timebase menu and set TIME/DIV = 500 ps, DELAY = 17.x ns - 2. Set HP 8131A: Period: 500 ns - 3. Check the Overshoot and Ringing for <= 15% +- 20 mV TR ENTRY 8-1 (Take the scopes trace flatness error (GaAs input circuit) into account.) 4. Repeat steps 1 to 3. Set HP 8131A; HIGH = 500 mV **TR ENTRY 8-2** # PERFORMANCE TEST RECORD | TESTED BY: | |------------| | DATE: | | CSO#: | | | | | | <u>TEST</u> | LIMIT
MINIMUM | ACTUAL
(TR ENTRY) | LIMIT
MAXIMUM | PASS FAI | <u>L</u> | |-------------|------------------|----------------------|------------------|----------|----------| | PERIOD: | | | | | | | 2.00 ns | 1.8 ns | (1-1) | 2.2 ns | | | | 5.00 ns | 4.65 ns | (1-2) | 5.35 ns | | | | 10.0 ns | 9.4 ns | (1-3) | 10.6 ns | | _ | | 50.0 ns | 47.4 ns | (1-4) | 52.6 ns | | _ | | 100 ns | 94.9 ns | (1-5) | 105.1 ns | | _ | | 500 ns
 474.9 ns | (1-6) | 525.1 ns | | | | 1.00 us | 949.9 ns | (1-7) | 1.05 us | | | | 5.00 us | 4.75 us | (1-8) | 5.25 us | | | | 10.0 us | 9.5 us | (1-9) | 10.5 us | | _ | | 50.0 us | 47.5 us | 1-10) | 52.5 us | | | | 100 us | 95 us | (1-11) | 105 us | | | | 500 us | 475 ms | (1-12) | 525 us | | | | 1.00 ms | 950 ms | (1-13) | 1.05 ms | | | | 5.00 ms | 4.75 ms | (1-14) | 5.25 ms | | | | 10.0 ms | 9.5 ms | (1-15) | 10.5 ms | | _ | | 50 ms | 47.5 ms | (1-16) | 52.5 ms | | _ | | 99.9 ms | 94.9 ms | (1-17) | 104.9 ms | | | HP 8131-Test Record E.9-1 | TEST | LIMIT
MINIMUM | ACTUAL
(TR ENTRY) | LIMIT
MAXIMUM | PASS | FAIL | |--------------|------------------|----------------------|------------------|------|------| | MINIMUM DELA | Y: | | | | | | 0.00 ns | | (2-1) | | | | | 10.0 ns | 8.0 ns | (2-2) | 12.0 ns | | | | 20.0 ns | 17.5 ns | (2-3) | 22.5 ns | | | | 50.0 ns | 46.0 ns | (2-4) | 54.0 ns | | | | 80.0 ns | 74.5 ns | (2-5) | 85.5 ns | | | | 99.9 ns | 93.4 ns | (2-6) | 106.4 ns | | | | MAXIMUM DELA | ΑY | | | | | | 100 ns | 93.5 ns | (2-7) | 106.5 ns | | | | 500 ns | 473.5 ns | (2-8) | 526.5 ns | | | | 999 ns | 947.55 ns | (2-9) | 1.051 us | | | | 100 us | 95 us | (2-10) | 105 us | | | | 1 ms | 950 ms | (2-11) | 1.05 ms | | | | 80 ms | 76 ms | (2-12) | 84 ms | | | | MINIMUM DOUB | BLE PULSE: | | | | | | 20.0 ns | 18.75 ns | (3-1) | 21.25 ns | | | | 50.0 ns | 47.25 ns | (3-2) | 52.75 ns | | | | 80.0 ns | 75.75 ns | (3-3) | 84.25 ns | | | | 99.9 ns | 94.65 ns | (3-4) | 105.15 ns | | | | 2.00 ns | 1.65 ns | (3-5) | 2.35 ns | | | | 5.00 ns | 4.5 ns | (3-6) | 5.5 ns | | | | 10.0 ns | 9.25 ns | (3-7) | 10.75 ns | | | | MAXIMUM DOUB | BLE PULSE | | | | | | 200 ns | 189.75 ns | (3-8) | 210.25 ns | | | | 1 us | 950 ns | (3-9) | 1.05 us | | | | 10 us | 9.5 us | (3-10) | 10.5 us | | | | 100 us | 95 us | (3-11) | 105 us | | | | 1 ms | 950 us | (3-12) | 1.05 ms | | | | 10 ms | 9.5 ms | (3-13) | 10.5 ms | | | | 80 ms | 76 ms | (3-14) | 84 ms | | | E.9-2 HP 8131A-Test Record | TEST | LIMIT
MINIMUM | ACTUAL
(TR ENTRY) | LIMIT
MAXIMUM | PASS FAIL | | | | | |---|--|--|---|-----------|--|--|--|--| | MINIMUM WIDTI | MINIMUM WIDTH: | | | | | | | | | 500 ps
800 ps
2.00 ns
5.00 ns
10.0 ns
20.0 ns
50.0 ns
80.0 ns
99.9 ns | 225 ps
510 ps
1.65 ns
4.5 ns
9.25 ns
18.75 ns
47.25 ns
75.75 ns
94.65 ns | (4-1) | 775 ps 1.09 ns 2.35 ns 5.5 ns 10.75 ns 21.25 ns 52.75 ns 84.25 ns 105.15 ns | | | | | | | 500 ns
999 ns
10 us
100 us
1 ms
80 ms | 474.75 ns
948.8 ns
9.5 us
95 us
950 us
76 ms | (4-10)
(4-11)
(4-12)
(4-13)
(4-14)
(4-15) | 525.25 ns
1.049 us
10.5 us
105 us
1.05 ms
84 ms | | | | | | | <= 40 ps
<= 140 ps | | (5-1)
(5-2) | | | | | | | | <pre>WIDTH JITTER <= 40 ps <= 140 ps DELAY JITTER</pre> | | (5-3)
(5-4) | | | | | | | | <= 67.5 ps | | (5-5) | | | | | | | HP 8131A-Test Record E.9-3 | TEST | LIMIT
MINIMUM | ACTUAL
(TR ENTRY) | LIMIT
MAXIMUM | PASS | FAIL | |--|--|--|---|------|------| | HIGH LEVEL: | | | | | | | 5.0 V
3.0 V
1.0 V
0.5 V
0.1 V | 4.76 V
2.84 V
920 mV
440 mV
56 mV | (6-1)
(6-2)
(6-3)
(6-4)
(6-5) | 5.24 V
3.16 V
1.08 V
560 mV
144 mV | | | | LOW LEVEL: | | | | | | | -0.1 V
-0.5 V
-1.0 V
-3.0 V
-5.0 V | -56 mV
-440 mV
-920 mV
-2.84 V
-4.76 V | (6-6)
(6-7)
(6-8)
(6-9)
(6-10) | -144 mV
-560 mV
-1.08 V
-3.16 V
-5.24 V | | | | TRANSITIONS | | | | | | | < 200 ps
< 200 ps
< 200 ps
< 200 ps | | (7-1)
(7-2)
(7-3)
(7-4) | | | | | PULSE ABERRA | ATION | | | | | | <= 15% +/- 20 mV
<= 15% +/- 20 mV | | (8-1)
(8-2) | | | -3,5 | ### TABLE E-1. RECOMMENDED TEST EQUIPMENT Other equipment can be used provided it meets the specifications of this equipment. | TYPE (QUANTITY) | MODEL | SPECIFICATIONS | |------------------------------------|------------------|--| | 1:1 Probe (1) | HP 10026A | 100 V mam., 1:1,
50 ohm, | | 10:1 Probe (1) | HP 10017A | 300 V max., 10:1,
1 M ohm, 8 pF. | | 50 ohm feedthrough (1) termination | HP 10100C | 50 ohm, 2W, 1%. | | 50 ohm feedthrough (1) termination | See Figure 11-1. | 50 ohm, 10 W, 0.1 %. | | Adapter, (1)
BNC to Banana | HP 1251-2277 | BNC(f) to dual banana plug, 50 ohm. | | Cable Assembly (5) | HP 8120-1839 | 50 ohm, 24 inches, coax, 2
BNC (m). | HP 8131A-Test Equipment | TYPE (QUANTITY) | MODEL | SPECIFICATIONS | |--|--|---| | Counter (1) | HP 5335A/
HP 5370B | 50 uHz to 50 MHz;
8 digit display;
INPUT: 50 ohm/1M ohm,
X1/X10, AC/DC,
seperate/common;
variable trigger level;
TI/PERIOD/FREQUENCY. | | Isolation Transformer (1) | | Suitable for use with the variac. | | Multimeter (1) | HP 3478A/
HP 3456A | 4 1/2 digit
display;
VDC: 30 mV to 300 V;
30 to 35 readings/second;
external trigger;
input resistance: >10 M ohm. | | Oscilloscope (1)
(Realtime) | HP 1725A | 275 MHz bandwidth; external trigger; 50 ohm/1 M ohm inputs; 0.1 to 5 V. | | Oscilloscope (1)
(Sampling) | HP 54120T | 20 GHz | | Smpling Scope Accessories Attenuator (3) Adapter (2) Cable (3) Adapter (1) Adapter (2) Power Splitter (1) | 33340C
1250-1200
8120-4948
1250-1159
1250-1700
11667B | APC 3.5 mm (f-m),
20 dB
SMA (m) to BNC (f)
SMA (m-m) coaxial
SMA (m-m)
SMA (f) to BNC (m)
APC 3.5 mm | | Variac (1)
(Variable AC Power Supply) | | >= 5 A, 0-300 VAC | E.10-2 HP 8131-Test Equipment ### **FIGURE 11-1.** 50 OHM, 0.1%, 10 W FEEDTHROUGH TERMINATION This feedthrough must be used only where specified for DC voltage measurements. The following figure provides a schematic and a parts list except for the case. The case must provide shielding and maintain grounding integrity. R1 = 53.6 ohm, 1%, 10 W; HP Part Number: 0699-0146. R2 = 200 ohm, 10%, 0.5 W, Variable trimmer; HP Part Number: 2100-3350. R3 = 681 ohm, 1%, 0.5 W; HP Part Number: 0757-0816. BNC (M): HP Part Number: 1250-0045. BNC (F): HP Part Number: 1250-0083. # F COMMAND CROSS-REFERENCES | CONTENTS | Int | roduction | F-3 | |----------|-----|---------------------------|-----| | TABLES | 1 | HD 91124 and HD 91214 | E 4 | | IADLLS | 1 | HP 8112A and HP 8131A | F-4 | | | 2 | HP 8160A/61A and HP 8131A | F-7 | HP 8131A-Cross Reference F-1 #### INTRODUCTION The cross reference tables in this appendix cross reference comparable but not identical commands. For example, the HP 8112A interrogate command IHIL returns a message that contains the mnemonic, value, and units. The comparable HP 8131A command, :PULSe:LEVel:HIGH?, returns only the value in decimal format. Therefore, it is important to consult Chapters 5, 6, and 7 for additional HP 8131A command information. Chapter 5 describes the instrument functions as they are used in the local operating mode. Each cross reference table contains a column labeled LOCAL which identifies the alpha listing of that function in Chapter 5, for example, LOW. Chapter 6 contains an alpha listing of the common commands, for example, *RST. #### Chapter 7 contains - An alpha listing of the device commands listed by command header, for example, :PULSe:TIMing:DutyCYCle - 2. Syntax diagrams ### TABLE F-1. HP 8112A and HP 8131A | HP 8112A | HP 8131A | LOCAL | |--|--|--| | BUR 1234# | :PULSe:COUNt 1234 | COUNT | | C0
C1
CST
CT0
CT1
CT2
CT3
CT4
D0
D1
DBL 200us
DEL 75.0ns
DTY 10% | :OUTPut:PULSe:POLarity NORMal :OUTPut:PULSe:POLarity COMPlement *LRN? not available not available not available not available not available :OUTPut:PULSe:STATe OFF :OUTPut:PULSe:STATe ON :PULSe:TIMing:DOUBle 200us :PULSe:TIMing:DELay 75.0ns :PULSe:TIMing:DutyCYCle 10PCT | COMP
COMP

DISABLE
DISABLE
DOUB
DEL
DCYC | | EST 10% | *TST? | | | HIL 2.00V | :PULSe:LEVel:HIGH 2.00V | HIGH | | IBUR IDBL IDEL IDTY IERR IHIL ILEE ILOL IPER IRLCn ITRE | :PULSe:TIMing:BURSt? :PULSe:TIMing:DOUBle? :PULSe:TIMing:DELay? :PULSe:TIMing:DutyCYCle? :SYSTem:DERRor? :PULSe:LEVel:HIGH? not available (fixed transition) :PULSe:LEVel:LOW? :PULSe:TIMing:PERiod? not available not available (fixed transition) :PULSe:TIMing:WIDTh? | BURST
DOUB
DEL
DCYC

HIGH

LOW
PERIOD

WIDTH | HP 8131A-Cross Reference F-4 | <u>HP 8112A</u> | HP 8131A | LOCAL | |-----------------|--------------------------------------|----------| | | | | | L0 | :PULSe:LEVel:LIMit OFF | LIMIT | | LI | :PULSe:LEVel:LIMit ON | LIMIT | | LD | :SYSTem:KEY 3 | | | LEE 20.0ns | not available (fixed transition) | | | LOL 1.00V | :PULSe:LEVel:LOW 1.00V | LOW | | LU | :SYSTem:KEY 4 | | | MI | :INPut:TRIGger:MODE AUTO | AUTO | | M2 |
:INPut:TRIGger:MODE TRIGger | TRIG | | M3 | :INPut:TRIGger:MODE GATE | GATE | | M4 | :INPut:TRIGger:MODE ExternalWIDth | E. WIDTH | | M5 | :INPut:TRIGger:MODE BURSt | BURST | | MD | :SYSTem:KEY 7 | | | MU | :SYSTem:KEY 8 | | | PER 1.00ms | :PULSe:TIMing:PERiod 1.00ms | PERIOD | | RCL 1 | *RCL I | RCL | | RD | :SYSTem:KEY 1 | | | RU | :SYSTem:KEY 2 | | | SD | :SYSTem:KEY 5 | | | SR0 | not available (fixed transitions) | | | SR1 | not avalilable (fixed transitions) | | | SM0 | not available | . **** | | SM1 | :SYSTem:KEY 41 (See Chapter 5, SET.) | SET | | STO 1 | *SAV 1 | SAVE | | SU | :SYSTem:KEY 6 | | | Т0 | not available | | | <u>T1</u> | :INPut:TRIGger:SLOPe POS | SLOPE | | T2 | :INPut:TRIGger:SLOPe NEG | SLOPE | | T3 | not available | | | TRE 20.0ns | not avaliable (fixed transition) | | | HP 8112A | <u>HP 8131A</u> | LOCAL | |-----------------|--|-----------| | WI | not available (fixed linear transitions) | | | W2 | not available (fixed linear transitions) | FARE | | W3
WID 100us | not available (fixed linear transitions) :PULSe:TIMing:WIDTh 100us |
WIDTH | **EXAMPLES:** HP 8112A: OUTPUT 712;"M2T1" HP 8131A: OUTPUT 711;":INP:TRIG:MODE TRIG;SLOP POS" # TABLE F-2. HP 8160A/61A and HP 8131A | HP 8160A/61A | HP 8131A | LOCAL | |---------------|-------------------------------------|---------| | | | | | A1 (60A only) | not available | | | A5 (60A only) | not available | | | AA | not available | | | AC | :OUTPut1:PULSe:POLarity COMPlement | COMP | | AD (61 only) | :OUTPut1:PULSe:STATe OFF | DISABLE | | AE (61 only) | :OUTPut1:PULSe:STATe ON | DISABLE | | AN | :OUTPut1:PULSe:POLarity NORMal | COMP | | AS | not available | | | B1 (60A only) | not available | | | B5 (60A only) | not available | | | BC | :OUTPut2:PULSe:POLarity COMPlement | COMP | | BD (61A only) | :OUTPut2:PULSe:STATe OFF | DISABLE | | BE (61A only) | :OUTPut2:PULSe:STATe ON | DISABLE | | BN | :OUTPut2:PULSe:POLarity NORMal | COMP | | BUR 1234BT | :PULSe:COUNT 1234 | COUNT | | DBL 200us | :PULSe:TIMing:DOUBle 200us | DOUB | | DEL 75.0ns | :PULSe:TIMing:DELay 75.0ns | DEL | | DI | not available | | | | Outputs are independently disabled: | | | | :OUTPut1:PULSe:STATe OFF | DISABLE | | | :OUTPut2:PULSe:STATe OFF | DISABLE | | El | :INPut:TRIGger:SLOPe POS | SLOPE | | E2 | :INPut:TRIGger:SLOPe NEG | SLOPE | | EC (61A only) | not available | | | EN | not available | | | | Outputs are independently enabled: | | | | :OUTPut1:PULSe:STATe ON | DISABLE | | | :OUTPut2:PULSe:STATe ON | DISABLE | | | | | HP 8131A-Cross Reference F-7 | HP 8160A/61A | <u>HP 8131A</u> | LOCAL | |--|---|-------------------------------| | HIL 2.00V (60A-50 ohm only) | :PULSe:LEVel:HIGH 2.00V | HIGH | | 11
12
13
14 | :INPut:TRIGger:MODE AUTO :INPut:TRIGger:MODE TRIGger :INPut:TRIGger:MODE GATE :INPut:TRIGger:MODE BURSt | AUTO
TRIG
GATE
BURST | | LEE 20.0ns
LOL 1.00V
(60A-50 ohm only) | not available (fixed transition):PULSe:LEVel:LOW 1.00V | LOW | | PER 1.00ms | :PULSe:TIMing:PERiod 1.00ms | PERIOD | | RCL I | *RCL I | RCL | | SETn
SET:
STO 1 | not available *LRN? *SAV 1 |
SAVE | | TRE 20.0ns
TT (61A only) | not available (fixed transition) not available | | | WID 100us | :PULSe:TIMing:WIDTh 100us | WIDTH | ### EXAMPLES: HP 8160A: OUTPUT 717;"I2E1" HP 8131A: OUTPUT 711;":INP:TRIG:MODE TRIG:SLOP POS" F-8 HP 8131A-Cross Reference G ERRORS Power-on TABLE G-1 The instrument tests the microprocessor, timing, and output boards. Error conditions are reported at the display immediately after performing the tests. *TST? **TABLE G-2** The self-test query causes the instrument to test the timing and output board tests. :SYST:ERR? **TABLE G-3** Command, execution, device dependent, and query error events are reported in response to the :ERR? query. :SYST:DERR? TABLE G-4 Device dependent error conditions are reported in response to the :DERR? query. **CONFLICTS** **TABLE G-5** The conflicts are identical to the device dependent error conditions listed in Table G-4. The codes are listed in Table G-5. HP 8131A-Errors G-1 ### TABLE G-1. POWER-ON SELF-TEST | Static RAM (number 2) error | |--| | Static RAM (number 1) error | | EPROM (number 2) error | | EPROM (number 1) error | | Timer cycle error | | Keyboard controller error | | Device bus error | | Configuration error An incorrect combination of timing and output boards has been installed in the instrument. | | | TIMING BOARD ERROR MESSAGE **ERROR CODE** Same as E200 in TABLE G-2. E200 **OUTPUT BOARD 1 ERROR MESSAGE** E300-307 Same as E300-307 in TABLE G-2. **OUTPUT BOARD 2 ERROR MESSAGE** E400-407 Same as E400-407 in TABLE G-2. **CONFIGURATION ERROR MESSAGES Dual Channel Instrument** E500 Each output board contains a transducer. The transducer is required in channel 1 and is not needed in channel 2. E501 **Dual Channel Instrument** Neither output board contains transducer capability. E502 **Single Channel Instrument** The output board does not contain transducer capability. **Single or Dual Channel instruments** A timing board was not installed. Only the transducer mode is possible. E504 The instrument contains a dual channel timing board but only one output board. E503 ### TABLE G-2. *TST? ### ERROR CODE E200 ### TIMING BOARD ERROR MESSAGE The adjust values on the EEPROM have been destroyed. Correct parametric timing is not possible. | ERRO
CHANNEL 1 | R CODE
CHANNEL 2 | OUTPUT BOARD ERROR MESSAGE | |-------------------|---------------------|---| | E300 | E400 | OUTPUT channel: Polarity error (normal path) on the output board. | | E301 | E401 | OUTPUT channel: Polarity error (complement path) on the output board. | | E302 | E402 | OUTPUT channel: Polarity error (complement path) on the output board. | | E303 | E403 | OUTPUT channel: Polarity error (normal path) on the output board. | | E304 | E404 | OUTPUT/ OUTPUT channel: Polarity error (normal path) on the transducer board. | | E305 | E405 | OUTPUT/ OUTPUT channel: Polarity error (complement path) on the transducer board. | | E306 | E406 | Polarity error at the input to the transducer board. | | E307 | E407 | Polarity error at the input to the transducer board. | G-4 HP 8131A-Errors ### TABLE G-3. :SYSTem:ERRor? | ERROR CODE | QUERY ERRORS The occurance of query errors also set bit two (QYE) of the standard event status register (ESR). | |------------|---| | -400 | <generic error="" query=""></generic> | | | An unspecified query error has occured. Check for deadlock, unterminated, or interrupted actions. | | | DEVICE ERRORS The occurance of device dependent errors also sets bit three (DDE) of the standard event status register (ESR). | | -350 | <too errors="" many=""></too> | | | More than ten error conditions are present.
Error code -350 was loaded into the error queue replacing the last error, error number 10. | | -340 | <self failed="" test=""></self> | | | Parametric board failure> See Chapter 6, *TST? and Appendix G, Table G-2. | | -330 | <power-on failed="" test=""></power-on> | | | Error conditions are presented at the display. See Tables G-1. | | -312 | <ram data="" loss=""></ram> | | | RAM memory failure, data is invalid. | HP 8131A-Error ### ERROR CODE EXECUTION ERRORS The occurance of execution errors also sets bit four (EXE) of the standard event status register (ESR). ### -212 <Argument Out of Range> The received value is out of its allowed range. See the syntax diagrams for the ranges. ### -200 <Generic Execution Error> A :SYST:SET binary transfer has failed. A remotely programmed level conflict occurred. G-6 HP 8131A-Error ### ERROR CODE COMMAND ERRORS The occurance of command errors also sets bit five (CME) of the standard event status register (ESR). ### -130 <Non-Numeric Argument Error> The non-numeric argument is invalid. ### -120 <Numeric Argument Error> The numeric argument is invalid. ### -100 <Command Error> The command is invalid. - 1. The required command is incorrectly transmitted. - 2. The command is not allowed in the command path transmitted. <mnemonic> = the command mnemonic. #### **ERROR FREE** 0 <No error> ### TABLE G-4. :SYSTem:DERRor? | ERRO
CHANNEL | OR CODE
1 CHANNEL 2 | ERROR MESSAGE | |-----------------|------------------------|---| | 50 | 50 | <period -="" count=""></period> | | | | IF PERIOD < 5.00 NS THEN BURST MODE IS NOT ALLOWED. | | 100 | 200 | <period -="" 1="" 2="" ch.="" width="" =""></period> | | | | PERIOD < 5.00 NS IF WIDTH >= 1.0NS THEN WIDTH <= 0.5*PERIOD ELSE WIDTH <= 0.5*PERIOD - 0.5NS | | | | 5.00 NS <= PERIOD < 20.0 NS
WIDTH <= 0.7*PERIOD - 1.00 NS | | | | PERIOD >= 20.0 NS WIDTH <= 0.9*PERIOD -5.00 NS | | 101 | 201 | <period -="" 1="" 2="" ch.="" delay="" =""></period> | | | | IF PERIOD < 2.00 NS THEN DELAY = 0.00 NS | | | | IF 2.00 NS <= PERIOD < 5.00 NS
THEN DELAY <= 0.5*PERIOD - 1.00 NS | | | | IF 5.00 NS <= PERIOD < 20.0 NS
THEN DELAY <= 0.7*PERIOD - 2.00 NS | | | | IF PERIOD >= 20.0 NS THEN DELAY <= 0.9*PERIOD - 6.00 NS | | G-8 | | HP 8131A-Errors Update 2, 03/15/89 | # ERROR CODE CHANNEL 1 CHANNEL 2 ERROR MESAGE 102 202 <Period - Dcyc Ch. 1 | 2> PERIOD < 5.00 NS IF WIDTH >= 1.00NS THEN WIDTH <=0.5*PERIOD ELSE WIDTH <=0.5*PERIOD - 0.50 NS 5.00 NS <= PERIOD < 20.0 NS THEN WIDTH <= 0.7*PERIOD - 1.00 NS PERIOD >= 20.0 NS WIDTH \leftarrow 0.9*PERIOD - 5.00 NS 103 203 < Period - Double Ch. 1 | 2> IF PERIOD < 5.00 NS THEN DOUBLE PULSE is
not possible. IF 5.00 NS <= PERIOD < 10.0 NS THEN DOUB <= 0.5*PERIOD IF PERIOD >= 10.0NS THEN DOUB <= 0.9*PERIOD - 4.00 NS IF WIDTH < 1.00 NS THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.50 NS IF 1.00 NS <= WIDTH < 10.0 NS THEN WIDTH <= 0.7(PERIOD-DOUB) - 1.00 NS IF WIDTH \geq 10.0 NS THEN WIDTH <= 0.85(PERIOD-DOUB) - 2.50 NS # ERROR CODE CHANNEL 1 CHANNEL 2 ERROR MESAGE 104 204 <Width - Double Ch. 1 | 2> IF WIDTH < 1.00 NS THEN WIDTH <= 0.8*DOUB - 1.10 NS IF WIDTH >= 1.00 NS THEN WIDTH <= 0.8*DOUB - 0.60 NS 105 205 < Double - Dcyc Ch. 1 | 2> IF WIDTH < 1.00 NS THEN WIDTH <= 0.8*DOUB - 1.10 NS IF WIDTH \geq 1.00 NS THEN WIDTH <= 0.8*DOUB - 0.60 NS :INPut:TRIG:MODE TRIGger and :PULSe:TIMing:DutyCYCle:MODE ON are incompatible. ### **TABLE G-5. CONFLICTS** The conflicts are listed in Chapter 5 under one of the two corresponding functions which are in conflict. They are also identical to the :SYSTem:DERRor? error codes which are defined in TABLE G-4. | CONFLICT | :SYSTem:
CHANNEL 1 | | |--------------|-----------------------|-----| | PERIOD-COUNT | 50 | 50 | | PERIOD-WIDTH | 100 | 200 | | PERIOD-DELAY | 101 | 201 | | PERIOD-DCYC | 102 | 202 | | PERIOD-DOUB | 103 | 203 | | WIDTH-DOUB | 104 | 204 | | DOUB-DCYC | 105 | 205 | | TRIG-DCYC | 106 | 206 | HP 8131A-Errors G-11 # CUSTOMER ASSISTANCE ### **CONTENTS** | Introduction | CA-3 | |----------------------------|------| | Sales and Support Offices | CA-3 | | Incoming Inspection | CA-3 | | Contents | CA-4 | | Discrepancies | CA-4 | | Performance Tests | CA-5 | | Warranty | CA-5 | | Claims | CA-5 | | Shipment Damage | CA-5 | | Returns | CA-6 | | Instrument Identification | CA-6 | | Shipment | CA-6 | | Storage | CA-6 | | Packaging | CA-7 | | Parts Ordering Information | CA-8 | | Sorial Number | CA-8 | HP 8131A-Assistance CA-I #### INTRODUCTION Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products. For any assistance, contact your nearest Hewlett-Packard Sales and Support Office. ### SALES AND SUPPORT OFFICES Sales and Support Offices are listed in the Sales and Support Office Directory at the back of all instrument reference manuals. The Service Manual contains an expanded directory containing local offices. ## INCOMING INSPECTION Inspect the shipment for the following: - 1. Packaging Material Condition - 2. Invoice - 3. Contents - 4. Serial Number - 5. Physical condition - 6. Electrical condition. NOTE: If the instrument is damaged during shipment, the packaging material must be saved for the carrier's inspection. HP 8131A-Assistance CA-3 #### **Contents** The contents of the shipment are: - 1. Invoice - 2. The standard instrument - 3. Line power cord, I each - 4. Line fuse, 1 each - 5. Operating and Programming Manual, 1 each - 6. Manual updates when required, 1 each #### **PLUS** - 8. Options as ordered - 9. Accessories as ordered. NOTE: Service Manuals are available as options. See Appendix B, Options and Accessories. ### **Discrepancies** If there are any discrepancies, contact a Hewlett Packard Sales and Support Office before doing anything further with the contents of the shipment. CA-4 HP 8131A-Assistance ## PERFORMANCE TESTS Performance Tests for checking the instrument's electrical operation are in Appendix E, which also contains a list of recommended test equipment. The tests verify the instruments specified performance characteristics as described in Appendix A. **WARRANTY** The WARRANTY is on page iii. **CLAIMS** See the WARRANTY on page iii Shipment Damage If damage is caused during shipment, a Hewlett Packard Sales and Support Office will arrange for repair or replacement of the damaged items without waiting for settlement of a claim against the carrier. The shipping material must be retained for the carrier's inspection. ### **RETURNS** See the WARRANTY on page iii. ## Instrument Identification Attach a tag with the following information to the instrument when returning it: - 1. Owner Identification - a. Contact's name - b. Contact's telephone number - c. Owner's return address - 2. HP Identification - a. Representative's name - b. Telephone number - c. Office name - 3. Model number of the instrument - 4. Instrument's complete serial number - 5. Description of the service required. ### **Shipment** #### Shipment or storage: - 1. The instrument can be shipped or stored at temperatures between -40 degrees Celsius and 65 degrees Celsius. - 2. The instrument must be protected from conditions which cause condensation within the instrument. ### **Storage** The conditions are the same as those given for SHIPMENT. **CA-6** HP 8131A-Assistance ### **Packaging** Use the original shipping carton and packaging material if they are not damaged. A Hewlett Packard Sales and Support Office will provide recommendations on packaging material to be used. General instructions for packing: - 1. Wrap the instrument in heavy paper or plastic. - 2. Use a strong shipping container. A double wall carton made of 350 pound/ 159 kg test material is adequate. - 3. Protect the front panel with cardboard. - 4. Use a 3 to 4 inch layer of shock absorbing material around the instrument to provide a firm cushion and to prevent instrument movement inside the container. - 5. Seal the shipping container securely. - 6. Mark the shipping container with "FRAGILE". PARTS ORDERING INFORMATION Parts and parts ordering information is contained in the Service Manual. **SERIAL NUMBER** The instrument's serial number (identification number) is located on the rear panel of the instrument. **CA-8** HP 8131A-Assistance # **INDEX** | A | Accessories Address, instrument(HP-IB) ADS AMPL,Amplitude AUTO Automatic output disable | B-1
2-6, 5-21
2-6, 5-3
5-4
5-5
5-12 | |---|---|--| | В | Buffers | 4-12 | | | BURST | 5-6 | | | Bypass | 3-6 | | С | CAUTION | red page | | | Carriage return <cr></cr> | 3-4,5,6 | | | Certification | iv | | | Claims | CA-5 | | | Commands | | | | Common | 6-1 | | | Coupled | 3-3 | | | Cross Reference | 3-3, F-1 | | | Device Dependent | 7-1 | | | Hierarchy | 3-7 | | | Long/Short form | 3-3 | | | Command Errors | 4-4, G-1 | | | Command Hierarchy (tree) | 3-7 | | | Common Commands | 6-1 | | | COMP, Complement | 5-7 | | | Conflicts | 2-4, 4-4, 5-16, G-1 | | | Contents | XV | | | Conventions(syntax diagrams) | 3-6 | | | Copyright Notice | ii
5 0 | | | COUNT | 5-8 | | | Coupled commands | 3-3 | | | <cr> carriage return</cr> | 3-4,5,6 | HP 8131A-Index Index-1 | D | dcas | See IEEE 488.2 | |---|---------------------------|------------------------| | | DCYC, duty cycle | 5-9 | | | <data></data> | 3-6 | | | DEL, Delay | | | | Pulse | 5-11 | | | Double Pulse | 5-14 | | | Description, Instrument | 1-1 | | | Device Dependent Commands | 7-1 | | | Device Dependent Errors | 2-4, 4-4; Ch. 5,7; G-1 | | | Differential Outputs | 2-6, 5-27 | | | Dimensions, Physical | A-7 | | | DISABLE | 5-12 | | | DOUB, Double Pulse | | | | Double Pulse Delay | 5-14 | | | Double Pulse Width | 5-14 | | | Duty cycle, DCYC | 5-9 | | | | | Index-2 HP 8131A-Index | E | E type error | 2-3, 5-16 | |---|--------------------|----------------------| | | Edition | v | | | Effective pages | vi | | | Environmental | A-5 | | | Error Queue | 4-12 | | | Errors | | | | :DERR? | 4-4, 7-40, G-1 | | | :ERR? | 4-4, 7-41, G-1 | | | E | 2-3, 4-5, G-1 | | | F | 2-3, 4-5, G-1 | | | Power-on | 2-3, 4-4, 5-16, G-1 | | | Self-test (*TST) | 4-4, 6-20, G-1 | | | ESB | 4-8, 4-14 | | | ESE | 4-11, 6-3, 6-4 | | | ESR | 4-10, 6-5 | | | External Input | 2-6, 5-18 | | | External Width | 5-17 | | | Exclusive remedies | iii | | | Execution Errors | 4-4, G-1 | | | External Input | 5-18 | | F | F type error | 2-3, 5-16 | | | Fuse, Line | C-3, C-4 | | G | GATE | 5-19 | | | GTL | See IEEE Std. 499.1. | | Н | Sales and Support Office | | |-----|--------------------------|--------------------| | | Directory | SSO-1 | | | HIGH Level | 5-20 | | | HP-IB | | | | Adapter | C-12 | | | Address Selection | 5-21 | | | Cables | C-12 | | | Connectors | C-9 | | | Functions | A-5 | | | Lock Screw | C-13 | | | Logic Levels | C-12 | | | Networks | C-12 | | I | Input Buffer | 4-12 | | | Inspection, Incoming | CA-3 | | | Installation | | | | Safety | C-3 | | | AC Power | C-3 | | | Connectors, I/O | C-9 Interface C-12 | | | Instrument Setting | 2-4 | | | Interface Address | 5-21 | | | Interface (HP-IB) | 2-6, A-5, C-12 | | | Introduction | xi | | J/K | Key Queue | 4-12 | | • | Key Codes | 7-43 | | | Known State | | | | Standard Setting (*RST) | 6-14 | | | | | Index-4 HP 8131A-Index | L | LCL | 5-21 | |---|------------------------|----------------------| | | Learn (*LRN?) | 6-7 | | | Levels | | | | HIGH | 5-20 | | | LOW | 5-23 | | | <lf> line feed</lf> | 3-4,5,6 | | | LIMIT | 5-22 | | | Limitation of Warranty | iii | | | Line Feed <lf></lf> | 3-4,5,6 | | | Line Voltage Selector | C-4, C-5 | | | LLO | See IEEE Std. 488.1. | | | Local Messages | 4-5 | | | LOW Level | 5-23 | | M | MAN, manual | 5-24 | | | MAV | 4-8, 4-14 | | | MAX (maximum) | 3-6 | | | MEM, memory | 5-25 | | | MLA | See IEEE Std. 488.1. | | | MTA | See IEEE Std. 488.1. | | | Messages | | | | Program | 3-3, 3-4 | | | Response | 3-3, 3-5 | | | 110000 | Reading 3-5 | | | MIN (minimum) | 3-6 | | N | New Line (NL) | 3-4,5,6 | | | NL, <lf>/new line</lf> | 3-4,5,6 | | | NORM = AUTO | 5-5 | | | | | HP 8131A-Index Index -5 | 0 | OFFS (offset) Operating Environment Options OUTPUT Output Buffer Output state Output Queue (Buffer) Overvoltage (DISABLE) | 5-26
A-5
B-1
5-27
4-12
5-12, 7-15, 7-17
4-12
5-12 | |---|---|--| | P | Packaging Parser 4-3 Performance Tests PERIOD 5-28 <pmt> 3-4 <pmu> 3-4</pmu></pmt> |
C-7
Appendix E | | | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | 7-16 | | | Cable C-6 Cable Modification | C-7 | | | Cable, types of | C-7
C-7 | | | Requirements | C-3 | | | Power-off | 2-3, 5-31 | | | Power-on | 2-3, 4-3, 5-31 | | | Power-on test | 2-3, G-1 | | | Normal State | 2-3 | | | Abnormal State | 2-3 | | | E type error | 2-3, 4-5, 5-16 | | | F type error | 2-3, 4-5, 5-16 | | | Printing History | vi | | | Product Warranty | iii | | | Program Message | 2-5, 3-4 | | | Program Message Unit Program Message Unit | 3-4 | | | Seperator | 3-4 | | | Program Message Syntax | 3-6 | | | Program Message | | | | Terminaror | 3-4 | | | Pulse Definitions | 1-2 | | | | | Index-6 HP 8131A-Index | Query Errors | 4-4, G-1 | |-----------------------------|--| | Queues | 4-12 | | RANGE | 5-32 | | Ranges, timing | 5-47 | | RCL, recall | 5-33 | | *RCL | 6-12 | | Recall | 5-33, 6-12 | | Registers | 4-8,9,10,11 | | Register Bit Assignment | 4-13 | | Remote Messages | 3-1 | | REN | See IEEE Std. 488.1. | | Reset State (*RST) | 6-13 | | Resolution, timing | 5-47 | | Response Message | 2-5, 3-5 | | Reading | 3-5 | | *RST | 6-13 | | Response Message Unit | 3-5 | | Response Message Unit | | | Seperator | 3-5 | | Response Message Syntax | 3-5 | | Response Message Terminator | 3-5 | | Returns | CA-6 | | RMT | 2-6, 5-34 | | <rmt></rmt> | 3-5 | | <rmu></rmu> | 3-5 | | <rmus></rmus> | 3-5 | | | RANGE Ranges, timing RCL, recall *RCL Recall *Registers Register Bit Assignment Remote Messages REN Reset State (*RST) Resolution, timing Response Message Reading *RST Response Message Unit Response Message Unit Seperator Response Message Syntax Response Message Terminator Returns RMT <mt><mt><mt><mt><mt><mt><mt><mt><mt><mt></mt></mt></mt></mt></mt></mt></mt></mt></mt></mt> | | S | Safety | red page, C-3 | |---|---------------------------|----------------------| | | Safety Summary | red page | | | Sales and Support Offices | SSO-1 | | | *SAV | 6-15 | | | Save | 5-35, 6-15 | | | Self-test | | | | Power-on | 2-3, G-1 | | | *TST | 6-20, G-1 | | | Seperators | 3-4, 3-6 | | | Sequential Commands | 4-13 | | | Serial Number | i v, CA-8 | | | Serial Poll | 4-6 | | | Service request (SRQ) | 4-6 | | | Service Request Enable | | | | Register (SRE) | 4-9 | | | SET | 5-36 | | | Setting, Instrument | | | | reset (*RST) | 6-14 | | | standard | 5-33, 6-14 | | | Single pulse, 1 PULSE | 5-2 | | | Slope, external input | 5-37 | | | SPD | See IEEE Std. 488.1. | | | SPE | See IEEE Std. 488.1. | | | Specifications | A-1 | | | Interface | A-5 | | | Restrictions | A-1 | | | | | Typical Warranted Index-8 HP 8131A-Index A-I A-I | S (continued) | SRE 4-9, 6-16, 6-17 | | |---------------|----------------------------|------------------| | o (continued) | SRQ See IEEE Std. 488.1. | | | | SRQ indicator | 2-6, 5-38 | | | Standard Event Status | 2 0, 3 30 | | | Enable Register (ESE) | 4-11 | | | Standard Event Status | 7 11 | | | Register (ESR) | 4-10 | | | Standard Setting (*RST) | 6-14 | | | State, Outputs 1 and 2 | 5-27, 7-15, 7-17 | | | Status Byte | 4-7 | | | Status Byte Register (STB) | 4-8, 6-17, 6-18 | | | STB 4-8, 6-17, 6-18 | 10,017,010 | | | Status Data Structures | | | | Diagram | 4-14 | | | Registers | 4-8,9,10,11 | | | Queues | 4-12 | | | Store | | | | SAVE 5-35 | | | | *SAV 6-15 | | | | Subject Matter Notice | ii | | | Synchronization | 4-13 | | | *OPC 6-10 | | | | *OPC? 6-11 | | | | *WAI 6-21 | | | | Syntax | | | | Conventions | 3-6 | | | Diagrams | | | | Common | 6-1 | | | Device Dependent | | | | :INPut:TRIGger | 7-7 | | | :OUTPut:PULSe | 7-13 | | | :PULSe:COUNt | 7-19 | | | :PULSe:LEVel | 7-21 | | | :PULSe:TIMing | 7-29 | | | :SYSTem | 7-39 | HP 8131-Index Index-9 | T | Terminators THRE, Threshold | 3-4, 3-5
5-39 | |---------|-----------------------------|----------------------| | | Timing ranges | 5-47
ii | | | Title Page | | | | TRAN, transducer | 5-40 | | | *TRG | 6-19 | | | TRIG, Trigger | 5-41, 6-19 | | | Trigger Output | 2-6, 5-42 | | U | Under-programming | 2-5, A-1 | | | units | 3-6, 5-43 | | | <unit></unit> | 3-6 | | | UNL | See IEEE Std. 488.1. | | | UNT | See IEEE Std. 488.1. | | V | <value></value> | 3-6 | | | VERNIER | 5-44 | | | Viel Spass!!!!!! | ENJOY!!!!!! | | | Voltage Selection | C-3, C-4, C-5 | | | voltage Selection | C-3, C-4, C-3 | | W/X/Y/Z | WARNING | red page | | | Warranty | iii | | | WIDTH | 5-45 | | | <wsp></wsp> | 3-6 | | 1 | 1 PULSE | 5-1 | | - | | <i>3</i> • | Index-10 HP 8131A-Index