Discontinued Product—Support Information Only This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It may also refer to products/services no longer supported by Agilent. We regret any inconvenience caused by obsolete information. For the latest information on Agilent's test and measurement products go to: www.agilent.com/find/products Or in the US, call Agilent Technologies at 1-800-452-4844 (8am-8pm EST) ## The HP 1670-Series Benchtop Logic Analyzers ### **Technical Data** Identifying the cause of problems in embedded microprocessor system designs can be difficult. The Hewlett-Packard 1670-series benchtop logic analyzers have the features to help the embedded system design team find hardware and software defects quickly. With 64K of acquisition memory (1M optional) the HP 1670-series logic analyzers are the first benchtop logic analyzers which display processor mnemonics and verify critical hardware timing relationships over a long period of time. With the standard Ethernet LAN interface, the software designer can now capture a real-time microprocessor trace and time-correlate it to source code in C++ or other highlevel languages on a PC or workstation. For time-correlation of source code, order the HP B3740A Software Analysis package. The combination of deep memory, large internal disk drive, and LAN make the HP 1670-series of benchtop logic analyzers especially well suited to solving your integration problems. - Mass storage is provided by an internal hard drive which provides quick storage and retrieval of files. - The 3.5-inch high-density flexible disk drive supports both DOS and LIF formats. - The LAN interface enables access to the logic analyzer files via FTP or NFS. Use X11 windows to control or view the logic analyzer on a PC or workstation. The LAN interface includes both Ethertwist (10BASE-T) and ThinLan (10BASE 2) connectors. - Store data as ASCII files and screen images in TIFF, PCX, and EPS (encapsulated PostScriptTM) formats. # Get to the root cause of problems quickly - New graphical trigger macros make trigger setup easier. - Centronics, RS-232, HP-IB and LAN communication ports make connecting to other devices easier than ever. All of these come standard on all models of the HP 1670-series. - The HP 1670-series operating system includes System Performance Analysis (SPA). SPA provides state histograms, state overview, and time interval analysis. - The HP E2450A Symbolic Download Utility is included with the HP 1670series. This utility provides the capability to extract symbolic information from popular object module formats. PostScript TM is a trademark of Adobe Systems Incorporated. #### Logic Analyzer Key Specifications and Characteristics | Model Number | HP 1670D | HP 1671D | HP 1672D | |------------------------------|-------------------|--|--------------------| | State and Timing
Channels | 136 | 102 | 68 | | Timing Analysis | Conventional: 125 | M Hz all channels, 250 | M Hz half channels | | State Analysis
Speed | | 100 M Hz, all channels | | | State Clocks/
Qualifiers | 4 | 4 | 4 | | Memory Depth
per Channel | . (1M pe | el, 128K in timing half-c
er channel optional mei
timing half-channel me | mory, | #### HP 1670-Series General-Product Information | Human Inte | rface | Program- | Each instrument is fully | Screen | An image file of any display | |------------------------------------|--|-----------------------------------|--|--------------------------------------|--| | Front Panel | A knob and keypads
make up the front-
panel human interface.
Keys include control,
menu, display naviga-
tion, and alpha-numer-
ic entry functions. | HP Printer
Support | programmable from a computer via HP-IB and RS-232 connections. This feature is standard on all models. Printers which use the HP Printer Control Language (PCL) and | Image Files | screen can be stored to
disk via the display's
<i>Print</i> field. Black &
white TIFF, PCX,
Encapsulated
PostScript (EPS), and
gray-scale TIFF file for- | | M ouse | A DIN mouse is shipped as standard equipment. It provides full instrument control. Knob functionality is replicated by holding down the right button and moving the mouse left or right. | | have a parallel Centronics, RS-232 or HP-IB interface are supported: HP DeskJet, LaserJet, QuietJet, PaintJet, and ThinkJet models. | ASCII Data
Files | mats are available. State or timing listings can be stored as ASCII files on a flexible disk via the display's <i>Print</i> field. These files are equivalent in character width and line length to hardcopy | | Keyboard | The logic analyzer can
also be operated using
a DIN keyboard. Order
the HP Logic Analyzer
Keyboard Kit, model | Alternate
Printer
Supported | The Epson FX80, LX80
and M X80 printers
with an RS-232 or
Centronics interface
supported in the Epson
8-bit graphics mode. | | listings printed via the
Print All selection. Logic analyzer files that include configuration and data information (if present) are | | Input/Outpu
Printing | Ports All units ship with a Centronics parallel | | Screen images can be printed in black and white from all menus using the <i>Print</i> field. State or timing listings | | encoded in a binary
format. They can be
stored to or loaded
from the hard disk driv
or a flexible disk. | | | Centronics parallel
printer port, RS-232,
and HP-IB as standard
equipment. | | can be printed in full or part (starting from center screen) using the <i>Print All</i> selection. | Recording of Acquisition and Storage | Binary format configuration/data files are stored with the time of | | LAN Interface | An Ethernet LAN interface is standard with | Mass Stora
and Softwa | | Times | acquisition and the time of storage. | | | the HP 1670-series. The | Updating the | The operating system | Acquisition | Arming | | | LAN interface comes
with both Ethertwist
(10BASE-T) and
ThinLan (10BASE 2) | Operating
System | resides in Flash ROM
and can be updated
from the flexible disk | Initiation | Arming is started by
Run or the Port In
BNC. | | | connectors.The LAN supports FTP and PC/NFS connection | Mass Storage | drive or the hard disk
drive. | Cross Arming | The analyzer machines can cross-arm each other. | | | protocols. It also works with X11 window packages. | | internal hard disk drive
and by a 1.44 M byte,
3.5-inch flexible disk
drive. Supports DOS | Output | An output signal is provided at the Port Out BNC. | | Software
Analysis
Capability | The HP B3740A Soft-
ware Analyzer provides
true source line refer-
encing and symbol
download capabilities.
Standard object
module formats are | | and LIF formats. A disk drive provides quick storage and retrieval of files. | | | supported. #### HP 1670-series Logic Analyzer Specifications and Characteristics | Port In/Out | | |---|---| | PORT IN
Signal and
Connection | Port In is a standard
BNC connection.
The input operates at
TTL logic signal levels.
Rising edges are valid
input signals. | | PORT OUT
Signal and
Connection | Port Out is a standard
BNC connection with
TTL logic signal levels.
A rising edge is assert-
ed as a valid output. | | Arming Time | es | | PORT IN
Arms Logic
Analyzer [1] | 15 ns typical delay from signal input to a <i>don't care</i> logic analyzer trigger. | | Logic
Analyzer
Arms PORT
OUT [1] | 120 ns typical delay
from logic analyzer
trigger to signal
output. | | Operating E | nvironment | | Pow er | 115 Vac or 230 Vac, -22%
to +10%, single phase,
48-66 Hz, 320 VA max | | Temperature | Instrument, 0° to 50° C
(+32° to 122° F). Disk
media, 10° to 40° C
(+50° to 104° F). Probes
and cables, 0° to 65° C
(+32° to 149° F) | | Humidity | Instrument, up to 95%, relative humidity at +40° C (+140° F). Disk media and hard drive, 8% to 85% relative humidity. | | Altitude | To 3,048 m (10,000 ft) | | Vibration:
Operating | Random vibrations
5–500Hz,
10 minute per axis,
~ 0.3 g (rms). | | Vibration:
Non Operating | Random vibrations
5–500 Hz,10 minutes per
axis,~ 2.41 g (rms); and
swept sine resonant
search, 5–500 Hz,
0.75 g (0-peak),
5 minute resonant
dwell @ 4 resonances | | 8.6 lbs. (13 kg) | |--| | | | See figure 1 | | EC 348/ HD 401,
JL 1244, and
CSA Standard C22.2
Jo. 231 (series M-89) | | EN 55011 (1991):
A A
EN 50082-1 (1992):
AD
EN 50082-1 (1992):3V/m | | , | Weight 28.6 lb. (13kg) Figure 1 | Logic Analyzer Probes | | | |-----------------------|--------------------------------|---| | Input
Resistance | 100 kΩ ±2% | - | | Input
Capacitance | approx. 8 pF
(see figure 2) | - | Figure 2 | Minimum
Input Voltage
Swing | 500 mV peak-to-peak | |-----------------------------------|--| | Minimum
Input
Overdrive | 250 mV or 30% of input
amplitude, whichever is
greater | | Threshold
Range | -6.0 V to +6.0 V in 50-m' increments | | Threshold
Setting | Threshold levels may be defined for pods (17-channel groups) on an individual basis | | Threshold
Accuracy* | ± (100 mV +3% of
threshold setting) | | Input
Dynamic
Range | ± 10 V about the
threshold | | Maximum
Input Voltage | ± 40 V peak | | +5 V
Accessory
Current | 1/3 amp maximum
per pod | | Channel
Assignment | Each group of 34
channels (a pod pair)
can be assigned to
Analyzer 1, Analyzer 2
or remain unassigned. | per axis. ^[1] Time may vary depending upon the mode of logic analyzer operation. ^{*} Warranted Specification | State Analy | sis | | State Clock
Qualifier | The high or low of the clocks can be ANDed | Time
Tagging [4] | Measures the time between stored states, | |-------------------------------------|--|---------------------------|--|---|---|--| | Maximum
State | 100 M Hz | | | or ORed with the clock specification. | idgging [+] | relative to either the pre-
vious state or to the trig- | | Speed
Channel
Count [2] | HP 1670D
HP 1671D
HP 1672D | 136/68
102/51
68/34 | Setup/Hold [3
one clock,
one edge | 3.5/0 ns to 0/3.5 ns
(in 0.5 ns increments) | | ger. Max. time between
states is 34.4 sec. Min.
time between states is 8
ns. | | Memory Depth per Channel | | | one clock,
both edges
multi-clock, | | Time Tag
Value | 8 ns to 34.4 seconds
± (8 ns + 0.01% of time
tag value) | | Standard | 64K (65,536) samp | les | multi-edge Minimum State Clock | (in 0.5 ns increments) 3.5 ns | Time Tag
Resolution | 8 ns or 0.1%
(whichever is greater) | | Time | 32K | | Pulse Width | | Timing Ana | lysis | | Tags On
Compare
Mode On | (32,768) samp
32K
(32,768) samp | ŕ | M inimum
M aster to
M aster
Clock Time [3 | 10 ns | Conventional
Timing | Data stored at selected sample rate across all timing channels. | | Compare
Mode and
Time Tags On | 32K
(32,768) samp | ŕ | Minimum
Slave to
Slave
Clock Time [3 | 10 ns | Maximum
Timing
Speed [2] | 125 M Hz/250 M Hz | | Option 030 | 1M (1,032,192) sai | mples | Minimum
Master to
Slave | 0.0 ns | Channel
Count [2] | HP 1670D 136/68
HP 1671D 102/51
HP 1672D 68/34 | | Time | 500K | nlaa | Clock Time [3 | 3] | Sample | 8 ns/4 ns minimum | | Tags On
Compare
Mode On | (507,904) sam
250K
(245,760) sam | | Minimum
Slave to Mas
Clock Time [3 | | Period [2] | 41 µs/10 µs
maximum | | Compare
Mode and
Time Tags On | 120K
(114,688) sam | | Clock
Qualifiers
Setup/Hold [3 | 4.0/0 ns (fixed) | Memory
Depth per
Channel [2] | 64K standard
64K/128K samples
(65,536/131,072) | | State Clocks | HP 1670D
HP 1671D
HP 1672D | 4 clocks
4 clocks | State
Tagging [4] | Counts the number of qualified states between each stored | | 1M option
1M/2M samples
(1,032,192/2,080,768) | | | Clocks can be either one or tanalyzers at a Clock edges of | two state
any time. | | state. Measurement can be shown relative to the previous state or relative to trigger. Max. count is 4.29×10^9 . | Time Covered
by Data [2] | Sample period × memory depth | | | ORed togethe operate in sin phase, two-ph | r and
gle | State Tag
Count | 0 to 4.29×10^9 | | | | | demultiplexing phase mixed in | g, or two-
mode. | State Tag
Resolution | 1 count | [2] Full Channel /Ha | lif Channel Modes | | | Clock edge is
selectable as
negative, or b
for each clock | positive,
oth edges | | | [3] Specified for an slew rate = 1V/n | input signal VH= $-0.9V$, VL = $-1.7V$, s, and threshold = $-1.3V$ | | | | | | | available in the
speed penalty fo
time or state tag | gging (Count Time or Count State) is
full-channel state mode. There is no
or tag use. Memory is halved when
is are used unless a pod pair (34-
remains unassigned in the
enu. | | Time Interv | al Accuracy | Range | Recognize data which is | Qualifier | A user-specified term | |--|---|---|---|--|---| | Sample
Period
Accuracy | ± 0.01% | Recognizers | numerically between or
on two specified pat-
terns (ANDed combina-
tion of zeros and/or | | that can be any state,
no state, any recogniz-
er, (pattern, ranges or
edge/glitch), any timer,
or the logical combina-
tion (NOT, AND, NAND,
OR, NOR, XOR, NXOR)
of the recognizers and | | Channel-to-
Channel
Skew | 2 ns typical,
3 ns maximum | Range
Recognizers | ones).
2 | | | | Accuracy | ± (Sample Period
+ channel-to-channel | Range Width | 32 channels | Branching | timers. | | | skew + 0.01% of time interval reading) aximum Sample Period 4-8 ns : 8.389 ms | Edge/Glitch
Recognizers | Trigger on glitch or edge on any channel. | Branching | Each sequence level
has a branching qualifi-
er. When satisfied, the | | Maximum
Delay
After | | Edge can be speci
as rising, falling or
either. | | | analyzer will branch to the sequence level specified. | | Triggering | 1,048,575 × sample
period | Edge/Glitch
Recognizers | 2 (in timing mode only) | Occurrence
Counters | Sequence qualifier may
be specified to occur | | Trigger Spe | | Edge/Glitch | HP 1670D 136/68 | | up to 1,048,575 times before advancing to | | Macros selected from a cat gorized list of trigge | Trigger setups can be selected from a categorized list of trigger | Width (in
channels) [2] | HP 1671D 102/51
HP 1672D 68/34 | | the next level. Each sequence level has its own counter. | | | macros. Each macro is shown in graphical form and has a written description. Macros | Edge/Glitch
Recovery
Time | Sample Period 4-8 ns:
28 ns
Sample Period > 8 ns:
20 ns + sample period | Maximum
Occurrence
Count | 1,048,575 | | | can be chained together to create a custom trigger sequence. | Greater than Duration (timing only) | Sample period 4-8 ns:
8 ns to 8.389 ms.
Accuracy is –2 ns to
+10 ns | Storage
Qualification
(state only) | Each sequence level has a storage qualifier that specifies the states that are to be stored. | | Pattern
Recognizers | Each recognizer is the AND combination of bit (0,1, or X) patterns in each label. | | Sample period > 8 ns:
(1 to 2 ²⁰) × sample
period. Accuracy is
-2 ns + sample period | Maximum
Sequencer
Speed | 125 M Hz | | Pattern
Recognizers | 10 | Less than | + 2 ns ± 0.01%
Sample period 4-8 ns: | State
Sequence
Levels | 12 | | Pattern Width
(in channels)
[2] | | Duration (timing only) | 8 ns to 8.389 ms. Accuracy is -2 ns to +10 ns. Sample period > 8 ns: | Timing
Sequence | 10 | | Minimum
Pattern
and Range
Recognizer
Pulse Width | 125 M Hz and 250 M Hz
Timing Modes: 13 ns
+ channel-to-channel
skew
≤ 125 M Hz Timing | | (1 to 2 ²⁰) × sample
period.
Accuracy is 2 ns +
sample period – 2 ns ±
0.01% | Levels | | | | Modes: 1 sample
period + 1 ns + chan-
nel-to-channel skew
+ 0.01% | | | | | | Timers Timers Timer Range | Timers may be Started, Paused, or Continued at entry into any sequence level after the first. 2 400 ns to 500 seconds | Activity | Provided in the Configuration, State Format, and Timing Format menus for monitoring device-under-test activity while setting up the analyzer. | | are kept only when both patterns can be found in an acquisition. Statistics are minimum x to o time, maximum x to o time, average x to o time, and ratio of valid runs to total runs. | |---|---|-------------------|---|--|---| | Timer Resolution Timer Accuracy Timer Recovery Tim Data In to | 16 ns or 0.1% whichever is greater ± 32 ns or ± 0.1%, whichever is greater 70 ns e 110 ns typical | Labels | Channels may be grouped together and given a 6-character name called a <i>label</i> . Up to 126 labels in each analyzer may be assigned with up to 32 channels per label. Trigger terms may be given an 8-character | Compare
Mode
Functions
Compare
Image | Performs post-process ing bit-by-bit comparison of the acquired state data and Compare Image data. Created by copying a state acquisition into | | Trigger Out
BNC Port | тургош | | name. | J | the compare image
buffer. Allows editing | | | n, M easurement | | ent Functions | | of any bit in the | | and Displa | y Functions | Markers | Two markers (x and o) are shown as dashed lines in the display. | | Compare Image to a 1, X or O. | | Arming | Each analyzer can be armed by the Run key, the other analyzer, or the Port In. | Time
Intervals | The x and o markers
measure the time
interval between | Compare
Image
Boundaries | Each channel (column) in the compare image can be enabled or disabled via bit masks in | | Run | Starts acquisition of data in specified trace mode. | | events occurring on
one or more wave-
forms or states.
Available in state when | | the Compare Image.
Upper and lower
ranges of states (rows) | | Stop | Stop halts acquisition and displays the current acquisition data. | Delta States | time tagging is on. The x and o markers measure the number | | in the compare image
can be specified. Any
data bits that do not
fall within the enabled | | Trace M ode | Single mode acquires data once per trace specification; repetitive mode repeats | | of tagged states
between any two
states (state only). | | channels and the specified range are not compared. | | | tive mode repeats single mode acquisitions until Stop is pressed or until pattern time interval or compare stop criteria are met. | Patterns | The x or o marker can
be used to locate the
nth occurrence of a
specified pattern
before or after trigger,
or after the beginning
of data. The o marker | Stop
Measurement | Repetitive acquisitions may be halted when the comparison between the current state acquisition and the current Compare Image is equal or not | | Trigger | Displayed as a vertical dashed line in the timing waveform, state waveform and | | can also find the nth
occurrence of a pat-
tern before or after
the x marker. | Compare
M ode
Displays | equal. Reference Listing display shows the Compare Image and | | | X-Y chart displays and as line 0 in the state listing and state compare displays. | Statistics | x to o marker statistics
are calculated for
repetitive acquisitions.
Patterns must be
specified for both
markers, and statistics | , | bit masks; Difference
Listing display highlights
differences between
the current state acqui-
sition and the Compare
Image. | | Data Entry/ |
Display | Timing | Displays timing | Symbols | | |------------------------------|--|-----------------------------------|---|----------------------|--| | Display
M odes | State Listing, State
Waveforms, State | Waveform
Display | acquisition in wave-
form format. | Pattern
Symbols | User can define a mnemonic for the spe- | | | Chart, State Compare
Listing, Compare | Sec/div [2] | 1 ns to 4.4 sec/div/
1 ns to 2.2 sec/div | - , | cific bit pattern of a label. When data dis- | | | Difference Listing,
Timing Waveforms, | Delay | - 2,500 s to + 2,500 s | | play is SYM BOL,
mnemonic is displayed | | | Timing Listing, inter-
leaved time-correlat- | Accumulate | Waveform display is not erased between | | where the bit pattern occurs. | | | ed listing of two state
analyzers (time tags | | successive acquisitions. | Range
Symbols | User can define a mnemonic covering a | | | on), and time-correlated State Listing with Timing Waveforms on the same display. | Overlay Mode | Multiple channels can
be displayed on one
waveform display line.
When waveform size | <i>-</i> , | range of values. When data display is SYM BOL, values within the specified range are | | State X-Y
Chart Display | Plots value of a speci-
fied label (on y-axis)
versus states or
another label (on x- | | set to large, the value
represented by each
waveform is displayed | | displayed as mnemonic
+ offset from base of
range. | | | axis). Both axes can be scaled. | | inside the waveform in the selected base. | Number of
Symbols | 1000 maximum. | | Markers | Correlated to State
Listing, State Compare,
and State Waveform
displays. Available as | Displayed
Waveforms | 24 lines maximum on
one screen. Up to 96
lines may be specified
and scrolled through. | | | | | pattern, time, or statistics (with time counting) and states (with state counting on). | System
Performance
Analysis | SPA includes state
histogram, state
overview and time
interval measure- | | | | Accumulate | Chart display is not erased between successive acquisitions. | | ments to aid in the software optimization process. These tools | | | | State
Waveform
Display | Displays state
acquisitions
in waveform format. | | provide a statistical
overview of your syn-
chronous design. For
additional information, | | | | States/div | 1 to mem length/8 | | refer to HP 10390A | | | | Delay | ± memory length | | System Performance
Software technical | | | | Accumulate | Waveform display is
not erased between
successive acquisi- | | data sheet, pub no.
5091-7850E. | | | | | tions. | Bases | Binary, Octal,
Decimal, | | | | Overlay
Mode | Multiple channels can
be displayed on one
waveform display line. | | Hexadecimal, ASCII
(display only), sym-
bols, two's compli- | | | | Displayed
Waveforms | 24 lines maximum on
one screen. Up to 96
lines may be specified
and scrolled through. | | ment. | | | #### **Ordering Information** | HP 1670D | 136-Channel 100-MHz State/250-MHz Timing with 64K Memory
Depth and Ethernet LAN | |------------------|--| | HP 1671D | 102-Channel 100-MHz State/250-MHz Timing with 64K Memory
Depth and Ethernet LAN | | HP 1672D | 68-Channel 100-MHz State/250-MHz Timing with 64K Memory
Depth and Ethernet LAN | | Additional HP | 1660C/CS and 1670D-Series Product Options | | pt 030 | Extended Memory depth to 1M samples/channel (ordered at the time of purchase) | | pt 0B3 | Add Service Manual | | ot 1CM | Rack Mount Kit | | pt UK9 | Front Panel Cover | | ot W 30 | 3-Year extended repair service | | ot W 50 | 5-Year extended repair service | | ot OBF | Add Programming Manual | | ccessory So | ftware | | P B3740A | Software Analyzer | | pt AJ4 | IBM, 3.5-inch Media/Documentation | | ot AAY | HP 9000 Series 700 Media/Documentation | | ot AAV
ot UDY | SUN (Solaris and SUN OS) Media/Documentation IBM Single User License | | ot UBY | HP 9000 Series 700 Single User License | | ot UBK | SUN (Solaris and SUN 0S) Single User License | | P 10391B | Inverse Assembler Development Package | | P 1670D-Ser | ies Upgrades | | P E2471D | Upgrade HP 1670D-Series from 64K to 1M of memory | | ot 001 | Upgrades HP 1670D from 64K to 1M of acquisition memory | | ot 002 | Upgrades HP 1671D from 64K to 1M of acquisition memory | | ot 003 | Upgrades HP 1672D from 64K to 1M of acquisition memory | | E2427B | Add keyboard with DIN connector (PC style) | | ate/Timing / | Analyzer Probes & Lead Sets | | P 5959-9333 | 5 Grey Probe Leads for HP 1670D-Series | | 5959-9334 | 5 Short Ground Leads for HP 1670D-Series | | P 5959-9335 | 5 Long Ground Leads for All State and Timing Analyzers | | 9 01650-61608 | 16-Channel Probe Lead Set for State and Timing Analyzers | | P 01650-63203 | Termination Adapter for State and Timing Analyzers | | P 1810-1278 | 9-Channel IC Termination DIP | | 1810-1588 | Termination IC SIP | | P 1251-8106 | 2×10, 0.1-inch Center Header (Similar to 3M p/n 2520-6002) | | P 5090-4356 | Surface-Mount Grabbers (package of 20) | | P 5959-0288 | Throughhole Grabbers (package of 20) | | thar Acces | ories for HP Logic Analyzers | | P 1180B | Testmobile for the HP 1670-Series | | P 92199B | Power Strip | | 2 5041-9456 | Front Cover for HP 1670-Series | | 5062-7379 | Rack Mount Kit for HP 1670-Series | | | | formation on kard Test & Measurement plications or services our local Hewlett-Packard A current listing is availthrough AccessHP at p.com. If you do not have internet, please contact P centers listed below and ect you to your nearest HP ard Company surement Organization Creek Blvd. A 95052-8059 ard Canada Ltd. n Way Ontario LAW 5G1 ard rketing Centre elveen $^{\mathrm{nds}}$ ard Japan Ltd. Assistance Center -Cho, Hachioji-Shi, pan 6-7832 56-7840 ard n Region Headquarters oon Drive, 9th Floor a 33126, U.S.A. 5/4220 #### w Zealand: ard Australia Ltd. Street ctoria 3130 ard Asia Pacific Ltd Tower, Times Square, treet, Causeway Bay, 6 9285 ormation in this subject to change e U.S.A. 9/96 ard Company 1996