
HP 1650B/HP 1651B

Logic Analyzers

Programming Reference

www.valuetronics.com

https://www.valuetronics.com/

Dear Customer:

You have probably heard from news reports and from your sales representative that

as of November 1, 1999, four of Hewlett-Packard's businesses became a new

company -- Agilent Technologies. The new company includes the following former

HP businesses: test and measurement, semiconductor products, healthcare

solutions and chemical analysis."

We at Agilent Technologies are working diligently to make this transition as

seamless as possible for you, however, we are not able to make all changes

immediately. As a result, the products and related documentation may be labeled

with either the Hewlett-Packard name and logo or the Agilent Technologies name

and logo. Rest assured that whatever logo you see, the information, products and

services come from the same reliable source.

In addition, it is our sincere intent that the transition from Hewlett Packard to

Agilent Technologies should have no impact on your warranties, service levels, or

purchase volume credits.

For more information about this transition, please visit our website at:

http://www.agilent.com, or contact your local sales representative. It has been our

pleasure to work with you for the past 60 years as part of Hewlett-Packard. We look

forward to continuing to serve you as Agilent Technologies for years to come.

www.valuetronics.com

Programming Reference

HP 1650B/HP 1651B Logic Analyzers

ãCopyright Hewlett-Packard Company 1989

Manual Number 01650-90913 Printed in the U.S.A. August 1989

www.valuetronics.com

Contents

Chapter 1 Introduction to Programming an Instrument

Introduction . 1-1

Programming Syntax . 1-2

Talking to the Instrument . 1-2

Instruction Syntax. 1-2

Output Command. 1-3

Device Address. 1-3

Instructions . 1-3

Instruction Header . 1-3

White Space. 1-4

Instruction Parameters. 1-4

Header Types . 1-4

Combining Commands from the Same Subsystem. 1-6

Duplicate Keywords . 1-6

Query Usage . 1-7

Program Header Options . 1-8

Parameter Syntax Rules . 1-8

Instruction Terminator . 1-10

Selecting Multiple Subsystems . 1-10

Programming an Instrument . 1-11

Initialization. 1-11

Example Program. 1-12

Program Overview . 1-12

Receiving Information from the Instrument 1-12

Response Header Options . 1-13

Response Data Formats . 1-14

String Variables . 1-15

Numeric Base . 1-16

Numeric Variables . 1-16

Definite-Length Block Response Data . 1-17

Multiple Queries. 1-18

Instrument Status . 1-18

HP 1650B/HP 1651B Contents-1

Programming Reference

www.valuetronics.com

Chapter 2 Programming Over HP-IB

Introduction . 2-1

Interface Capabilities . 2-1

Command and Data Concepts. 2-1

Addressing . 2-2

Communicating Over the HP-IB Bus (HP 9000 Series 200/300

Controller) . 2-3

Local, Remote, and Local Lockout . 2-4

Bus Commands . 2-5

Device Clear . 2-5

Group Execute Trigger (GET) . 2-5

Interface Clear (IFC) . 2-5

Chapter 3 Programming Over RS-232C

Introduction . 3-1

Interface Operation. 3-1

Cables . 3-2

Minimum Three-Wire Interface with Software Protocol 3-2

Extended Interface with Hardware Handshake 3-3

Cable Example . 3-4

Configuring the Instrument Interface . 3-5

Interface Capabilities . 3-5

Protocol . 3-5

Data Bits . 3-6

Communicating Over the RS-232C Bus

(HP 9000 Series 200/300 Controller). 3-6

Lockout Command . 3-7

Chapter 4 Programming and Documentation Conventions

Introduction . 4-1

Truncation Rule. 4-1

Infinity Representation . 4-2

Sequential and Overlapped Commands . 4-2

Response Generation . 4-2

Syntax Diagrams . 4-2

Notation Conventions and Definitions . 4-2

The Command Tree . 4-4

Contents-2 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

Command Types . 4-4

Tree Traversal Rules . 4-4

Examples . 4-4

Command Set Organization . 4-8

Subsystems. 4-8

Program Examples . 4-9

Chapter 5 Common Commands

Introduction . 5-1

*CLS . 5-3

*ESE . 5-4

*ESR . 5-6

*IDN . 5-8

*OPC. 5-9

*RST . 5-10

*SRE . 5-11

*STB . 5-13

*WAI. 5-15

Chapter 6 System Commands

Introduction . 6-1

ARMBnc . 6-4

DATA . 6-5

Section Header Description . 6-8

Section Data . 6-8

Data Preamble Description. 6-8

Acquisition Data Description . 6-11

DSP . 6-18

ERRor. 6-19

HEADer . 6-20

KEY. 6-21

LER . 6-23

LOCKout . 6-24

LONGform. 6-25

MENU . 6-26

MESE . 6-27

MESR . 6-29

PPOWer . 6-31

PRINt . 6-32

HP 1650B/HP 1651B Contents-3

Programming Reference

www.valuetronics.com

RMODe . 6-33

SETup . 6-34

STARt . 6-36

STOP . 6-37

Chapter 7 MMEMory Subsystem

Introduction . 7-1

AUToload . 7-4

CATalog . 7-5

COPY . 7-6

DOWNload . 7-7

INITialize . 7-8

LOAD . 7-9

LOAD . 7-10

PACK . 7-11

PURGe . 7-12

REName . 7-13

STORe . 7-14

UPLoad . 7-15

Chapter 8 DLISt Subsystem

Introduction . 8-1

DLISt. 8-2

COLumn . 8-3

LINE . 8-5

Chapter 9 WLISt Subsystem

Introduction . 9-1

WLISt . 9-2

OSTate . 9-3

XSTate . 9-4

OTIMe . 9-5

XTIMe . 9-6

Contents-4 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

Chapter 10 MACHine Subsystem

Introduction . 10-1

MACHine < N> . 10-3

ARM . 10-4

ASSign. 10-5

AUToscale . 10-6

NAME . 10-7

TYPE . 10-8

Chapter 11 SFORmat Subsystem

Introduction . 11-1

SFORmat . 11-3

CLOCk . 11-4

CPERiod . 11-5

LABel . 11-6

MASTer . 11-8

REMove . 11-9

SLAVe . 11-10

THReshold . 11-11

Chapter 12 STRace Subsystem

Introduction . 12-1

STRace . 12-4

BRANch . 12-5

FIND . 12-8

PREStore . 12-10

RANGe . 12-12

RESTart . 12-14

SEQuence . 12-16

STORe . 12-17

TAG . 12-19

TERM . 12-21

HP 1650B/HP 1651B Contents-5

Programming Reference

www.valuetronics.com

Chapter 13 SLISt Subsystem

Introduction . 13-1

SLISt . 13-5

COLumn . 13-6

DATA . 13-8

LINE . 13-9

MMODe . 13-10

OPATtern . 13-11

OSEarch . 13-13

OSTate . 13-14

OTAG . 13-15

RUNTil . 13-16

TAVerage . 13-18

TMAXimum . 13-19

TMINimum . 13-20

VRUNs . 13-21

XOTag . 13-22

XPATtern . 13-23

XSEarch . 13-25

XSTate . 13-26

XTAG . 13-27

Chapter 14 SWAVeform Subsystem

Introduction . 14-1

SWAVeform. 14-3

ACCumulate . 14-4

DELay. 14-5

INSert . 14-6

RANGe. 14-7

REMove . 14-8

Contents-6 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

Chapter 15 SChart Subsystem

Introduction . 15-1

SCHart . 15-3

ACCumulate . 15-4

HAXis . 15-5

VAXis . 15-6

Chapter 16 COMPare Subsystem

Introduction . 16-1

COMPare . 16-3

CMASk . 16-4

COPY . 16-5

DATA . 16-6

FIND . 16-8

RANGe. 16-9

RUNTil . 16-10

Chapter 17 TFORmat Subsystem

Introduction . 17-1

TFORmat . 17-2

LABel . 17-3

REMove . 17-5

THReshold . 17-6

Chapter 18 TTRace Subsystem

Introduction . 18-1

TTRace . 18-3

AMODe . 18-4

DURation . 18-5

EDGE . 18-6

GLITch . 18-8

PATTern . 18-9

HP 1650B/HP 1651B Contents-7

Programming Reference

www.valuetronics.com

Chapter 19 TWAVeform Subsystem

Introduction . 19-1

TWAVeform . 19-5

ACCumulate . 19-6

DELay . 19-7

INSert . 19-8

MMODe . 19-9

OCONdition . 19-10

OPATtern . 19-11

OSEarch . 19-13

OTIMe . 19-14

RANGe . 19-15

REMove . 19-16

RUNTil . 19-17

SPERiod . 19-19

TAVerage . 19-20

TMAXimum . 19-21

TMINimum . 19-22

VRUNs . 19-23

XCONdition . 19-24

XOTime . 19-25

XPATtern . 19-26

XSEarch . 19-28

XTIMe . 19-29

Chapter 20 SYMBol Subsystem

Introduction . 20-1

SYMBol . 20-3

BASE . 20-4

PATTern . 20-5

RANGe . 20-6

REMove . 20-7

WIDTh . 20-8

Contents-8 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

Appendix A Message Communication and System Functions

Introduction . A-1

Protocols . A-2

Functional Elements . A-2

Protocol Overview . A-3

Protocol Operation. A-3

Protocol Exceptions . A-4

Syntax Diagrams . A-5

Syntax Overview. A-5

Device Listening Syntax. A-8

Device Talking Syntax . A-21

Common Commands. A-27

Appendix B Status Reporting

Introduction . B-1

Event Status Register . B-3

Service Request Enable Register . B-3

Bit Definitions . B-3

Key Features . B-4

Serial Poll . B-6

Using Serial Poll (HP-IB) . B-6

Parallel Poll . B-8

Polling HP-IB Devices . B-10

Configuring Parallel Poll Responses . B-10

Conducting a Parallel Poll . B-11

Disabling Parallel Poll Responses . B-11

HP-IB Commands . B-12

Appendix C Error Messages

Device Dependent Errors . C-1

Command Errors . C-2

Execution Errors . C-3

Internal Errors . C-4

Query Errors . C-5

Index

HP 1650B/HP 1651B Contents-9

Programming Reference

www.valuetronics.com

1Introduction to
Programming an Instrument

Introduction This chapter introduces you to the basics of remote programming. The

programming instructions explained in this book conform to the

IEEE 488.2 Standard Digital Interface for Programmable

Instrumentation. These programming instructions provide a means of

remotely controlling the HP 1650B/51B. There are three general

categories of use. You can:

· Set up the instrument and start measurements

· Retrieve setup information and measurement results

· Send measurement data to the instrument

The instructions listed in this manual give you access to the measurements

and front panel features of the HP 1650B/51B. The complexity of your

programs and the tasks they accomplish are limited only by your

imagination. This programming reference is designed to provide a

concise description of each instruction.

Chapter 1 is divided into two sections. The first section (pages 2 - 10)

concentrates on program syntax, and the second section (pages 11 - 17)

discusses programming an instrument. Read either chapter 2

"Programming Over HP-IB" or chapter 3 "Programming Over RS-232C"

for information concerning the physical connection between the

HP 1650B/51B and your controller. Chapter 4, "Programming and

Documentation Conventions," gives an overview of all instructions and

also explains the notation conventions used in our syntax definitions and

examples. The remaining chapters (5 through 20) are used to explain

each group of instructions.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-1

www.valuetronics.com

Programming
Syntax

Talking to the

Instrument

In general, computers acting as controllers communicate with the

instrument by sending and receiving messages over a remote interface,

such as HP-IB or RS-232C. Instructions for programming the HP

1650B/51B will normally appear as ASCII character strings embedded

inside the output statements of a "host" language available on your

controller. The host language’s input statements are used to read in

responses from the HP 1650B/51B.

For example, HP 9000 Series 200/300 BASIC uses the OUTPUT

statement for sending commands and queries to the HP 1650B/51B. After

a query is sent, the response is usually read in using the ENTER

statement. All programming examples in this manual are presented in

BASIC. The following BASIC statement sends a command which causes

the HP 1650B/51B’s machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINE1:TYPE STATE" < terminator>

Each part of the above statement is explained in the following pages.

Instruction Syntax To program the instrument remotely, you must have an understanding of

the command format and structure expected by the instrument. IEEE

488.2’s syntax rules govern how individual elements such as headers,

separators, parameters and terminators may be grouped together to form

complete instructions. Syntax definitions are also given to show how

query responses will be formatted. Figure 1-1 shows the main syntactical

parts of a typical program statement.

Figure 1-1. Program Message Syntax

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-2 Programming Reference

www.valuetronics.com

Output Command The output command is entirely dependant on the language you choose to

use. Throughout this manual HP 9000 Series 200/300 BASIC 4.0 is used in

the programming examples. People using another language will need to

find the equivalents of BASIC commands like OUTPUT, ENTER and

CLEAR in order to convert the examples. The instructions for the

HP 1650B/51B are always shown between the double-quotes.

Device Address The location where the device address must be specified is also dependant

on the host language which you are using. In some languages, this could

be specified outside the output command. In BASIC, this is always

specified after the keyword OUTPUT. The examples in this manual use a

generic address of XXX. When writing programs, the number you use

will depend on the cable you use in addition to the actual address. If you

are using an HP-IB, see chapter 2. RS-232C users should refer to

chapter 3.

Instructions Instructions (both commands and queries) normally appear as a string

embedded in a statement of your host language, such as BASIC, Pascal or

C. The only time a parameter is not meant to be expressed as a string is

when the instruction’s syntax definition specifies < block data> . There

are only five instructions which use block data.

Instructions are composed of two main parts: The header, which specifies

the command or query to be sent; and the parameters, which provide

additional data needed to clarify the meaning of the instruction.

Instruction Header The instruction header is one or more keywords separated by colons (:).

The command tree in figure 4-1 (in chapter 4) illustrates how all the

keywords can be joined together to form a complete header.

The example in figure 1-1 shows a command. Queries are indicated by

adding a question mark (?) to the end of the header. Many instructions

can be used as either commands or queries, depending on whether or not

you have included the question mark. The command and query forms of

an instruction usually have different parameters. Many queries do not use

any parameters.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-3

www.valuetronics.com

When you look up a query in this programming reference, you’ll find a

paragraph labeled "Returned Format" under the one labeled "Query

Syntax." The syntax definition by "Returned format" will always show the

instruction header in square brackets, like [:SYSTem:MENU]. What this

really means is that the text between the brackets is optional, but it’s also a

quick way to see what the header looks like.

White Space White space is used to separate the instruction header from the

instruction parameters. If the instruction does not use any parameters,

you do not need to include any white space. White space is defined as one

or more spaces. ASCII defines a space to be character 32 (in decimal).

Tabs can used only if your controller first converts them to space

characters before sending the string to the instrument.

Instruction Parameters Instruction parameters are used to clarify the meaning of the command or

query. They provide necessary data, such as whether a function should be

on or off, which waveform is to be displayed, or which pattern is to be

looked for. Each instruction’s syntax definition shows the parameters, as

well as the values they accept. This chapter’s "Parameter Syntax Rules"

section has all of the general rules about acceptable values.

When an instruction has more than one parameter they are separated by

commas (,). You are allowed to include spaces around the commas.

Header Types There are three types of headers: Simple Command; Compound

Command; and Common Command.

Simple Command Header. Simple command headers contain a single

keyword. START and STOP are examples of simple command headers

typically used in this instrument. The syntax is:

< function> < terminator>

When parameters (indicated by < data>) must be included with the

simple command header (for example, :RMODE SINGLE) the syntax is:

< function> < white space> < data> < terminator>

Compound Command Header. Compound command headers are a

combination of two or more program keywords. The first keyword selects

the subsystem, and the last keyword selects the function within that

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-4 Programming Reference

www.valuetronics.com

subsystem. Sometimes you may need to list more than one subsystem

before being allowed to specify the function. The keywords within the

compound header are separated by colons. For example:

To execute a single function within a subsystem, use the following:

:< subsystem> :< function> < white space> < data> < terminator>

(For example :SYSTEM:LONGFORM ON)

To traverse down a level of a subsystem to execute a subsystem within that

subsystem:

:< subsystem> :< subsystem> :< function> < white space> < data> < terminator>

(For example :MMEMORY:LOAD:CONFIG "FILE__")

Common Command Header. Common command headers control IEEE

488.2 functions within the instrument (such as clear status, etc.). Their

syntax is:

*< command header> < terminator>

No space or separator is allowed between the asterisk and the command

header. *CLS is an example of a common command header.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-5

www.valuetronics.com

Combining

Commands from the

Same Subsystem

To execute more than one function within the same subsystem a

semi-colon (;) is used to separate the functions:

:< subsystem> :< function> < white space> < data> ;

< function> < white space> < data> < terminator>

(For example :SYSTEM:LONGFORM ON;HEADER ON)

Duplicate Keywords Identical function keywords can be used for more than one subsystem.

For example, the function keyword MMODE may be used to specify the

marker mode in the subsystem for state listing or the timing waveforms:

:SLIST:MMODE PATTERN

- sets the marker mode to pattern in the state listing.

:TWAVEFORM:MMODE TIME

- sets the marker mode to time in the timing waveforms.

SLIST and TWAVEFORM are subsystem selectors and determine which

marker mode is being modified.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-6 Programming Reference

www.valuetronics.com

Query Usage Command headers immediately followed by a question mark (?) are

queries. After receiving a query, the instrument interrogates the

requested function and places the response in its output queue. The

output message remains in the queue until it is read or another command

is issued. When read, the message is transmitted across the bus to the

designated listener (typically a controller). For example, the logic

analyzer query :MACHINE1:TWAVEFORM:RANGE? places the

current seconds per division full scale range for machine 1 in the output

queue. In BASIC, the input statement

ENTER XXX; Range

passes the value across the bus to the controller and places it in the

variable Range.

Query commands are used to find out how the instrument is currently

configured. They are also used to get results of measurements made by

the instrument. For example, the command

:MACHINE1:TWAVEFORM:XOTIME? instructs the instrument to

place the X to O time in the output queue.

Note
The output queue must be read before the next program message is sent.

For example, when you send the query :TWAVEFORM:XOTIME? you

must follow that with an input statement. In BASIC, this is usually done

with an ENTER statement.

Sending another command before reading the result of the query will

cause the output buffer to be cleared and the current response to be lost.

This will also generate a "QUERY UNTERMINATED" error in the

error queue.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-7

www.valuetronics.com

Program Header

Options

Program headers can be sent using any combination of uppercase or

lowercase ASCII characters. Instrument responses, however, are always

returned in uppercase.

Both program command and query headers may be sent in either

longform (complete spelling), shortform (abbreviated spelling), or any

combination of longform and shortform. Either of the following examples

turns the headers and longform on.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON" - longform

OUTPUT XXX;":SYST:HEAD ON;LONG ON" - shortform

Programs written in longform are easily read and are almost

self-documenting. The shortform syntax conserves the amount of

controller memory needed for program storage and reduces the amount

of I/O activity.

Note
The rules for shortform syntax are shown in chapter 4 "Programming and

Documentation Conventions."

Parameter Syntax

Rules

There are three main types of data which are used in parameters. They

are numeric, string, and keyword. A fourth type, block data, is used only

for five instructions: the DATA and SETup instructions in the SYSTem

subsystem (see chapter 6) and the CATalog, UPLoad, and DOWNload

instructions in the MMEMory subsystem (see chapter 7). These syntax

rules also show how data may be formatted when sent back from the

HP 1650B/51B as a response.

The parameter list always follows the instruction header and is separated

from it by white space. When more than one parameter is used, they are

separated by commas. You are allowed to include one or more spaces

around the commas, but it is not mandatory.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-8 Programming Reference

www.valuetronics.com

Numeric data. For numeric data, you have the option of using

exponential notation or using suffixes to indicate which unit is being used.

Tables A-1 and A-2 in appendix A list all available suffixes. Do not

combine an exponent with a unit. The following numbers are all equal:

28 = 0.28E2 = 280e-1 = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are

binary (# B), octal (# Q), hexadecimal (# H) and decimal (default). For

example, # B11100 = # Q34 = # H1C = 28. You may not specify a

base in conjunction with either exponents or unit suffixes. Additionally,

negative numbers must be expressed in decimal.

When a syntax definition specifies that a number is an integer, that means

that the number should be whole. Any fractional part would be ignored,

truncating the number. Numeric parameters which accept fractional

values are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when

sending the number 9, you would send a byte representing the ASCII code

for the character "9" (which is 57, or 00111001 in binary). A three-digit

number like 102 would take up three bytes (ASCII codes 49, 48 and 50).

This is taken care of automatically when you include the entire instruction

in a string.

String data. String data may be delimited with either single (’) or double

(") quotes. String parameters representing labels are case-sensitive. For

instance, the labels "Bus A" and "bus a" are unique and should not be used

indiscriminately. Also pay attention to the presence of spaces, since they

act as legal characters just like any other. So the labels "In" and " In" are

also two separate labels.

Keyword data. In many cases a parameter must be a keyword. The

available keywords are always included with the instruction’s syntax

definition. When sending commands, either the longform or shortform (if

one exists) may be used. Upper-case and lower-case letters may be mixed

freely. When receiving responses, upper-case letters will be used

exclusively. The use of longform or shortform in a response depends on

the setting you last specified via the SYSTem:LONGform command (see

chapter 6).

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-9

www.valuetronics.com

Instruction Terminator An instruction is executed after the instruction terminator is received.

The terminator is the NL (New Line) character. The NL character is an

ASCII linefeed character (decimal 10).

Note
The NL (New Line) terminator has the same function as an EOS (End Of

String) and EOT (End Of Text) terminator.

Selecting Multiple

Subsystems

You can send multiple program commands and program queries for

different subsystems on the same line by separating each command with a

semicolon. The colon following the semicolon enables you to enter a new

subsystem. For example:

< instruction header> < data> ;:< instruction header> < data> < terminator>

:MACHINE1:ASSIGN2;:SYSTEM:HEADERS ON

Note
Multiple commands may be any combination of simple, compound and

common commands.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-10 Programming Reference

www.valuetronics.com

Programming
an Instrument

Initialization To make sure the bus and all appropriate interfaces are in a known state,

begin every program with an initialization statement. BASIC provides a

CLEAR command which clears the interface buffer. If you’re using

HP-IB, CLEAR will also reset the HP 1650B/51B’s parser. The parser is

the program which reads in the instructions which you send it.

After clearing the interface, load a predefined configuration file from the

disk to preset the instrument to a known state. For example:

OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’DEFAULT__’"

This BASIC statement would load the configuration file "DEFAULT__"

(if it exists) into the HP 1650B/51B. Refer to the chapter "MMEMory

Subsystem" for more information on the LOAD command.

Note
Refer to your controller manual and programming language reference

manual for information on initializing the interface.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-11

www.valuetronics.com

Example Program This program demonstrates the basic command structure used to program

the HP 1650B/51B.

10 CLEAR XXX !Initialize instrument interface

20 OUTPUT XXX;":SYSTEM:HEADER ON" !Turn headers on

30 OUTPUT XXX;":SYSTEM:LONGFORM ON" !Turn longform on

40 OUTPUT XXX;":MMEM:LOAD:CONFIG ’TEST_E’" !Load configuration file

50 OUTPUT XXX;":MENU FORMAT,1" !Select Format menu for machine 1

60 OUTPUT XXX;":RMODE SINGLE" !Select run mode

70 OUTPUT XXX;":START" !Run the measurement

Program Overview Line 10 initializes the instrument interface to a known state

Lines 20 and 30 turn the headers and longform on.

Line 40 loads the configuration file "TEST_E" from the disc drive.

Line 50 displays the Format menu for machine 1.

Lines 60 and 70 tell the analyzer to run the measurement configured by

the file "TEST_E" one time.

Receiving Information

from the Instrument

After receiving a query (command header followed by a question mark),

the instrument interrogates the requested function and places the answer

in its output queue. The answer remains in the output queue until it is

read or another command is issued. When read, the message is

transmitted across the bus to the designated listener (typically a

controller). The input statement for receiving a response message from

an instrument’s output queue typically has two parameters; the device

address and a format specification for handling the response message.

For example, to read the result of the query command

:SYSTEM:LONGFORM? you could execute the BASIC statement:

ENTER XXX; Setting

where XXX represents the address of your device. This would enter the

current setting for the longform command in the numeric variable Setting.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-12 Programming Reference

www.valuetronics.com

Note
All results for queries sent in a program message must be read before

another program message is sent. For example, when you send the query

:MACHINE1:ASSIGN?, you must follow that query with an input

statement. In BASIC, this is usually done with the ENTER statement.

The format specification for handling the response messages is dependent

on both the controller and the programming language.

Response Header

Options

The format of the returned ASCII string depends on the current settings

of the SYSTEM HEADER and LONGFORM commands. The general

format is:

< instruction header> < space> < data> < terminator>

The header identifies the data that follows (the parameters) and is

controlled by issuing a :SYSTEM:HEADER ON/OFF command. If the

state of the header command is OFF, only the data is returned by the

query.

The format of the header is controlled by the :SYSTEM:LONGFORM

ON/OFF command. If longform is OFF , the header will be in its

shortform and the header will vary in length depending on the particular

query. The separator between the header and the data always consists of

one space.

The following examples show some possible responses for a

:MACHINE1:SFORMAT:THRESHOLD2? query:

· with HEADER OFF:

< data> < terminator>

· with HEADER ON and LONGFORM OFF:

:MACH1:SFOR:THR2 < space> < data> < terminator>

· with HEADER ON and LONGFORM ON:

:MACHINE1:SFORMAT:THRESHOLD2 < space> < data> < terminator>

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-13

www.valuetronics.com

Note
A command or query may be sent in either longform or shortform, or in

any combination of longform and shortform. The HEADER and

LONGFORM commands only control the format of the returned data

and have no effect on the way commands are sent.

Refer to the chapter "System Commands" for information on turning the

HEADER and LONGFORM commands on and off.

Response Data

Formats

Both numbers and strings are returned as a series of ASCII characters, as

described in the following sections. Keywords in the data are returned in

the same format as the header, as specified by the LONGform command.

Like the headers, the keywords will always be in upper-case.

The following are possible responses to the "MACHINE1: TFORMAT:

LAB? ’ADDR’ " query.

MACHINE1:TFORMAT:LABEL "ADDR ",19,POSITIVE< terminator> (Header on;

Longform on)

MACH1:TFOR:LAB "ADDR ",19,POS< terminator> (Header on; Longform off)

"ADDR ",19,POSITIVE< terminator> (Header off; Longform on)

"ADDR ",19,POS< terminator> (Header off; Longform off)

Note
Refer to the individual commands in this manual for information on the

format (alpha or numeric) of the data returned from each query.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-14 Programming Reference

www.valuetronics.com

String Variables Since there are so many ways to code numbers, the HP 1650B/51B

handles almost all data as ASCII strings. Depending on your host

language, you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send

instructions to the HP 1650B/51B. The example below combines variables

and constants in order to make it easier to switch from MACHINE1 to

MACHINE2. In BASIC, the & operator is used for string concatenation.

10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2

20 OUTPUT XXX; Machine$ & ":TYPE STATE" !Make machine a state analyzer

30 !Assign all labels to be positive

40 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 1’, POS"

50 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’CHAN 2’, POS"

60 OUTPUT XXX; Machine$ & ":SFORMAT:LABEL ’OUT’, POS"

99 END

If you want to observe the headers for queries, you must bring the

returned data into a string variable. Reading queries into string variables

requires little attention to formatting. For example:

ENTER XXX;Result$

places the output of the query in the string variable Result$.

Note
In the language used for this book (HP BASIC 4.0), string variables are

case sensitive and must be expressed exactly the same each time they are

used.

The output of the instrument may be numeric or character data

depending on what is queried. Refer to the specific commands for the

formats and types of data returned from queries.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-15

www.valuetronics.com

The following example shows logic analyzer data being returned to a

string variable with headers off:

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 DIM Rang$[30]

30 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

40 ENTER XXX;Rang$

50 PRINT Rang$

60 END

After running this program, the controller displays:

+ 1.00000E-05

Numeric Base Most numeric data will be returned in the same base as shown on screen.

When the prefix # B precedes the returned data, the value is in the binary

base. Likewise, # Q is the octal base and # H is the hexadecimal base. If

no prefix precedes the returned numeric data, then the value is in the

decimal base.

Numeric Variables If your host language can convert from ASCII to a numeric format, then

you can use numeric variables. Turning off the response headers will help

you avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a

numeric variable.

10 OUTPUT XXX;":SYSTEM:HEADER OFF"

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

30 ENTER XXX;Rang

40 PRINT Rang

50 END

This time the format of the number (such as whether or not exponential

notation is used) is dependant upon your host language. In BASIC, the

output would look like:

1.E-5

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-16 Programming Reference

www.valuetronics.com

Definite-Length Block

Response Data

Definite-length block response data allows any type of device-dependent

data to be transmitted over the system interface as a series of 8-bit binary

data bytes. This is particularly useful for sending large quantities of data

or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed

by a non-zero digit representing the number of digits in the decimal

integer. After the non-zero digit is the decimal integer that states the

number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 80 bytes of data, the syntax would be:

Figure 1-3. Definite-length Block Response Data

The "8" states the number of digits that follow, and "00000080" states the

number of bytes to be transmitted.

Note
Indefinite-length block data is not supported on the HP1650B/51B.

HP 1650B/HP 1651B Introduction to Programming an Instrument

Programming Reference 1-17

www.valuetronics.com

Multiple Queries You can send multiple queries to the instrument within a single program

message, but you must also read them back within a single program

message. This can be accomplished by either reading them back into a

string variable or into multiple numeric variables. For example, you could

read the result of the query :SYSTEM:HEADER?;LONGFORM? into

the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each

response is separated by a semicolon. For example, the response of the

query :SYSTEM:HEADER?:LONGFORM? with HEADER and

LONGFORM on would be:

:SYSTEM:HEADER 1;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are

returned, then you could use following program message to read the query

:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Result1, Result2

Note
When you are receiving numeric data into numeric variables, the headers

should be turned off. Otherwise the headers may cause misinterpretation

of returned data.

Instrument Status Status registers track the current status of the instrument. By checking the

instrument status, you can find out whether an operation has been

completed, whether the instrument is receiving triggers, and more. The

appendix "Status Reporting" explains how to check the status of the

instrument.

Introduction to Programming an Instrument HP 1650B/HP 1651B

1-18 Programming Reference

www.valuetronics.com

2Programming Over HP-IB

Introduction This section describes the interface functions and some general concepts

of the HP-IB. In general, these functions are defined by IEEE 488.1

(HP-IB bus standard). They deal with general bus management issues, as

well as messages which can be sent over the bus as bus commands.

Interface
Capabilities

The interface capabilities of the HP 1650B/51B, as defined by IEEE 488.1

are SH1, AH1, T5, TE0, L3, LE0, SR1, RL1, PP1, DC1, DT1, C0, and E2.

Command and
Data Concepts

The HP-IB has two modes of operation: command mode and data mode.

The bus is in command mode when the ATN line is true. The command

mode is used to send talk and listen addresses and various bus commands,

such as a group execute trigger (GET). The bus is in the data mode when

the ATN line is false. The data mode is used to convey device-dependent

messages across the bus. These device-dependent messages include all of

the instrument commands and responses found in chapters 5 through 9 of

this manual and in the individual programming manuals for each module.

HP 1650B/HP 1651B Programming Over HP-IB

Programming Reference 2-1

www.valuetronics.com

Addressing By using the front-panel I/O and SELECT keys, the HP-IB interface can

be placed in either talk only mode (Printer connected to HP-IB) or

addressed talk/listen mode (Controller connected to HP-IB) (see "I/O

Port Configuration" in chapter 5 of the HP1650B/HP 1651B Front-Panel

Reference manual). Talk only mode must be used when you want the

instrument to talk directly to a printer without the aid of a controller.

Addressed talk/listen mode is used when the instrument will operate in

conjunction with a controller. When the instrument is in the addressed

talk/listen mode, the following is true:

· Each device on the HP-IB resides at a particular address ranging

from 0 to 30.

· The active controller specifies which devices will talk, and which

will listen.

· An instrument, therefore, may be talk addressed, listen addressed,

or unaddressed by the controller.

If the controller addresses the instrument to talk, it will remain configured

to talk until it receives an interface clear message (IFC), another

instrument’s talk address (OTA), its own listen address (MLA), or a

universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain

configured to listen until it receives an interface clear message (IFC) its

own talk address (MTA), or a universal unlisten (UNL) command.

Programming Over HP-IB HP 1650B/HP 1651B

2-2 Programming Reference

www.valuetronics.com

Communicating
Over the HP-IB
Bus (HP 9000
Series 200/300
Controller)

Since HP-IB can address multiple devices through the same interface

card, the device address passed with the program message must include

not only the correct instrument address, but also the correct interface

code.

Interface Select Code (Selects Interface). Each interface card has its own

interface select code. This code is used by the controller to direct

commands and communications to the proper interface. The default is

always "7" for HP-IB controllers.

Instrument Address (Selects Instrument). Each instrument on the

HP-IB port must have a unique instrument address between decimal 0

and 30. The device address passed with the program message must

include not only the correct instrument address, but also the correct

interface select code.

DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument Address)

For example, if the instrument address for the HP 1650B/51B is 4 and the

interface select code is 7, when the program message is passed, the

routine performs its function on the instrument at device address 704.

HP 1650B/HP 1651B Programming Over HP-IB

Programming Reference 2-3

www.valuetronics.com

Local, Remote,
and Local
Lockout

The local, remote, and remote with local lockout modes may be used for

various degrees of front-panel control while a program is running. The

instrument will accept and execute bus commands while in local mode,

and the front panel will also be entirely active. If the HP 1650B/51B is in

remote mode, the instrument will go from remote to local with any front

panel activity. In remote with local lockout mode, all controls (except the

power switch) are entirely locked out. Local control can only be restored

by the controller.

Note
Cycling the power will also restore local control, but this will also reset

certain HP-IB states.

The instrument is placed in remote mode by setting the REN (Remote

Enable) bus control line true, and then addressing the instrument to

listen. The instrument can be placed in local lockout mode by sending the

local lockout (LLO) command (see SYSTem:LOCKout in chapter 6).

The instrument can be returned to local mode by either setting the REN

line false, or sending the instrument the go to local (GTL) command.

Programming Over HP-IB HP 1650B/HP 1651B

2-4 Programming Reference

www.valuetronics.com

Bus Commands The following commands are IEEE 488.1 bus commands (ATN true).

IEEE 488.2 defines many of the actions which are taken when these

commands are received by an instrument.

Device Clear The device clear (DCL) or selected device clear (SDC) commands clear

the input and output buffers, reset the parser, clear any pending

commands, and clear the Request-OPC flag.

Group Execute

Trigger (GET)

The group execute trigger command will cause the same action as the

START command for Group Run: the instrument will acquire data for

the active waveform and listing display(s).

Interface Clear (IFC) This command halts all bus activity. This includes unaddressing all

listeners and the talker, disabling serial poll on all devices, and returning

control to the system controller.

HP 1650B/HP 1651B Programming Over HP-IB

Programming Reference 2-5

www.valuetronics.com

3Programming Over RS-232C

Introduction This section describes the interface functions and some general concepts

of the RS-232C. The RS-232C interface on this instrument is

Hewlett-Packard’s implementation of EIA Recommended Standard

RS-232C, "Interface Between Data Terminal Equipment and Data

Communications Equipment Employing Serial Binary Data Interchange."

With this interface, data is sent one bit at a time and characters are not

synchronized with preceding or subsequent data characters. Each

character is sent as a complete entity without relationship to other events.

Interface
Operation

The HP 1650B/51B can be programmed with a controller over RS-232C

using either a minimum three-wire or extended hardwire interface. The

operation and exact connections for these interfaces are described in

more detail in the following sections. When you are programming an HP

1650B/51B over RS-232C with a controller, you are normally operating

directly between two DTE (Data Terminal Equipment) devices as

compared to operating between a DTE device and a DCE (Data

Communications Equipment) device. When operating directly between

two DTE devices, certain considerations must be taken into account. For

three-wire operation, XON/XOFF must be used to handle protocol

between the devices. For extended hardwire operation, protocol may be

handled either with XON/XOFF or by manipulating the CTS and RTS

lines of the RS-232C link. For both three-wire and extended hardwire

operation, the DCD and DSR inputs to the HP 1650B/51B must remain

high for proper operation. With extended hardwire operation, a high on

the CTS input allows the HP 1650B/51B to send data and a low on this

line disables the HP 1650B/51B data transmission. Likewise, a high on the

RTS line allows the controller to send data and a low on this line signals a

request for the controller to disable data transmission. Since three-wire

operation has no control over the CTS input, internal pull-up resistors in

the HP 1650B/51B assure that this line remains high for proper three-wire

operation.

HP 1650B/HP 1651B Programming Over RS-232C

Programming Reference 3-1

www.valuetronics.com

Cables Selecting a cable for the RS-232C interface is dependent on your specific

application. The following paragraphs describe which lines of the

HP 1650B/51B are used to control the operation of the RS-232C relative

to the HP 1650B/51B. To locate the proper cable for your application,

refer to the reference manual for your controller. This manual should

address the exact method your controller uses to operate over the

RS-232C bus.

Minimum
Three-Wire
Interface with
Software
Protocol

With a three-wire interface, the software (as compared to interface

hardware) controls the data flow between the HP 1650B/51B and the

controller. This provides a much simpler connection between devices

since you can ignore hardware handshake requirements. The

HP 1650B/51B uses the following connections on its RS-232C interface for

three-wire communication:

· Pin 7 SGND (Signal Ground)

· Pin 2 TD (Transmit Data from HP 1650B/51B)

· Pin 3 RD (Receive Data into HP 1650B/51B)

The TD (Transmit Data) line from the HP 1650B/51B must connect to the

RD (Receive Data) line on the controller. Likewise, the RD line from the

HP 1650B/51B must connect to the TD line on the controller. Internal

pull-up resistors in the HP 1650B/51B assure the DCD, DSR, and CTS

lines remain high when you are using a three-wire interface.

Note
The three-wire interface provides no hardware means to control data flow

between the controller and the HP 1650B/51B. XON/OFF protocol is the

only means to control this data flow.

Programming Over RS-232C HP 1650B/HP 1651B

3-2 Programming Reference

www.valuetronics.com

Extended
Interface with
Hardware
Handshake

With the extended interface , both the software and the hardware can

control the data flow between the HP 1650B/51B and the controller. This

allows you to have more control of data flow between devices. The

HP 1650B/51B uses the following connections on its RS-232C interface for

extended interface communication:

· Pin 7 SGND (Signal Ground)

· Pin 2 TD (Transmit Data from HP 1650B/51B)

· Pin 3 RD (Receive Data into HP 1650B/51B)

The additional lines you use depends on your controller’s implementation

of the extended hardwire interface.

· Pin 4 RTS (Request To Send) is an output from the

HP 1650B/51B which can be used to control incoming data flow.

· Pin 5 CTS (Clear To Send) is an input to the HP 1650B/51B

which controls data flow from the HP 1650B/51B.

· Pin 6 DSR (Data Set Ready) is an input to the HP 1650B/51B

which controls data flow from the HP 1650B/51B within two bytes.

· Pin 8 DCD (Data Carrier Detect) is an input to the

HP 1650B/51B which controls data flow from the HP 1650B/51B

within two bytes.

· Pin 20 DTR (Data Terminal Ready) is an output from the

HP 1650B/51B which is enabled as long as the HP 1650B/51B is

turned on.

The TD (Transmit Data) line from the HP 1650B/51B must connect to the

RD (Receive Data) line on the controller. Likewise, the RD line from the

HP 1650B/51B must connect to the TD line on the controller.

HP 1650B/HP 1651B Programming Over RS-232C

Programming Reference 3-3

www.valuetronics.com

The RTS (Request To Send), is an output from the HP 1650B/51B which

can be used to control incoming data flow. A true on the RTS line allows

the controller to send data and a false on this line signals a request for the

controller to disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data

Carrier Detect) lines are inputs to the HP 1650B/51B which control data

flow from the HP 1650B/51B (Pin 2). Internal pull-up resistors in the HP

1650B/51B assure the DCD and DSR lines remain high when they are not

connected. If DCD or DSR are connected to the controller, the

controller must keep these lines and the CTS line high to enable the HP

1650B/51B to send data to the controller. A low on any one of these lines

will disable the HP 1650B/51B data transmission. Dropping the CTS line

low during data transmission will stop HP 1650B/51B data transmission

immediately. Dropping either the DSR or DCD line low during data

transmission will stop HP 1650B/51B data transmission, but as many as

two additional bytes may be transmitted from the HP 1650B/51B.

Cable Example Figure 2-1 is an example of how to connect the HP 1650B/51B to the

HP 98628A Interface card of an HP 9000 series 200/300 controller. For

more information on cabling, refer to the reference manual for your

specific controller.

Note
Since this example does not have the correct connections for hardware

handshake, XON/XOFF protocol must be used when connecting the

HP 1650B/51B as shown in figure 2-1

Figure 2-1. Cable Example

Programming Over RS-232C HP 1650B/HP 1651B

3-4 Programming Reference

www.valuetronics.com

Configuring the
Instrument
Interface

The front-panel I/O menu key allows you access to the RS-232C

Configuration menu where the RS-232C interface is configured.

If you are not familiar with how to configure the RS-232C interface, refer

to the HP 1650B/51B Front-panel Reference manual.

Interface
Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured

exactly the same for both the controller and the HP 1650B/51B to

properly communicate over the RS-232C bus. The HP 1650B/51B

RS-232C interface capabilities are listed below:

· Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2 k

· Stop Bits: 1, 1.5, or 2

· Parity: None, Odd, or Even

· Protocol: None or XON/XOFF

· Data Bits: 8

Protocol NONE. With a three-wire interface, selecting NONE for the protocol

does not allow the sending or receiving device to control data flow. No

control over the data flow increases the possibility of missing data or

transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware

handshake to occur. With hardware handshake, hardware signals control

data flow.

XON/XOFF. XON/XOFF stands for Transmit On/Transmit Off. With

this mode the receiver (controller or HP 1650B/51B) controls data flow

and can request that the sender (HP 1650B/51B or controller) stop data

flow. By sending XOFF (ASCII decimal 19) over its transmit data line,

the receiver requests that the sender disables data transmission. A

subsequent XON (ASCII decimal 17) allows the sending device to resume

data transmission.

HP 1650B/HP 1651B Programming Over RS-232C

Programming Reference 3-5

www.valuetronics.com

Data Bits Data bits are the number of bits sent and received per character that

represent the binary code of that character. Characters consist of either 7

or 8 bits, depending on the application. The HP 1650B/51B supports 8 bit

only.

8 Bit Mode. Information is usually stored in bytes (8 bits at a time). With

8-bit mode, you can send and receive data just as it is stored, without the

need to convert the data.

Note
The controller and the HP 1650B/51B must be in the same bit mode to

properly communicate over the RS-232C. This means that the controller

must have the capability to send and receive 8 bit data.

For more information on the RS-232C interface, refer to the

HP 1650B/HP 1651B Front-Panel Reference Manual. For information on

RS-232C voltage levels and connector pinouts, refer to the

HP 1650B/HP 1651B Service Manual.

Communicating
Over the
RS-232C Bus
(HP 9000
Series 200/300
Controller)

Each RS-232C interface card has its own interface select code. This code

is used by the controller to direct commands and communications to the

proper interface by specifying the correct interface code for the device

address.

Generally, the interface select code can be any decimal value between 0

and 30, except for those interface codes which are reserved by the

controller for internal peripherals and other internal interfaces. This

value can be selected through switches on the interface card. For more

information, refer to the reference manual for your interface card or

controller.

For example, if your RS-232C interface select code is 9, the device

address required to communicate over the RS-232C bus is 9.

Programming Over RS-232C HP 1650B/HP 1651B

3-6 Programming Reference

www.valuetronics.com

Lockout
Command

To lockout the front panel controls use the SYSTem command LOCKout.

When this function is on, all controls (except the power switch) are

entirely locked out. Local control can only be restored by sending the

command :LOCKout OFF. For more information on this command see

the chapter "System Commands" in this manual.

Note
Cycling the power will also restore local control, but this will also reset

certain RS-232C states.

HP 1650B/HP 1651B Programming Over RS-232C

Programming Reference 3-7

www.valuetronics.com

4Programming and
 Documentation Conventions

Introduction This section covers the programming conventions used in programming

the instrument, as well as the documentations conventions used in this

manual. This chapter also contains a detailed description of the

command tree and command tree traversal.

Truncation Rule The truncation rule for the keywords used in headers and parameters is:

If the longform has four or fewer characters, there is no change in the

shortform. Otherwise, the shortform is the first four characters of the

keyword, unless the fourth character is a vowel. If so, the shortform uses

only the first three characters of the keyword.

Some examples of how the truncation rule is applied to various commands

are shown in table 4-1.

Table 4-1. Keyword Truncation

Longform Shortform

OFF OFF

DATA DATA

START STAR

LONGFORM LONG

DELAY DEL

ACCUMULATE ACC

HP 1650B/HP 1651B Programming and Documentation Conventions

Programming Reference 4-1

www.valuetronics.com

Infinity
Representation

The representation of infinity is 9.9E+ 37 for real numbers and 32767 for

integers. This is also the value returned when a measurement cannot be

made.

Sequential and
Overlapped
Commands

IEEE 488.2 makes the distinction between sequential and overlapped

commands. Sequential commands finish their task before the execution of

the next command starts. Overlapped commands run concurrently, and

therefore the command following an overlapped command may be started

before the overlapped command is completed. The overlapped

commands for the HP 1650B/51B are STARt, STOP, and AUToscale.

Response
Generation

IEEE 488.2 defines two times at which query responses may be buffered.

The first is when the query is parsed by the instrument and the second is

when the controller addresses the instrument to talk so that it may read

the response. The HP 1650B/51B will buffer responses to a query when it

is parsed.

Syntax
Diagrams

At the beginning of each of the following chapters are syntax diagrams

showing the proper syntax for each command. All characters contained in

a circle or oblong are literals, and must be entered exactly as shown.

Words and phrases contained in rectangles are names of items used with

the command and are described in the accompanying text of each

command. Each line can only be entered from one direction as indicated

by the arrow on the entry line. Any combination of commands and

arguments that can be generated by following the lines in the proper

direction is syntactically correct. An argument is optional if there is a

path around it. When there is a rectangle which contains the word

"space," a white space character must be entered. White space is optional

in many other places.

Notation
Conventions
and Definitions

The following conventions are used in this manual when describing

programming rules and examples:

Programming and Documentation Conventions HP 1650B/HP 1651B

4-2 Programming Reference

www.valuetronics.com

< > Angular brackets enclose words or characters that are used to

symbolize a program code parameter or a bus command.

::= "is defined as." For example, A ::= B indicates that A can be

replaced by B in any statement containing A.

| "or": indicates a choice of one element from a list. For example,

 A | B indicates A or B, but not both.

... An ellipsis (trailing dots) is used to indicate that the preceding element

may be repeated one or more times.

[] Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated by | s, one,

and only one of these elements must be selected.

XXX Three Xs after an ENTER or OUTPUT statement represent the

device address required by your controller.

< NL> ::= Linefeed (ASCII decimal 10).

HP 1650B/HP 1651B Programming and Documentation Conventions

Programming Reference 4-3

www.valuetronics.com

The Command
Tree

The command tree (figure 4-1) shows all commands in the HP 1650B/51B

logic analyzers and the relationship of the commands to each other.

Parameters are not shown in this figure. The command tree allows you to

see what the HP 1650B/51B’s parser expects to receive. All legal headers

can be created by traversing down the tree, adding keywords until the end

of a branch has been reached.

Command Types As shown in chapter 1’s "Header Types" section, there are three types of

headers. Each header has a corresponding command type. This section

shows how they relate to the command tree.

System Commands. The system commands reside at the top level of the

command tree. These commands are always parsable if they occur at the

beginning of a program message, or are preceded by a colon. START and

STOP are examples of system commands.

Subsystem Commands. Subsystem commands are grouped together

under a common node of the tree, such as the MMEMORY commands.

Common Commands. Common commands are independent of the tree,

and do not affect the position of the parser within the tree. *CLS and

*RST are examples of common commands.

Tree Traversal Rules Command headers are created by traversing down the command tree. For

each group of keywords not separated by a branch, one keyword must be

selected. As shown on the tree, branches are always preceded by colons.

Do not add spaces around the colons. The following two rules apply to

traversing the tree:

A leading colon (the first character of a header) or a < terminator>

places the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem (until a

leading colon or a < terminator> is found). The parser will stay at the

colon above the keyword where the last header terminated. Any

command below that point can be sent within the current program

message without sending the keywords(s) which appear above them.

Examples The following examples are written using HP BASIC 4.0 on a HP 9000

Series 200/300 Controller. The quoted string is placed on the bus,

followed by a carriage return and linefeed (CRLF).

Programming and Documentation Conventions HP 1650B/HP 1651B

4-4 Programming Reference

www.valuetronics.com

The three Xs (XXX) shown in this manual after an ENTER or OUTPUT

statement represents the device address required by your controller.

Example 1 OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

In example 1, the colon between SYSTEM and HEADER is necessary

since SYSTEM:HEADER is a compound command. The semicolon

between the HEADER command and the LONGFORM command is the

required < program message unit separator> . The LONGFORM

command does not need SYSTEM preceding it, since the

SYSTEM:HEADER command sets the parser to the SYSTEM node in

the tree.

Example 2 OUTPUT XXX;":MMEMORY:INITIALIZE;STORE ’FILE__’,’FILE DESCRIPTION’"

or

OUTPUT XXX;":MMEMORY:INITIALIZE"

OUTPUT XXX;":MMEMORY:STORE ’FILE__’,’FILE DESCRIPTION’"

In the first line of example 2, the "subsystem selector" is implied for the

STORE command in the compound command. The STORE command

must be in the same program message as the INITIALIZE command,

since the < program message terminator> will place the parser back at

the root of the command tree.

A second way to send these commands is by placing "MMEMORY:"

before the STORE command as shown in the fourth line of example 2.

Example 3 OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALL"

In example 3, the leading colon before SYSTEM tells the parser to go

back to the root of the command tree. The parser can then see the

SYSTEM:PRINT command.

HP 1650B/HP 1651B Programming and Documentation Conventions

Programming Reference 4-5

www.valuetronics.com

Figure 4-1. HP 1650B/51B Command Tree

PPOWer RMODe STARt STOP MMEM: MACHine{1| 2}: DLISt: WLISt: SYSTem:

COLumn COLumn ARMBnc

LINE DELay DATA

LOAD: AUTOload STORe: INSert DSP

CATalog LINE ERRor

CONFig COPY CONFig ARM OSTate HEADer

ASSembler DOWNload ASSign OTIMe KEY

INITialize AUTOscale RANGe LOCKout

PACK NAME REMove LONGform

PURGe TYPE XSTate MENU

REName XTIMe MESE

UPLoad MESR

PRINt

SETup

COMPare: SFORmat: STRace: SYMBOL: TTRace:

COPY CLOCk BRANch BASE AMODe

CMASk LABel FIND PATTern DURation

DATA MASTer PREStore RANGe EDGE

FIND REMove RANGe REMove GLITch

RANGe SLAVe RESTart WIDTh PATTern

RUNTil THReshold SEQuence

STORe

TAG

TERM

SCHart: SLISt: SWAVeform: TFORMat: TWAVeform:

ACCumulate COLumn ACCumulate LABel ACCumulate

HAXis DATA DELay REMove DELay

VAXis LINE INSert THReshold INSert

MMODe RANGe MMODe

OPATtern REMove OPATtern

OSEarch OSEarch

OSTate OTIMe

Common OTAG RANGe

Commands RUNTil REMove

TAVerage RUNTil

*CLS TMAXimum SPERiod

*ESE TMINimum TAVerage

*ESR VRUNs TMAXimum

*IDN XOTag TMINimum

*OPC XPATtern VRUNs

*RST XSEarch XCONdition

*SRE XSTate XOTime

*STB XTAG XPATtern

*TST XTIMe XSEarch

*WAI XTIMe

Programming and Documentation Conventions HP 1650B/HP 1651B

4-6 Programming Reference

www.valuetronics.com

Table 4-2. Alphabetic Command Cross-Reference

Command Where used

ACCumulate TWAVeform, SCHart,
SWAVeform

AMODe TTRace
ARM MACHine
ARMBnc SYSTem
ASSign MACHine
AUToload MMEMory
AUToscale MACHine
BASE SYMBol
BRANch STRace
CATalog MMEMory
CLOCk SFORmat
COLumn DLISt, SLISt, WLISt
COPY COMPare, MMEMory
CPERiod SFORmat
CMASk COMPare
DATA COMPare, SLISt, SYSTem
DOWNload MMEMory
DSP SYSTem
DELay TWAVeform, SWAVeform
DURation TTRace
EDGE TTRace
ERRor SYSTem
FIND COMPare, STRace
GLITch TTRace
HAXis SCHart
HEADer SYSTem
INITialize MMEMory
INSert TWAVeform, SWAVeform
KEY SYSTem
LABel SFORmat, TFORmat
LINE DLISt, SLISt, WLISt
LOAD:IASSembler MMEMory
LOAD:CONFig MMEMory
LOCKout SYSTem
LONGform SYSTem
MASTer SFORmat
MENU SYSTem
MMODe SLISt, TWAVeform
NAME MACHine
OCONdition TWAVeform
OPATtern SLISt, TWAVeform
OSEarch SLISt, TWAVeform
OSTate WLISt, SLISt

Command Where used

OTAG SLISt
OTIMe TWAVeform, WLISt
PACK MMEMory
PATTern SYMBol, TTRace
PPOWer System
PREStore STRace
PRINt SYSTem
PURGe MMEMory
RANGe COMPare, STRace,

SWAVeform, SYMBol,
TWAVeform

REMove SFORmat, SWAVeform,
SYMBOL, TFORmat,
TWAVeform

REName MMEMory
RMODe System
RUNTil COMPare, SLISt,

TWAVeform
SEQuence STRace
SETup SYSTem
SLAVe SFORmat
SPERiod TWAVeform
STARt System
STOP System
STORe STRace
STORe:CONfig MMEMory
TAG STRace
TAVerage SLISt, WAVeform
TERM STRace
THReshold SFORmat, TFORmat
TMAXimum SLISt, TWAVeform
TMINimum SLISt, TWAVeform
TYPE MACHine
UPLoad MMEMory
VAXis SCHart
VRUNs SLISt, TWAVeform
WIDTh SYMBol
XCONdition TWAVeform
XOTag SLISt
XOTime TWAVeform
XPATtern SLISt, TWAVeform
XSEarch SLISt, TWAVeform
XSTate WLISt, SLISt
XTAG SLISt
XTIMe TWAVeform, WLISt

HP 1650B/HP 1651B Programming and Documentation Conventions

Programming Reference 4-7

www.valuetronics.com

Command Set
Organization

The command set for the HP 1650B/51B logic analyzer is divided into 17

separate groups: common commands, system commands and 15 sets of

subsystem commands. Each of the 17 groups of commands is described in

the following chapters. Each of the chapters contain a brief description of

the subsystem, a set of syntax diagrams for those commands, and finally,

the commands for that subsystem in alphabetical order. The commands

are shown in the longform and shortform using upper and lowercase

letters. For example, AUToload indicates that the longform of the

command is AUTOLOAD and the shortform of the command is AUT.

Each of the commands contain a description of the command and its

arguments, the command syntax, and a programming example.

Subsystems There are 15 subsystems in this instrument. In the command tree (figure

4-1) they are shown as branches, with the node above showing the name of

the subsystem. Only one subsystem may be selected at a time. At power

on, the command parser is set to the root of the command tree, and

therefore no subsystem is selected.

The 15 subsystems in the HP 1650B/51B are:

· SYSTem - controls some basic functions of the instrument.

· MMEMory - provides access to the internal disk drive.

· DLISt - allows access to the dual listing function of two state

analyzers.

· WLISt - allows access to the mixed (timing/state) functions.

· MACHine - controls the machine-level functions and allows access

to the instrument configuration subsystems.

· SFORmat - allows access to the state format functions.

· STRace - allows access to the state trace functions.

· SLISt - allows access to the state listing functions.

· SWAVeform - allows access to the state waveforms functions.

· SCHart - allows access to the state chart functions.

· COMPare - allows access to the compare functions.

· TFORmat - allows access to the timing format functions.

· TTRace - allows access to the timing trace functions.

· TWAVeform - allows access to the timing waveforms functions.

· SYMBol - allows access to the symbol specification functions.

Programming and Documentation Conventions HP 1650B/HP 1651B

4-8 Programming Reference

www.valuetronics.com

Program
Examples

The program examples given for each command in the following chapters

and appendices were written on an HP 9000 Series 200/300 controller

using the HP BASIC 4.0 language. The programs always assume a generic

address for the HP 1650B/51B of XXX.

In the following examples, special attention should be paid to the ways in

which the command and/or query can be sent. Keywords can be sent

using either the longform or shortform (if one exists for that word). With

the exception of some string parameters, the parser is not case-sensitive.

Upper-case (capital) and lower-case (small) letters may be mixed freely.

System commands like HEADer and LONGform allow you to dictate

what forms the responses take, but have no affect on how you must

structure your commands and queries.

The following commands all set Timing Waveform Delay to 100 ms.

· keywords in longform, numbers using the decimal format.

OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY .1"

· keywords in shortform, numbers using an exponential format.

OUTPUT XXX;":MACH1:TWAV:DEL 1E-1"

· keywords in shortform using lower-case letters, numbers using a

suffix.

OUTPUT XXX;":mach1:twav:del 100ms"

Note
In these examples, the colon shown as the first character of the command

is optional on the HP 1650B/51B.

The space between DELay and the argument is required.

HP 1650B/HP 1651B Programming and Documentation Conventions

Programming Reference 4-9

www.valuetronics.com

5Common Commands

Introduction The common commands are defined by the IEEE 488.2 standard. These

commands will be common to all instruments that comply with this

standard.

The common commands control some of the basic instrument functions,

such as instrument identification and reset, how status is read and cleared,

and how commands and queries are received and processed by the

instrument.

Common commands can be received and processed by the HP 1650B/51B

whether they are sent over the bus by themselves or as part of a

multiple-command string. If an instrument subsystem has been selected

and a common command is received by the instrument, the instrument will

remain in the selected subsystem. For example, if the instruction

":MMEMORY:INITIALIZE;*CLS; STORE ’FILE__’,’DESCRIPTION’"

is received by the instrument, the instrument will initialize the disk and

store the file; and clear the status information. This would not be the case

if some other type of command were received within the program

message. For example, the program message

":MMEMORY:INITIALIZE;:SYSTEM:HEADERS ON:MMEMORY

:STORE ’FILE__’,’DESCRIPTION’"

would initialize the disk, turn headers on, then store the file. In this

example :MMEMORY must be sent again in order to reenter the

mmemory subsystem and store the file.

HP 1650B/HP 1651B Common Commands

Programming Reference 5-1

www.valuetronics.com

Each status register has an associated status enable (mask) register. By

setting the bits in the mask value you can select the status information you

wish to use. Any status bits that have not been masked (enabled in the

enable register) will not be used to report status summary information to

bits in other status registers.

Refer to appendix B for a complete discussion of how to read the status

registers and how to use the status information available from this

instrument.

Refer to figure 5-1 for the common commands syntax diagram.

mask = An integer, 0 through 255. This number is the sum of all the bits in

the mask corresponding to conditions that are enabled. Refer to the

*ESE and *SRE commands for bit definitions in the enable registers.

Figure 5-1. Common Commands Syntax Diagram

Common Commands HP 1650B/HP 1651B

5-2 Programming Reference

www.valuetronics.com

*CLS (Clear Status) command

The *CLS common command clears the status data structures, including

the device defined error queue. If the *CLS command immediately

follows a < terminator> , the output queue and the MAV (Message

Available) bit will be cleared.

Command Syntax: *CLS

Example: OUTPUT XXX;"*CLS"

Note
Refer to Appendix B for a complete discussion of status.

*CLS

HP 1650B/HP 1651B Common Commands

Programming Reference 5-3

www.valuetronics.com

*ESE (Event Status Enable) command/query

The *ESE command sets the Standard Event Status Enable Register bits.

The Standard Event Status Enable Register contains a mask value for the

bits to be enabled in the Standard Event Status Register. A one in the

Standard Event Status Enable Register will enable the corresponding bit

in the Standard Event Status Register. A zero will disable the bit. Refer

to table 5-1 for information about the Standard Event Status Enable

Register bits, bit weights, and what each bit masks.

The *ESE query returns the current contents of the enable register.

Note
Refer to Appendix B for a complete discussion of status.

Command Syntax: *ESE < mask>

where:

< mask> ::= integer from 0 to 255

Example: OUTPUT XXX;"*ESE 32"

In this example, the *ESE 32 command will enable CME (Command

Error), bit 5 of the Standard Event Status Enable Register. Therefore,

when a command error occurs, the event summary bit (ESB) in the Status

Byte Register will also be set.

*ESE

Common Commands HP 1650B/HP 1651B

5-4 Programming Reference

www.valuetronics.com

Query Syntax: *ESE?

Returned Format: < mask> < NL>

Example: 10 DIM Event$[100]

20 OUTPUT XXX;"*ESE?"

30 ENTER XXX;Event$

40 PRINT Event$

50 END

Table 5-1. Standard Event Status Enable Register

Bit Weight Enables

 7 128 PON - Power On

 6 64 URQ - User Request

 5 32 CME - Command Error

 4 16 EXE - Execution Error

 3 8 DDE - Device Dependent Error

 2 4 QYE - Query Error

 1 2 RQC - Request Control

 0 1 OPC - Operation Complete

High - enables the ESR bit

*ESE

HP 1650B/HP 1651B Common Commands

Programming Reference 5-5

www.valuetronics.com

*ESR (Event Status Register) query

The *ESR query returns the contents of the Standard Event Status

Register. Reading the register clears the Standard Event Status Register.

Query Syntax: *ESR?

Returned Format: < status> < NL>

where:

< status> ::= integer from 0 to 255

Example: 10 DIM Esr_event$[100]

20 OUTPUT XXX;"*ESR?"

30 ENTER XXX;Esr_event$

40 PRINT Esr_event$

50 END

With the example, if a command error has occurred the variable

"Esr_event" will have bit 5 (the CME bit) set.

Table 5-2 shows the Standard Event Status Register. The table shows

each bit in the Standard Event Status Register, and the bit weight. When

you read Standard Event Status Register, the value returned is the total

bit weights of all bits that are high at the time you read the byte.

*ESR

Common Commands HP 1650B/HP 1651B

5-6 Programming Reference

www.valuetronics.com

Table 5-2. The Standard Event Status Register.

BIT BIT BIT CONDITION

WEIGHT NAME

 7 128 PON 0 = Register read - not in power up mode

1 = Power up

 6 64 URQ 0 = user request - not used - always zero

 5 32 CME 0 = no command errors

1 = a command error has been detected

 4 16 EXE 0 = no execution errors

1 = an execution error has been detected

 3 8 DDE 0 = no device dependent errors

1 = a device dependent error has been detected

 2 4 QYE 0 = no query errors

1 = a query error has been detected

 1 2 RQC 0 = request control - NOT used - always 0

 0 1 OPC 0 = operation is not complete

1 = operation is complete

0 = False = Low

1 = True = High

*ESR

HP 1650B/HP 1651B Common Commands

Programming Reference 5-7

www.valuetronics.com

* IDN (Identification Number) query

The *IDN? query allows the instrument to identify itself. It returns the

string:

"HEWLETT-PACKARD,1650B,0,REV < revision code> "

An *IDN? query must be the last query in a message. Any queries after

the *IDN? in the program message will be ignored.

Query Syntax: *IDN?

Returned Format: HEWLETT-PACKARD,1650B,0,REV < revision code>

where:

< revision code> ::= four-digit code representing ROM revision

Example: 10 DIM Id$[100]

20 OUTPUT XXX;"*IDN?"

30 ENTER XXX;Id$

40 PRINT Id$

50 END

* IDN

Common Commands HP 1650B/HP 1651B

5-8 Programming Reference

www.valuetronics.com

*OPC (Operation Complete) command/query

The *OPC command will cause the instrument to set the operation

complete bit in the Standard Event Status Register when all pending

device operations have finished. The commands which affect this bit are

the Overlapped Commands. An Overlapped Command is a command

that allows execution of subsequent commands while the device

operations initiated by the Overlapped Command are still in progress.

The overlapped commands for the HP 1650B/51B are:

STARt

STOP

AUToscale

The *OPC query places an ASCII "1" in the output queue when all

pending device operations have been completed. The bus is deactivated

when the query is sent and reactivated when the ASCII "1" is placed in the

output queue.

Command Syntax: *OPC

Example: OUTPUT XXX;"*OPC"

Query Syntax: *OPC?

Returned Format: 1< NL>

Example: 10 DIM Status$[100]

20 OUTPUT XXX;"*OPC?"

30 ENTER XXX;Status$

40 PRINT Status$

50 END

*OPC

HP 1650B/HP 1651B Common Commands

Programming Reference 5-9

www.valuetronics.com

*RST (Reset) command

The *RST command (488.2) sets the HP 1650B/51B to the power-up

default settings as if no autoload file was present.

The changes include:

· System Configuration menu is brought up

· Machine 1 is a timing analyzer, with auto-scale on

· Machine 2 if off

· Pod 1 is assigned to Machine 1

· Pods 2, 3, and 4 are unassigned

· Pod 5 is assigned to Machine 2

Command Syntax: *RST

Example: OUTPUT XXX;"*RST"

*RST

Common Commands HP 1650B/HP 1651B

5-10 Programming Reference

www.valuetronics.com

*SRE (Service Request Enable) command/query

The *SRE command sets the Service Request Enable Register bits. The

Service Request Enable Register contains a mask value for the bits to be

enabled in the Status Byte Register. A one in the Service Request Enable

Register will enable the corresponding bit in the Status Byte Register. A

zero will disable the bit. Refer to table 5-3 for the bits in the Service

Request Enable Register and what they mask.

The *SRE query returns the current value.

Note
Refer to Appendix B for a complete discussion of status.

Command Syntax: *SRE < mask>

where:

< mask> ::= integer from 0 to 255

Example: OUTPUT XXX;"*SRE 16"

This example forces the MSS bit high (see table 5-3).

*SRE

HP 1650B/HP 1651B Common Commands

Programming Reference 5-11

www.valuetronics.com

Query Syntax: *SRE?

Returned Format: < mask> < NL>

where:

< mask> ::= sum of all bits that are set - 0 through 255

Example: 10 DIM Sre_value$[100]

20 OUTPUT XXX;"*SRE?"

30 ENTER XXX;Sre_value$

40 PRINT Sre_value$

50 END

Table 5-3. HP 1650B/51B Service Request Enable Register

 Bit Weight Enables

15-8 not used

 7 128 not used

 6 64 MSS - Master Summary Status

 5 32 ESB - Event Status

 4 16 MAV - Message Available

 3 8 LCL - Local

 2 4 not used

 1 2 not used

 0 1 MSB - Module Summary

*SRE

Common Commands HP 1650B/HP 1651B

5-12 Programming Reference

www.valuetronics.com

*STB (Status Byte) query

The *STB query returns the current value of the instrument’s status byte.

The MSS (Master Summary Status) bit and not RQS (Request Service)

bit is reported on bit 6. The MSS indicates whether or not the device has

at least one reason for requesting service. Refer to table 5-4 for the

meaning of the bits in the status byte.

Note
Refer to Appendix B for a complete discussion of status.

Query Syntax: *STB?

Returned Format: < value> < NL>

where:

< value> ::= integer from 0 to 255

Example: 10 DIM Stb_value$[100]

20 OUTPUT XXX;"*STB?"

30 ENTER XXX;Stb_value$

40 PRINT Stb_value$

50 END

*STB

HP 1650B/HP 1651B Common Commands

Programming Reference 5-13

www.valuetronics.com

Table 5-4. The Status Byte Register

BIT BIT BIT CONDITION

WEIGHT NAME

 7 128 --- 0 = not used

 6 64 MSS 0 = instrument has no reason for service

1 = instrument is requesting service

 5 32 ESB 0 = no event status conditions have occurred

1 = an enabled event status condition has occured

 4 16 MAV 0 = no output messages are ready

1 = an output message is ready

 3 8 LCL 0 = a remote-to-local transition has not occurred

1 = a remote-to-local transition has occurred

 2 4 --- not used

 1 2 --- not used

 0 1 MSB 0 = HP 1650B/1651B has activity to report

1 = no activity to report

0 = False = Low

1 = True = High

*STB

Common Commands HP 1650B/HP 1651B

5-14 Programming Reference

www.valuetronics.com

*WAI (Wait) command

The *WAI command causes the device to wait until the completion of all

overlapped commands before executing any further commands or queries.

An overlapped command is a command that allows execution of

subsequent commands while the device operations initiated by the

overlapped command are still in progress. The overlapped commands for

the HP 1650B/51B are:

STARt

STOP

AUToscale

Command Syntax: *WAI

Example: OUTPUT XXX;"*WAI"

*WAI

HP 1650B/HP 1651B Common Commands

Programming Reference 5-15

www.valuetronics.com

6System Commands

Introduction System commands control the basic operation of the instrument including

formatting query responses and enabling reading and writing to the

advisory line of the instrument’s display. They can be called at anytime.

The HP 1650B/51B System commands are:

· ARMBnc

· DATA

· DSP (display)

· ERRor

· HEADer

· KEY

· LER (Local Event Register)

· LOCKout

· LONGform

· MENU

· MESE

· MESR

· PRINt

· SETup

In addition to the system commands, there is are three run control

commands and a preprocessor power supply condition query. These

commands are:

· PPOWer

· RMODe

· STARt

· STOP

The run control commands can be called at anytime and also control the

basic operation of the logic analyzer. These commands are at the same

level in the command tree as SYSTem; therefore they are not preceded by

the :SYSTem header.

HP 1650B/HP 1651B System Commands

Programming Reference 6-1

www.valuetronics.com

Figure 6-1. System Commands Syntax Diagram

System Commands HP 1650B/HP 1651B

6-2 Programming Reference

www.valuetronics.com

value = integer from 0 to 255.

menu = integer. Refer to the individual programming manuals for each module and the system for

specific menu number definitions.

enable_value = integer from 0 to 255.

index = integer from 0 to 5.

block_data = data in IEEE 488.2 format.

string = string of up to 60 alphanumeric characters.

Figure 6-1. System Commands Syntax Diagram (continued)

HP 1650B/HP 1651B System Commands

Programming Reference 6-3

www.valuetronics.com

ARMBnc command/query

The ARMBnc command selects the source that will generate the arm out

signal that will appear on the rear panel BNC labelled External Trigger

Out.

The ARMBnc query returns the source currently selected.

Command Syntax: :SYSTem:ARMBnc {MACHine{ 1| 2} | NONE}

Example: OUTPUT XXX;":SYSTEM:ARMBNC MACHINE1"

Query Syntax: :SYSTem:ARMBnc?

Returned Format: [:SYSTem:ARMBnc] { MACHine{ 1| 2} | NONE} < NL>

Example: 10 DIM Mode$[100]

20 OUTPUT XXX;":ARMBNC?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

ARMBnc

System Commands HP 1650B/HP 1651B

6-4 Programming Reference

www.valuetronics.com

DATA command/query

The DATA command allows you to send and receive acquired data to and

from a controller in block form. This helps saving block data for:

· Re-loading to the logic analyzer

· Processing data later

· Processing data in the controller.

The format and length of block data depends on the instruction being

used and the configuration of the instrument. This section describes each

part of the block data as it will appear when used by the DATA

instruction. The beginning byte number, the length in bytes, and a short

description is given for each part of the block data. This is intended to be

used primarily for processing of data in the controller.

Note
Do not change the block data in the controller if you intend to send the

block data back into the logic analyzer for later processing. Changes

made to the block data in the controller could have unpredictable results

when sent back to the logic analyzer.

The SYSTem:DATA query returns the block data.

Note
The data sent by the SYSTem:DATA query reflect the configuration of

the machines when the last run was performed. Any changes made since

then through either front-panel operations or programming commands do

not affect the stored configuration.

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-5

www.valuetronics.com

For the DATA instruction, block data consists of 14506 bytes containing

information captured by the acquisition chips. The information will be in

one of four formats, depending on the type of data captured. Each format

is described in the "Acquisition Data Description" section. Since no

parameter checking is performed, out-of-range values could cause

instrument lockup; therefore, care should be taken when transferring the

data string into the HP 1650B/51B.

The < block data> parameter can be broken down into a

< block length specifier> and a variable number of < section> s.

The < block length specifier> always takes the form # 8DDDDDDDD.

Each D represents a digit (ASCII characters "0" through "9"). The value

of the eight digits represents the total length of the block (all sections).

For example, if the total length of the block is 14522 bytes, the block

length specifier would be "# 800014522".

Each < section> consists of a < section header> and < section data> .

The < section data> format varies for each section and may be any

length. For this instruction, it is composed of a data preamble section and

an acquisition data section.

DATA

System Commands HP 1650B/HP 1651B

6-6 Programming Reference

www.valuetronics.com

Command Syntax: :SYSTem:DATA < block data>

Example: OUTPUT XXX;":SYSTEM:DATA" < block data>

where:

< block data> ::= < block length specifier> < section> ...

< block length specifier ::= # 8< length>

< length> ::= the total length of all sections in byte format (must be represented with 8 digits)

< section> ::= < section header> < section data>

< section header> ::= 16 bytes, described on the following page

< section data> ::= format depends on the type of data

Note
The total length of a section is 16 (for the section header) plus the length

of the section data. So when calculating the value for < length> , do not

forget to include the length of the section headers.

Query Syntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] < block data> < NL>

HP-IB Example: 10 DIM Num$[2], Block$[32000] ! allocate enough memory for block data

30 OUTPUT XXX;":EOI ON"

40 OUTPUT XXX;":SYSTEM:HEAD OFF"

50 OUTPUT XXX;":SYSTEM:DATA?" ! send data query

60 ENTER XXX USING "#,2A";Num$! read in #8

70 ENTER XXX USING "#,8D";Blocklength ! read in block length

80 ENTER XXX USING "-K";Block$! read in data

90 END

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-7

www.valuetronics.com

Section Header

Description

The section header uses bytes 1 through 16 (this manual begins counting

at 1; there is no byte 0). The 16 bytes of the section header are as follows:

1 10 bytes - section name, such as "DATA " (six trailing spaces)

11 1 byte - reserved

12 1 bytes - module ID (31 for HP 1650B/51B)

13 4 bytes - length (always 14506 for HP 1650B/51B)

Section Data For the SYSTem:DATA command, the < section data> parameter
consists of two parts: the data preamble and the acquisition data. These
are described in the following two sections.

Data Preamble

Description

The block data is organized as 160 bytes of preamble information,

followed by 1024 14-byte groups of information, followed by 10 reserved

bytes. The preamble gives information for each analyzer describing the

amount and type of data captured, where the trace point occurred in the

data, which pods are assigned to which analyzer, and other information.

Each 14-byte group is made up of two bytes (16 bits) of status for

Analyzer 1, two bytes of status for Analyzer 2, then five sets of two bytes of

information for each of the five 16-bit pods of the HP 16510B.

Note
One analyzer’s information is independent of the other

analyzer’s information. In other words, on any given line, one analyzer may

contain data information for a timing machine, while the other analyzer

may contain count information for a state machine with time tags enabled.

The status bytes for each analyzer describe what the information for that

line contains. Therefore, when describing the different formats that data

may contain below, keep in mind that this format pertains only to those

pods that are assigned to the analyzer of the specified type. The other

analyzer’s data is TOTALLY independent and conforms to its own format.

DATA

System Commands HP 1650B/HP 1651B

6-8 Programming Reference

www.valuetronics.com

The preamble (bytes 17 through 176) consists of the following 160 bytes:

17 2 bytes - Instrument ID (always 1650 for both the HP 1650B and
HP 1651B)

19 2 bytes - Revision Code

Note
The values stored in the preamble represent the captured data currently

stored in this structure and not what the current configuration of the

analyzer is. For example, the mode of the data (bytes 21 and 99) may be

STATE with tagging, while the current setup of the analyzer is TIMING.

The next 78 bytes are for Analyzer 1 Data Information.

21 1 byte - Machine data mode, one of the following values:
0 = off
1 = state data (with either time or state tags)
2 = state data (without tags)
3 = glitch timing data
4 = transitional timing data

22 1 byte - List of pods in this analyzer, where a 1 indicates that the
corresponding pod is assigned to this analyzer.

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
unused unused Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 unused

23 1 byte - Master chip in this analyzer - When several chips are grouped
together in a single analyzer, one chip is designated as a master chip. This
byte identifies the master chip. A value of 4 represents POD 1, 3 for POD
2, 2 for POD 3, 1 for POD 4, and 0 for POD 5.

24 1 byte - Reserved

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-9

www.valuetronics.com

25 10 bytes - Number of rows of valid data for this analyzer - Indicates the
number of rows of valid data for each of the five pods. Two bytes are used
to store each pod value, with the first 2 bytes used to hold POD 5 value,
the next 2 for POD 4 value, and so on.

35 1 byte - Trace point seen in this analyzer - Was a trace point seen (value
= 1) or forced (value = 0)

36 1 byte - Reserved

37 10 bytes - Trace point location for this analyzer - Indicates the row
number in which the trace point was found for each of the five pods. Two
bytes are used to store each pod value, with the first 2 bytes used to hold
POD 5 value, the next 2 for POD 4 value, and so on.

47 4 bytes - Time from arm to trigger for this analyzer - The number of 40 ns
ticks that have taken place from the arm of this machine to the trigger of
this machine. A value of -1 (all 32 bits set to 1) indicates counter overflow.

51 1 byte - Armer of this analyzer - Indicates what armed this analyzer (1 =
RUN, 2 = BNC, 3 = other analyzer)

52 1 byte - Devices armed by this analyzer - Bitmap of devices armed by this
machine

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1
unused unused unused unused unused BNC out Mach. 1 Mach. 2

A 1 in a given bit position implies that this analyzer arms that device,
while a 0 means the device is not armed by this analyzer.

53 4 bytes - Sample period for this analyzer (timing only) - Sample period at
which data was acquired. Value represents the number of nanoseconds
between samples.

57 4 bytes - Delay for this analyzer (timing only) - Delay at which data was
acquired. Value represents the amount of delay in nanoseconds.

61 1 byte - Time tags on (state with tagging only) - In state tagging mode, was
the data captured with time tags (value = 1) or state tags (value = 0).

62 1 byte - Reserved

DATA

System Commands HP 1650B/HP 1651B

6-10 Programming Reference

www.valuetronics.com

63 5 bytes - Demultiplexing (state only) - For each of the five pods (first byte
is POD 5, fifth byte is POD 1) in a state machine, describes multiplexing
of each of the five pods. (0 = NO DEMUX, 1 = TRUE DEMUX, 2 =
MIXED CLOCKS).

68 1 byte - Reserved

69 20 bytes - Trace point adjustment for pods - Each pod uses 4 bytes to
show the number of nanoseconds that are to be subtracted from the trace
point described above to get the actual trace point value. The first 4 bytes
are for Pod 5, the next four are for Pod 4, and so on.

89 10 bytes - Reserved

The next 78 bytes are for Analyzer 2 Data Information. They are

organized in the same manner as Analyzer 1 above, but they occupy bytes

99 through 176

Acquisition Data

Description

The acquisition data section consists of 14336 bytes (1024 14-byte groups),

appearing in bytes 177 through 14512. The last ten bytes (14513 through

14522) are reserved. The data contained in the data section will appear in

one of four forms depending on the mode in which it was acquired (as

indicated in byte 21 for machine 1 and byte 99 for machine 2). The four

modes are:

· State Data (without tags)

· State Data (with either time or state tags)

· Glitch Timing Data

· Transitional Timing Data

The following four sections describe the four data modes that may be

encountered. Each section describes the Status bytes (shown under the

Machine 1 and Machine 2 headings), and the Information bytes (shown

under the Pod 5 through Pod 1 headings).

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-11

www.valuetronics.com

State Data
(without tags)

Status Bytes. In normal state mode, only the least significant bit (bit 1) is

used. When bit 1 is set, this means that there has been a sequence level

transition.

Information Bytes. In state acquisition with no tags, data is obtained from

the target system with each clock and checked with the trace specification.

If the state matches this specification, the data is stored, and is placed into

the memory.

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*

177 Status Status Data Data Data Data Data

191 Status Status Data Data Data Data Data

205 Status Status Data Data Data Data Data

.

.

.

14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

State Data (with either
time or state tags)

Status Bytes. In state tagging mode, the tags indicate whether a given row

of the data is a data line, a count (tag) line, or a prestore line.

Bit 2 is the Data vs. Count bit. Bit 3 is the Prestore vs. Tag bit. The two

bits together show what the corresponding Information bytes represent.

Bit 3 Bit 2 Information byte represents:
 0 0 Acquisition Data
 0 1 Count
 1 0 Prestore Data
 1 1 Invalid

If Bit 2 is clear, the information contains either actual acquisition data as

obtained from the target system (if Bit 3 is clear), or prestore data (if Bit 3

is set). If Bit 2 is set and Bit 3 is clear, this row’s bytes for the pods

assigned to this machine contain tags. If Bit 2 and Bit 3 are set, the

corresponding Information bytes are invalid and should be ignored. Bit 1

is used only when Bit 2 is clear. Whenever there has been a sequence level

transition Bit 1 will be set, and otherwise will be clear.

DATA

System Commands HP 1650B/HP 1651B

6-12 Programming Reference

www.valuetronics.com

Information Bytes. In the State acquisition mode with tags, data is

obtained from the target system with each clock and checked with the

trace specification. If the state does not match the trace specification, it is

checked against the prestore qualifier. If it matches the prestore qualifier,

then it is placed in the prestore buffer. If the state does not match either

the sequencer qualifier or the prestore qualifier, it is discarded.

The type of information in the bytes labeled Data depends on the Prestore

vs. Tags bit. When the Data bytes are used for prestore information, the

following Count bytes (in the same column) should be ignored. When the

Data bytes are used for tags, the Count bytes are formatted as

floating-point numbers in the following fashion:

bits 16 through 12 bits 11 through 1
 EEEEE MMMMMMMMMMM

The five most-significant bits (EEEEE) store the exponent, and the eleven

least-significant bits (MMMMMMMMMMM) store the mantissa. The

actual value for Count is given by the equation:

Count = (2048 + mantissa) ´ 2
exponent

 - 2048

Since the counts are relative counts from one state to the one previous, the

count for the first state in the data structure is invalid.

If time tagging is on, the count value represents the number of 40

nanosecond ticks that have elapsed between the two stored states. In the

case of state tagging, the count represents the number of qualified states

that were encountered between the stored states.

If a state matches the sequencer qualifiers, the prestore buffer is checked.

If there are any states in the prestore buffer at this time, these prestore

states are first placed in memory, along with a dummy count row. After

this check, the qualified state is placed in memory, followed by the count

row which specified how many states (or 40 ns ticks) have elapsed since

the last stored state. If this is the first stored state in memory, then the

count information that is stored should be discarded.

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-13

www.valuetronics.com

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*

177 Status Status Data Data Data Data Data

191 Status Status Ä Ä Ä Ä Ä

205 Status Status Data Data Data Data Data

219 Status Status Count Count Count Count Count

.

.

.

14485 Status Status Data Data Data Data Data

14499 Status Status Count Count Count Count Count

*The headings are not a part of the returned data.

Ä = Invalid data

Glitch Timing Data Status Bytes. In glitch timing mode, the status bytes indicate whether a

given row in the data contains actual acquisition data information or glitch

information.

Bit 1 is the Data vs. Glitch bit. If Bit 1 is set, this row of information

contains glitch information. If Bit 1 is clear, then this row contains actual

acquisition data as obtained from the target system.

Information Bytes. In the Glitch timing mode, the target system is

sampled at every sample period. The data is then stored in memory and

the glitch detectors are checked. If a glitch has been detected between the

previous sample and the current sample, the corresponding glitch bits are

set. The glitch information is then stored. If this is the first stored sample

in memory, then the glitch information stored should be discarded.

DATA

System Commands HP 1650B/HP 1651B

6-14 Programming Reference

www.valuetronics.com

Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*

177 Status Status Data Data Data Data Data

191 Status Status Ä Ä Ä Ä Ä

205 Status Status Data Data Data Data Data

219 Status Status Glitch Glitch Glitch Glitch Glitch

.

.

.

14485 Status Status Data Data Data Data Data

14499 Status Status Glitch Glitch Glitch Glitch Glitch

*The headings are not a part of the returned data.

Ä = Invalid data

Transitional Timing Data Status Bytes. In transitional timing mode, the status bytes indicate

whether a given row in the data contains acquisition information or

transition count information.

bits 10-9 bits 8-7 bits 6-5 bits 4-3 bits 2-1
Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Each pod uses two bits to show what is being represented in the

corresponding Information bytes. Bits 10, 8, 6, 4 and 2 are set when the

appropriate pod’s Information bytes represent acquisition data. When

that bit is clear, the next bit shows if the Information bytes represent the

first word of a count. Together there are three possible combinations:

10 - This pod’s Information bytes contain acquisition data as obtained from

 the target system.

01 - This pod’s Information bytes contain the first word of a count.

00 - This pod’s Information bytes contain part of a count other than the

 first word.

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-15

www.valuetronics.com

Information Bytes. In the Transitional timing mode the logic analyzer

performs the following steps to obtain the information bytes:

1. Four samples of data are taken at 10 nanosecond intervals. The data is

stored and the value of the last sample is retained.

2. Four more samples of data are taken. If any of these four samples differ

from the last sample of the step 1, then these four samples are stored

and the last value is once again retained.

3. If all four samples of step 2 are the same as the last sample taken in step

1, then no data is stored. Instead, a counter is incremented. This

process will continue until a group of four samples is found which

differs from the retained sample. At this time, the count will be stored

in the memory, the counters reset, the current data stored, and the last

sample of the four once again retained for comparison.

Note
The stored count indicates the number of 40 ns intervals that have elapsed

between the old data and the new data.

The rows of the acquisition data may, therefore, be either four rows of

data followed by four more rows of data, or four rows of data followed by

four rows of count. Rows of count will always be followed by four rows of

data except for the last row, which may be either data or count.

Note
This process is performed on a pod-by-pod basis. The individual status

bits will indicate what each pod is doing.

DATA

System Commands HP 1650B/HP 1651B

6-16 Programming Reference

www.valuetronics.com

The following table is just an example. The meaning of the Information

bytes (Data or Count) depends upon the corresponding Status bytes.

Example: Machine 1 Machine 2 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1*

177 Status Status Data Data Data Data Data

191 Status Status Data Data Data Data Data

205 Status Status Data Data Data Data Data

219 Status Status Data Data Data Data Data

233 Status Status Data Count Count Data Data

247 Status Status Data Count Count Data Data

261 Status Status Data Count Count Data Data

275 Status Status Data Count Count Data Data

289 Status Status Count Data Data Count Data

303 Status Status Count Data Data Count Data

317 Status Status Count Data Data Count Data

331 Status Status Count Data Data Count Data

345 Status Status Data Data Count Data Data

359 Status Status Data Data Count Data Data

373 Status Status Data Data Count Data Data

387 Status Status Data Data Count Data Data

.

.

.

14457 Status Status Data Data Data Data Data

14471 Status Status Data Data Data Data Data

14485 Status Status Data Data Data Data Data

14499 Status Status Data Data Data Data Data

*The headings are not a part of the returned data.

DATA

HP 1650B/HP 1651B System Commands

Programming Reference 6-17

www.valuetronics.com

DSP (Display) command

The DSP command writes the specified quoted string to a device

dependent portion of the instrument display.

Command Syntax: :SYSTem:DSP < string>

where:

< string> ::= string of up to 60 alphanumeric characters

Example: OUTPUT XXX;":SYSTEM:DSP ’The message goes here’"

DSP

System Commands HP 1650B/HP 1651B

6-18 Programming Reference

www.valuetronics.com

ERRor query

The ERRor query returns the oldest error number from the error queue.

A complete list of error numbers for the HP 1650B/51B is shown in

appendix C. If no errors are present in the error queue, a zero is returned.

Query Syntax: :SYSTem:ERRor?

Returned Format: [:SYSTem:ERRor] < error number> < NL>

Example: 10 OUTPUT XXX;":SYSTEM:ERROR?"

20 ENTER XXX;Error

30 PRINT Error

40 END

ERRor

HP 1650B/HP 1651B System Commands

Programming Reference 6-19

www.valuetronics.com

HEADer command/query

The HEADER command tells the instrument whether or not to output a

header for query responses. When HEADer is set to ON, query

responses will include the command header.

The HEADer query returns the current state of the HEADer command.

Command Syntax: :SYSTem:HEADer { { ON| 1} | { OFF| 0} }

Example: OUTPUT XXX;":SYSTEM:HEADER ON"

Query Command: :SYSTem:HEADer?

Returned Format: [:SYSTem:HEADer] { 1| 0} < NL>

Example: 10 DIM Mode$[100]

20 OUTPUT XXX;":SYSTEM:HEADER?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

Note
Headers should be turned off when returning values to numeric variables.

HEADer

System Commands HP 1650B/HP 1651B

6-20 Programming Reference

www.valuetronics.com

KEY command/query

The KEY command allows you to simulate pressing a specified

front-panel key. Key commands may be sent over the bus in any order

that is legal from the front panel. Be sure the instrument is in a desired

setup before executing the KEY command. Key codes range from 0 to 36

with 99 representing no key (returned at power-up). See Table 6-1 for key

codes.

Note
The external KEY buffer is only two keys deep; therefore, attempting to

send KEY commands too rapidly will cause a KEY buffer overflow error

to be displayed on the HP 1650B/51B screen.

The KEY query returns the key code for the last front- panel key pressed

or the last simulated key press over the bus.

Command Syntax: :SYSTem:KEY < key_code>

where:

< key_code> ::= integer from 0 to 36

Example: OUTPUT XXX;":SYSTEM:KEY 24"

KEY

HP 1650B/HP 1651B System Commands

Programming Reference 6-21

www.valuetronics.com

Query Syntax: :SYSTem:KEY?

Returned Format: [:SYSTem:KEY] < key_code> < NL>

Example: 10 DIM Key$[100]

20 OUTPUT XXX;":SYSTEM:KEY?"

30 ENTER XXX; KEY$

40 PRINT KEY$

50 END

Table 6-1. Key codes

Key Value HP 1650B/1651B Key Value HP1650B/1651B

Key Key

0 RUN 19 D

1 STOP 20 E

2 unused 21 F

3 SELECT 22 unused

4 CHS 23 unused

5 Don’t Care 24 Knob left

6 0 25 Knob right

7 1 26 L/R Roll

8 2 27 U/D Roll

9 3 28 unused

10 4 29 unused

11 5 30 unused

12 6 31 "."

13 7 32 Clear Entry

14 8 33 FORMAT

15 9 34 TRACE

16 A 35 DISPLAY

17 B 36 I/O

18 C 99 Power Up

KEY

System Commands HP 1650B/HP 1651B

6-22 Programming Reference

www.valuetronics.com

LER (LCL Event Register) query

The LER query allows the LCL (local) Event Register to be read. After

the LCL Event Register is read, it is cleared. A one indicates a

remote-to-local transition has taken place. A zero indicates a

remote-to-local transition has not taken place.

Query Syntax: :SYSTem:LER?

Returned Format: [:SYSTem:LER] { 0| 1} < NL>

Example: 10 DIM Event$[100]

20 OUTPUT XXX;":SYSTEM:LER?"

30 ENTER XXX;Event$

40 PRINT Event$

50 END

LER

HP 1650B/HP 1651B System Commands

Programming Reference 6-23

www.valuetronics.com

LOCKout command/query

The LOCKout command locks out or restores front-panel operation.

When this function is on, all controls (except the power switch) are

entirely locked out.

The LOCKout query returns the current status of the LOCKout command.

Command Syntax: :SYSTem:LOCKout { { ON| 1} | { OFF| 0} }

Example: OUTPUT XXX;":SYSTEM:LOCKOUT ON"

Query Syntax: :SYSTem:LOCKout?

Returned Format: [:SYSTem:LOCKout] { 0| 1} < NL>

Example: 10 DIM Status$[100]

20 OUTPUT XXX;":SYSTEM:LOCKOUT?"

30 ENTER XXX;Status$

40 PRINT Status$

50 END

LOCKout

System Commands HP 1650B/HP 1651B

6-24 Programming Reference

www.valuetronics.com

LONGform command/query

The LONGform command sets the longform variable which tells the

instrument how to format query responses. If the LONGform command

is set to OFF, command headers and alpha arguments are sent from the

instrument in the abbreviated form. If the LONGform command is set to

ON, the whole word will be output.

This command has no affect on the input data messages to the instrument.

Headers and arguments may be input in either the longform or shortform

regardless of how the LONGform command is set.

The query returns the status of the LONGform command.

Command Syntax: :SYSTem:LONGform { { ON| 1} | { OFF| 0} }

Example: OUTPUT XXX;":SYSTEM:LONGFORM ON"

Query Syntax: :SYSTem:LONGform?

Returned Format: [:SYSTem:LONGform] { 1| 0} < NL>

Example: 10 DIM Mode$[100]

20 OUTPUT XXX;":SYSTEM:LONGFORM?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

LONGform

HP 1650B/HP 1651B System Commands

Programming Reference 6-25

www.valuetronics.com

MENU command/query

The MENU command puts a menu on the display.

The MENU query returns the current menu selection.

Command Syntax: :SYSTem:MENU < menu_type> ,< mach_num>

where:

< menu_type> ::= { SCONfig | FORMat | TRACe | DISPlay| SWAVeform| COMPare| SCHart| SLISt}

< mach_num> ::= { 0 | 1 | 2}

0 ::= mixed mode

1 ::= analyzer 1

2 ::= analyzer 2

Example: OUTPUT XXX;"SYSTEM:MENU FORMAT,1"

Query Syntax: :SYSTem:MENU?

Returned Format: [:SYSTem:MENU] < menu_type> ,< mach_num>

Example: 10 DIM Response$[100]

20 OUTPUT XXX;":SYSTEM:MENU?"

30 ENTER XXX;Response$

40 PRINT Response$

50 END

MENU

System Commands HP 1650B/HP 1651B

6-26 Programming Reference

www.valuetronics.com

MESE command/query

The MESE command sets the Module Event Status Enable Register bits.

The MESE register contains a mask value for the bits enabled in the

MESR register. A one in the MESE will enable the corresponding bit in

the MESR, a zero will disable the bit.

The MESE query returns the current setting.

Refer to table 6-2 for information about the Module Event Status Enable

register bits, bit weights, and what each bit masks for the logic analyzer.

Command Syntax: :SYSTem:MESE < enable_mask>

where:

< enable mask> ::= integer from 0 to 255

Example: OUTPUT XXX;":SYSTEM:MESE 1"

MESE

HP 1650B/HP 1651B System Commands

Programming Reference 6-27

www.valuetronics.com

Query Syntax: :SYSTem:MESE?

Returned Format: [:SYSTem:MESE] < enable_mask> < NL>

Example: 10 OUTPUT XXX;":SYSTEM:MESE?"

20 ENTERXXX; Mes

30 PRINT Mes

40 END

Table 6-2. Module Event Status Enable Register

 Module Event Status Enable Register

(A "1" enables the MESR bit)

Bit Weight Enables

 7 128 Not used

 6 64 Not used

 5 32 Not used

 4 16 Not used

 3 8 Not used

 2 4 Not used

 1 2 RNT - Run until satisified

 0 1 MC - Measurement complete

MESE

System Commands HP 1650B/HP 1651B

6-28 Programming Reference

www.valuetronics.com

MESR query

The MESR query returns the contents of the Module Event Status

register.

Note
Reading the register clears the Module Event Status Register.

Table 6-3 shows each bit in Module Event Status Register and their bit

weights for the logic analyzer. When you read the MESR, the value

returned is the total bit weights of all bits that are set at the time the

register is read.

Query Syntax: :SYSTem:MESR?

Returned Format: [:SYSTem:MESR] < status> < NL>

where:

< status> ::= integer from 0 to 255

Example: 10 OUTPUT XXX;":SYSTem:MESR?"

20 ENTER XXX; Mer

30 PRINT Mer

40 END

MESR

HP 1650B/HP 1651B System Commands

Programming Reference 6-29

www.valuetronics.com

Table 6-3. Module Event Status Register

Module Event Status Register

Bit Weight Condition

7 128 Not used

6 64 Not used

5 32 Not used

4 16 Not used

3 8 Not used

2 4 Not used

1 2 1 = Run until satisified

0 = Run until not satisified

0 1 1 = Measurement complete

0 = Measurement not complete

MESR

System Commands HP 1650B/HP 1651B

6-30 Programming Reference

www.valuetronics.com

PPOWer query

The PPOWer (preprocessor power) query returns the current status of

the HP 1650B/51B’s high-current limit circuit. If it is functioning properly,

1 is returned. If the current draw is too high, 0 is returned until the

problem is corrected and the circuit automatically resets. Sending the

query to an HP 1650A/1651A results in -1 being returned.

Query Syntax: :PPOWer?

Returned Format: [:PPOWer] { -1 | 0 | 1}

Example: 10 DIM Response$

20 OUTPUT XXX;":PPOWER?"

30 ENTER XXX; Response$

40 PRINT Response$

50 END

PPOWer

HP 1650B/HP 1651B System Commands

Programming Reference 6-31

www.valuetronics.com

PRINt command

The PRINt command initiates a print of the screen or print all over either

HP-IB or RS-232C. The PRINt parameters SCReen or ALL specify how

the screen data is sent to the controller. PRINt SCReen transfers the data

to the controller in a printer specific graphics format. PRINt ALL

transfers the data in a raster format for the following menus:

· State and Timing Format menus

· Disk menu

· State and Timing Symbol menus

· State Listing menu

· State Trace

· State Compare

Command Syntax: :SYSTem:PRINt { SCReen| ALL}

Example: OUTPUT XXX;":SYSTEM:PRINT SCREEN"

PRINt

System Commands HP 1650B/HP 1651B

6-32 Programming Reference

www.valuetronics.com

RMODe command/query

The RMODe command is a run control command that specifies the run

mode for logic analyzer. It is at the same level in the command tree as

SYSTem; therefore, it is not preceded by :SYSTem.

 The query returns the current setting.

Note
After specifying the run mode, use the STARt command to start the

acquisition.

Command Syntax: :RMODe { SINGle| REPetitive}

Example: OUTPUT XXX;":RMODE SINGLE"

Query Syntax: :RMODe?

Returned Format: [:RMODe] { SINGle| REPetitive} < NL>

Example: 10 DIM Mode$[100]

20 OUTPUT XXX;":RMODE?"

30 ENTER XXX;Mode$

40 PRINT Mode$

50 END

RMODe

HP 1650B/HP 1651B System Commands

Programming Reference 6-33

www.valuetronics.com

SETup command/query

The SYStem:SETup command configures the logic analyzer module as

defined by the block data sent by the controller.

The SYStem:SETup query returns a block of data that contains the

current configuration to the controller.

There are three data sections which are always returned:

(These are the strings which would be included in the section header.)

· "CONFIG "

· "1650 DISP "

· "1650 DISP2"

Additionally, the following sections may also be included, depending on

what’s available:

· "SYMBOLS A "

· "SYMBOLS B "

· "SPA DATA A"

· "SPA DATA B"

· "INVASM A "

· "INVASM B "

· "COMPARE "

SETup

System Commands HP 1650B/HP 1651B

6-34 Programming Reference

www.valuetronics.com

Command syntax: :SYStem:SETup < block data>

where:

< block data> ::= < block length specifier> < section> ...

< block length specifier ::= # 8< length>

< length> ::= the total length of all sections in byte format (must be represented with 8 digits)

< section> ::= < section header> < section data>

< section header> ::= 16 bytes in the following format:

10 bytes for the section name

1 byte reserved

1 byte for the module ID code (31 for the logic analyzer)

4 bytes for the length of the section data in bytes

< section data> ::= format depends on the type of data

Note
The total length of a section is 16 (for the section header) plus the length

of the section data. So when calculating the value for < length> , do not

forget to include the length of the section headers.

Example: OUTPUT XXX;"SETUP" < block data>

Query Syntax: :SYStem:SETup?

Returned Format: [:SYStem:SETup] < block data> < NL>

HP-IB Example: 10 DIM Block$[32000] ! allocate enough memory for block data

20 DIM Specifier$[2]

30 OUTPUT XXX;":EOI ON"

40 OUTPUT XXX;":SYSTEM:HEAD OFF"

50 OUTPUT XXX:":SYSTEM:SETUP?" ! send setup query

60 ENTER XXX USING "#,2A";Specifier$! read in #8

70 ENTER XXX"#,8D";Blocklength ! read in block length

80 ENTER XXX USING "-K";Block$! read in data

90 END

SETup

HP 1650B/HP 1651B System Commands

Programming Reference 6-35

www.valuetronics.com

STARt command

The STARt command is a run control command that starts the logic

analyzer running in the specified run mode (see RMODe). The STARt

command is on the same level in the command tree as SYSTem; therefore,

it is not preceded by :SYSTem.

Note
The STARt command is an Overlapped Command. An Overlapped

Command is a command that allows execution of subsequent commands

while the device operations initiated by the Overlapped Command are still

in progress.

Command Syntax: :STARt

Example: OUTPUT XXX;":START"

STARt

System Commands HP 1650B/HP 1651B

6-36 Programming Reference

www.valuetronics.com

STOP command

The STOP command is a run control command that stops the logic

analyzer. The STOP command is on the same level in the command tree

as SYSTem; therefore, it is not preceded by :SYSTem.

Note
The STOP command is an Overlapped Command. An Overlapped

Command is a command that allows execution of subsequent commands

while the device operations initiated by the Overlapped Command are still

in progress.

Command Syntax: :STOP

Example: OUTPUT XXX;":STOP"

STOP

HP 1650B/HP 1651B System Commands

Programming Reference 6-37

www.valuetronics.com

7MMEMory Subsystem

Introduction MMEMory (Mass Memory) subsystem commands provide access to the

disk drive. The MMEMory subsystem commands are:

· AUToload

· CATalog

· COPY

· DOWNload

· INITialize

· LOAD

· PACK

· PURGe

· REName

· STORe

· UPLoad

Note
If you are not going to store information to the configuration disk, or if the

disk you are using contains information you need, it is advisable to write

protect your disk. This will protect the contents of the disk from

accidental damage due to incorrect commands, etc.

[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-1

www.valuetronics.com

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram

[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-2 Programming Reference

www.valuetronics.com

auto_file = string of up to 10 alphanumeric characters representing a valid file name.

name = string of up to 10 alphanumeric characters representing a valid file name.

description = string of up to 32 alphanumeric characters.

type = integer, refer to table 7-1.

block_data = data in IEEE 488.2 # format.

ia_name = string of up to 10 alphanumeric characters representing a valid file name.

new_name = string of up to 10 alphanumeric characters representing a valid file name.

Figure 7-1. MMEMory Subsystem Commands Syntax Diagram (continued)

Note
Refer to "Disk Operations" in chapter 6 of the HP 1650B/HP 1651B

Front-Panel Reference manual for a description of a valid file name.

[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-3

www.valuetronics.com

AUToload command/query

The AUToload command controls the autoload feature which designates

a configuration file to be loaded automatically the next time the

instrument is turned on. The OFF parameter (or 0) disables the autoload

feature. When a string parameter is specified it represents the desired

autoload file.

The AUToload query returns 0 if the autoload feature is disabled. If the

autoload feature is enabled, the query returns a string parameter that

specifies the current autoload file.

Command Syntax: :MMEMory:AUToload { { OFF| 0} | < auto_file> }

where:

< auto_file> ::= string of up to 10 alphanumeric characters

Examples: OUTPUT XXX;":MMEMORY:AUTOLOAD OFF"

OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE1’"

OUTPUT XXX;":MMEMORY:AUTOLOAD ’FILE2’"

Query Command: :MMEMory:AUToload?

Returned Format: [:MMEMory:AUToload] { 0| < auto_file> } < NL>

Example: 10 DIM Auto_status$[100]

20 OUTPUT XXX;":MMEMORY:AUTOLOAD?"

30 ENTER XXX;Auto_status$

40 PRINT Auto_status$

50 END

AUToload[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-4 Programming Reference

www.valuetronics.com

CATalog query

The CATalog query returns the directory of the disk in block data format.

The directory consists of a 51-character string for each file on the disk.

Each file entry is formatted as follows:

"NNNNNNNNNN TTTTTTT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD"

where N is the filename, T is the file type (a number), and D is the file

description.

Query Syntax: :MMEMory:CATalog?

Returned Format: [:MMEMory:CATalog] < block size> < block data>

where:

< block size> ::= # 8dddddddd (# 8 followed by an eight-digit number)

< block data> ::= [< filename> < file type> < file description>]...

Example: 10 DIM File$[51]

20 DIM Specifier$[2]

30 OUTPUT XXX;":SYSTEM:HEAD OFF"

40 OUTPUT XXX;":MMEMORY:CATALOG?" !send catalog query

50 ENTER XXX USING "#,2A";Specifier$!read in #8

60 ENTER XXX USING "#,8D";Length !read in length

70 FOR I=1 TO Length STEP 51 !read and print each file

80 ENTER XXX USING "#,51A";File$

90 PRINT File$

100 NEXT I

110 ENTER XXX USING "A";Specifier$!read in final line feed

120 END

CATalog[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-5

www.valuetronics.com

COPY command

The COPY command copies the contents of a file to a new file. The two

< name> parameters are the filenames. The first parameter specifies the

source file. The second specifies the destination file. An error is

generated if the source file doesn’t exist, if the destination file already

exists, or any other disk error is detected.

Command Syntax: :MMEMory:COPY < name> ,< name>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

Example: To copy the contents of "FILE1" to "FILE2":

OUTPUT XXX;":MMEMORY:COPY ’FILE1’,’FILE2’"

COPY[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-6 Programming Reference

www.valuetronics.com

DOWNload command

The DOWNload command downloads a file to the disk. The < name>

parameter specifies the filename, the < description> parameter specifies

the file description, and the < block_data> contains the contents of the

file to be downloaded.

Table 7-1 lists the file types for the < type> parameter.

Command Syntax: :MMEMory:DOWNload < name> ,< description> ,< type> ,< block_data>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

< description> ::= string of up to 32 alphanumeric characters

< type> ::= integer (see Table 7-1)

< block_data> ::= contents of file in block data format

Example: OUTPUT XXX;":MMEMORY:DOWNLOAD ’SETUP__’;’FILE CREATED FROM SETUP

QUERY’,-16127,#800000643..."

Table 7-1. File Types

File File Type

HP 1650/1 SYSTEM -16383

1650/1 CONFIG -16096

AUTOLOAD TYPE -15615

INVERSE ASSEMBLER -15614

TEXT TYPE -15610

DOWNload[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-7

www.valuetronics.com

INITialize command

The INITialize command formats the disk.

Note
Once executed, the initialize command formats the specified disk,

permanently erasing all existing information from the disk. After that,

there is no way to retrieve the original information.

Command Syntax: :MMEMory:INITialize

Example: OUTPUT XXX;":MMEMORY:INITIALIZE"

INITialize[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-8 Programming Reference

www.valuetronics.com

LOAD [:CONFig] command

The LOAD command loads a file from the disk into the analyzer. The

[:CONfig] specifier is optional and has no effect on the command. The

< name> parameter specifies the filename that will be loaded into the

logic analyzer.

Note
Any previous setups and data in the instrument are replaced by the

contents of the configuration file.

Command Syntax: :MMEMory:LOAD[:CONfig] < name>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY:LOAD:CONFIG ’FILE__’"

OUTPUT XXX;":MMEMORY:LOAD ’FILE__’"

OUTPUT XXX;":MMEM:LOAD:CONFIG ’FILE_A’"

LOAD[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-9

www.valuetronics.com

LOAD :IASSembler command

This variation of the LOAD command allows inverse assembler files to be

loaded into analyzer 1 or analyzer 2 of the HP 1650B/51B. The

< IA_name> parameter specifies the inverse assembler filename. The

parameter after the < IA_name> parameter specifies into which

machine the inverse assembler is loaded.

Note
Inverse assembler files should only be loaded into the state analyzer. If an

inverse assembler file is loaded into the timing analyzer no error will be

generated; however, it will not be accessible.

Command Syntax: :MMEMory:LOAD:IASSembler < IA_name> ,{ 1| 2}

where:

< IA_name> ::= string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER ’I68020_IP’,1"

OUTPUT XXX;":MMEM:LOAD:IASS ’I68020_IP’1"

LOAD[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-10 Programming Reference

www.valuetronics.com

PACK command

The PACK command packs the files on a disk in the disk drive.

Command Syntax: :MMEMory:PACK

Example: OUTPUT XXX;":MMEMORY:PACK"

PACK[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-11

www.valuetronics.com

PURGe command

The PURGe command deletes a file from the disk. The < name>

parameter specifies the filename to be deleted.

Note
Once executed, the purge command permanently erases all the existing

information from the specified file. After that, there is no way to retrieve

the original information.

Command Syntax: :MMEMory:PURGe < name>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY:PURGE ’FILE1’"

PURGe[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-12 Programming Reference

www.valuetronics.com

REName command

The REName command renames a file on the disk. The < name>

parameter specifies the filename to be changed and the < new_name>

parameter specifies the new filename.

Note
You cannot rename a file to an already existing filename.

Command Syntax: :MMEMory:REName < name> ,< new_name>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

< new_name> ::= string of up to 10 alphanumeric characters representing a valid file name

Examples: OUTPUT XXX;":MMEMORY:RENAME ’OLDFILE’,’NEWFILE’"

REName[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-13

www.valuetronics.com

STORe [:CONFig] command

The STORe command stores a configuration onto a disk. The [:CONFig]

specifier is optional and has no effect on the command. The < name>

parameter specifies the file to be stored to the disk. The < description>

parameter specifies the file description.

Command Syntax: :MMEMory:STORe [:CONfig]< name> ,< description>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

< description> ::= string of up to 32 alphanumeric characters

Example: OUTPUT XXX;":MMEM:STORE ’DEFAULTS’,’DEFAULT SETUPS’"

STORe[> tag name]

MMEMory Subsystem HP 1650B/HP 1651B

7-14 Programming Reference

www.valuetronics.com

UPLoad query

The UPLoad query uploads a file. The < name> parameter specifies the

file to be uploaded from the disk. The contents of the file are sent out of

the instrument in block data form.

Query Syntax: :MMEMory:UPLoad? < name>

where:

< name> ::= string of up to 10 alphanumeric characters representing a valid file name

Returned Format: [:MMEMory:UPLoad] < block_data> < NL>

Example: 10 DIM Block$[32000] !allocate enough memory for block data

20 DIM Specifier$[2]

30 OUTPUT XXX;":SYSTEM HEAD OFF"

40 OUTPUT XXX;":MMEMORY:UPLOAD? ’FILE1’" !send upload query

50 ENTER XXX USING "#,2A";Specifier$!read in #8

60 ENTER XXX USING "#,8D";Length !read in block length

70 ENTER XXX USING "-K";Block$!read in file

80 END

UPLoad[> tag name]

HP 1650B/HP 1651B MMEMory Subsystem

Programming Reference 7-15

www.valuetronics.com

8DLISt Subsystem

Introduction The DLISt (dual list) subsystem contains the commands in the dual state

listing menu. These commands are:

· COLumn

· LINE

col_num = integer from 1 to 8

label_name = a string of up to 6 alphanumeric characters

base = {BINary| HEXadecimal| OCTal| DECimal| ASCii| SYMBol}

mach_num = {1| 2}

line_num_mid_screen = integer from -1023 to + 1023

Figure 8-1. DLISt Subsystem Syntax Diagram

HP 1650B/HP 1651B DLISt Subsystem

Programming Reference 8-1

www.valuetronics.com

DLISt selector

The DLISt selector (dual list) is used as part of a compound header to

access those settings normally found in the Dual State Listing menu. The

dual list displays data when two state analyzers are run simultaneously.

Command Syntax: :DLISt

Example: OUTPUT XXX;":DLIST:LINE 0,1"

DLISt

DLISt Subsystem HP 1650B/HP 1651B

8-2 Programming Reference

www.valuetronics.com

COLumn command/query

The COLumn command allows you to configure the state analyzer list

display by assigning a label name and base to one of eight vertical columns

in the menu. The machine number parameter is required since the same

label name can occur in both state machines at once. A column number

of 1 refers to the left-most column. When a label is assigned to a column

it replaces the original label in that column. The label originally in the

specified column is placed in the column the specified label is moved from.

When "TAGS" is the label name, the TAGS column is assumed and the

next parameter must specify RELative or ABSolute. The machine

number should be 1.

The COLumn query returns the column number, label name, and base for

the specified column.

Command Syntax: :DLISt:COLumn < col_num> ,{ "TAGS",{ RELative| ABSolute} |

< label_name> ,< base> } ,< mach_num>

where:

< col_num> ::= { 1| 2| 3| 4| 5| 6| 7| 8}

< label_name> ::= a string of up to 6 alphanumeric characters

< base> ::= { BINary| HEXadecimal| OCTal| DECimal| ASCii| SYMBol}

< mach_num> ::= { 1| 2}

Example: OUTPUT XXX;":DLISt:COLUMN 4,’DATA’,HEXADECIMAL,1"

COLumn

HP 1650B/HP 1651B DLISt Subsystem

Programming Reference 8-3

www.valuetronics.com

Query Syntax: :DLISt:COLumn? < col_num>

Returned Format: [:DLISt:COLumn] < col_num> ,< label_name> ,< base> ,< mach_num> < NL>

Example: 10 DIM Cl$[100]

20 OUTPUT XXX;":DLIST:COLUMN? 4"

30 ENTER XXX;Cl$

40 PRINT Cl$

50 END

COLumn

DLISt Subsystem HP 1650B/HP 1651B

8-4 Programming Reference

www.valuetronics.com

LINE command/query

The LINE command allows you to scroll the state analyzer listing

vertically. The command specifies the state line number relative to the

trigger that the specified analyzer will highlight at center screen.

The LINE query returns the line number for the state currently in the box

at center screen and the machine number to which it belongs.

Command Syntax: :DLISt:LINE < line_num_mid_screen> ,< mach_num>

where:

< line_num_mid_screen> ::= integer from -1023 to + 1023

< mach_num> ::= { 1| 2}

Example: OUTPUT XXX;":DLIST:LINE 511,1"

Query Syntax: :DLISt:LINE?

Returned Format: [DLISt:LINE] < line_num_mid_screen> ,< mach_num> < NL>

Example: 10 DIM Ln$[100]

20 OUTPUT XXX;":DLIST:LINE?"

30 ENTER XXX;Ln$

40 PRINT Ln$

50 END

LINE

HP 1650B/HP 1651B DLISt Subsystem

Programming Reference 8-5

www.valuetronics.com

9WLISt Subsystem

Introduction Two commands in the WLISt subsystem control the X and O marker

placement on the waveforms portion of the Timing/State mixed mode

display. These commands are XTIMe and OTIMe. The XSTate and

OSTate queries return what states the X and O markers are on. Since the

markers can only be placed on the timing waveforms, the queries return

what state (state acquisition memory location) the marked pattern is

stored in.

Note
In order to have mixed mode, one machine must be a timing analyzer and

the other must be a state analyzer with time tagging on (use

MACHine< N> :STRace:TAG TIME).

time_value = real number

Figure 9-1. WLISt Subsystem Syntax Diagram

HP 1650B/HP 1651B WLISt Subsystem

Programming Reference 9-1

www.valuetronics.com

WLISt selector

The WLISt (Waveforms/listing) selector is used as a part of a compound

header to access the settings normally found in the Mixed Mode menu.

Since the WLISt command is a root level command, it will always appear

as the first element of a compound header.

Note
The WLISt Subsystem is only available when one state analyzer (with time

tagging on) and one timing analyzer are specified.

Command Syntax: :WLISt

Example: OUTPUT XXX;":WLIST:XTIME 40.0E-6"

WLISt

WLISt Subsystem HP 1650B/HP 1651B

9-2 Programming Reference

www.valuetronics.com

OSTate query

The OSTate query returns the state where the O Marker is positioned. If

data is not valid, the query returns 32767.

Query Syntax: :WLISt:OSTate?

Returned Format: [:WLISt:OSTate] < state_num> < NL>

where:

< state_num> ::= integer

Example: 10 DIM So$[100]

20 OUTPUT XXX;":WLIST:OSTATE?"

30 ENTER XXX;So$

40 PRINT So$

50 END

OSTate

HP 1650B/HP 1651B WLISt Subsystem

Programming Reference 9-3

www.valuetronics.com

XSTate query

The XSTate query returns the state where the X Marker is positioned. If

data is not valid, the query returns 32767.

Query Syntax: :WLISt:XSTate?

Example: OUTPUT XXX,":WLIST:XSTATE?

Returned Format: [:WLISt:XSTate] < state_num> < NL>

where:

< state_num> ::= integer

Example: 10 DIM Sx$[100]

20 OUTPUT XXX;":WLIST:XSTATE?"

30 ENTER XXX;Sx$

40 PRINT Sx$

50 END

XSTate

WLISt Subsystem HP 1650B/HP 1651B

9-4 Programming Reference

www.valuetronics.com

OTIMe command/query

The OTIMe command positions the O Marker on the timing waveforms in

the mixed mode display. If the data is not valid, the command performs

no action.

The OTIMe query returns the O Marker position in time. If data is not

valid, the query returns 9.9E37.

Command Syntax: :WLISt:OTIMe < time_value>

where:

< time_value> ::= real number

Example: OUTPUT XXX,":WLIST:OTIME 40.0e-6"

Query Syntax: :WLISt:OTIMe?

Returned Format: [:WLISt:OTIMe] < time_value> < NL>

Example: 10 DIM To$[100]

20 OUTPUT XXX;":WLIST:OTIME?"

30 ENTER XXX;To$

40 PRINT To$

50 END

OTIMe

HP 1650B/HP 1651B WLISt Subsystem

Programming Reference 9-5

www.valuetronics.com

XTIMe command/query

The XTIMe command positions the X Marker on the timing waveforms in

the mixed mode display. If the data is not valid, the command performs

no action.

The XTIMe query returns the X Marker position in time. If data is not

valid, the query returns 9.9E37.

Command Syntax: :WLISt:XTIMe < time_value>

where:

< time_value> ::= real number

Example: OUTPUT XXX,":WLIST:XTIME 40.0E-6"

Query Syntax: :WLISt:XTIMe?

Returned Format: [:WLISt:XTIMe] < time_value> < NL>

Example: 10 DIM Tx$[100]

20 OUTPUT XXX;":WLIST:XTIME?"

30 ENTER XXX;Tx$

40 PRINT Tx$

50 END

XTIMe

WLISt Subsystem HP 1650B/HP 1651B

9-6 Programming Reference

www.valuetronics.com

10MACHine Subsystem

Introduction The MACHine subsystem contains the commands available for the

State/Timing Configuration menu. These commands are:

· ARM

· ASSign

· AUToscale (Timing Analyzer only)

· NAME

· TYPE

There are actually two MACHine subsystems: MACHine1 and

MACHine2. Unless noted, they are identical. In the syntax definitions

you will see MACHine{1| 2} anytime the subject is applicable to both

subsystems.

Additionally, the following subsystems are a part of the MACHine

subsystem. Each is explained in a separate chapter.

· SFORmat subsystem (chapter 11)

· STRace subsystem (chapter 12)

· SLISt subsystem (chapter 13)

· SWAVeform subsystem (chapter 14)

· SCHart subsystem (chapter 15)

· COMPare subsystem (chapter 16)

· TFORmat subsystem (chapter 17)

· TTRace subsystem (chapter 18)

· TWAVeform subsystem (chapter 19)

· SYMBol subsystem (chapter 20)

HP 1650B/HP 1651B MACHine Subsystem

Programming Reference 10-1

www.valuetronics.com

arm_source = {RUN | MACHine {1 | 2}}

pod_list = {NONE | < pod_num> [, < pod_num>]...}

pod_num = {1 | 2 | 3 | 4 | 5}

machine_name = string of up to 10 alphanumeric characters

Figure 10-1. Machine Subsystem Syntax Diagram

MACHine Subsystem HP 1650B/HP 1651B

10-2 Programming Reference

www.valuetronics.com

MACHine < N> selector

The MACHine< N> selector specifies which of the two analyzers

(machines) available in the HP 1650B/51B the commands or queries

following will refer to. Since the MACHine< N> command is a root

level command, it will normally appear as the first element of a compound

header.

Command Syntax: :MACHine< N>

where:

< N> ::= { 1| 2} (the number of the machine)

Example: OUTPUT XXX; ":MACHINE1:NAME ’DRAMTEST’"

MACHine < N>

HP 1650B/HP 1651B MACHine Subsystem

Programming Reference 10-3

www.valuetronics.com

ARM command/query

The ARM command specifies the arming source of the specified analyzer

(machine).

The ARM query returns the source that the current analyzer (machine)

will be armed by.

Command Syntax: :MACHine{ 1| 2} :ARM < arm_source>

where:

< arm_source> ::= { RUN| MACHine{ 1| 2} | BNC}

Example: OUTPUT XXX;":MACHINE1:ARM MACHINE2"

Query Syntax: :MACHine { 1| 2} :ARM?

Returned Format: [:MACHine { 1| 2} :ARM] < arm_source> < NL>

Example: 10 DIM String$ [100]

20 OUTPUT XXX; ":MACHINE1:ARM?"

30 ENTER XXX; String$

40 PRINT String$

50 END

ARM

MACHine Subsystem HP 1650B/HP 1651B

10-4 Programming Reference

www.valuetronics.com

ASSign command/query

The ASSign command assigns pods to a particular analyzer (machine).

The ASSign query returns which pods are assigned to the current analyzer

(machine).

Command Syntax: :MACHine{ 1| 2} :ASSign < pod_list>

where:

< pod_list> ::= { NONE| < pod # > [, < pod # >]...}

< pod # > ::= { 1| 2| 3| 4| 5}

Example: OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"

Query Syntax: :MACHine { 1| 2} :ASSign?

Returned Format: [:MACHINE { 1| 2} :ASSign] < pod_list> < NL>

Example: 10 DIM String$ [100]

20 OUTPUT XXX;":MACHINE1:ASSIGN?"

30 ENTER XXX;String$

40 PRINT String$

50 END

ASSign

HP 1650B/HP 1651B MACHine Subsystem

Programming Reference 10-5

www.valuetronics.com

AUToscale command

The AUToscale command causes the current analyzer (machine) to

autoscale if the current machine is a timing analyzer. If the current

machine is not a timing analyzer, the AUToscale command is ignored.

AUToscale is an Overlapped Command. Overlapped Commands allow

execution of subsequent commands while the logic analyzer operations

initiated by the Overlapped Command are still in progress. Command

overlapping can be avoided by using the *OPC and *WAI commands (see

the chapter "Common Commands") in conjunction with AUToscale.

Note
When the AUToscale command is issued, existing timing analyzer

configurations are erased and the other analyzer is turned off.

Command Syntax: :MACHine{ 1| 2} :AUToscale

Example: OUTPUT XXX;":MACHINE1:AUTOSCALE"

AUToscale

MACHine Subsystem HP 1650B/HP 1651B

10-6 Programming Reference

www.valuetronics.com

NAME command/query

The NAME command allows you to assign a name of up to 10 characters

to a particular analyzer (machine) for easier identification.

The NAME query returns the current analyzer name as an ASCII string.

Command Syntax: :MACHine{ 1| 2} :NAME < machine_name>

where:

< machine_name> ::= string of up to 10 alphanumeric characters

Example: OUTPUT XXX;":MACHINE1:NAME ’DRAMTEST’"

Query Syntax: :MACHine{ 1| 2} :NAME?

Returned Format: [MACHine{ 1| 2} :NAME] < machine name> < NL>

Example: 10 DIM String$ [100]

20 OUTPUT XXX;":MACHINE1:NAME?"

30 ENTER XXX;String$

40 PRINT String$

50 END

NAME

HP 1650B/HP 1651B MACHine Subsystem

Programming Reference 10-7

www.valuetronics.com

TYPE command/query

The TYPE command specifies what type a specified analyzer (machine)

will be. The analyzer types are state or timing. The TYPE command also

allows you to turn off a particular machine.

Note
Only one of the two analyzers can be specified as a timing analyzer at one

time.

The TYPE query returns the current analyzer type for the specified

analyzer.

Command Syntax: :MACHine{ 1| 2} :TYPE < analyzer type>

where:

< analyzer type> ::= { OFF| STATe| TIMing}

Example: OUTPUT XXX;":MACHINE1:TYPE STATE"

Query Syntax: :MACHine{ 1| 2} :TYPE?

Returned Format: [:MACHine{ 1| 2} :TYPE] < analyzer type> < NL>

Example: 10 DIM String$ [100]

20 OUTPUT XXX;":MACHINE1:TYPE?"

30 ENTER XXX;String$

40 PRINT String$

50 END

TYPE

MACHine Subsystem HP 1650B/HP 1651B

10-8 Programming Reference

www.valuetronics.com

11SFORmat Subsystem

Introduction The SFORmat subsystem contains the commands available for the State

Format menu in the HP 1650B/51B logic analyzer. These commands are:

· CLOCk

· CPERiod

· LABel

· MASTer

· REMove

· SLAVe

· THReshold

Figure 11-1. SFORmat Subsystem Syntax Diagram

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-1

www.valuetronics.com

< N> = {1 | 2 | 3 | 4 | 5}

GT = Greater Than 60 ns

LT = Less Than 60 ns

name = string of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}

pod_specification = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

clock_id = {J | K | L | M | N}

clock_spec = {OFF | RISing | FALLing | BOTH | LOW | HIGH}

value = voltage (real number) -9.9 to + 9.9

Figure 11-1. SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem HP 1650B/HP 1651B

11-2 Programming Reference

www.valuetronics.com

SFORmat selector

The SFORmat (State Format) selector is used as a part of a compound

header to access the settings in the State Format menu. It always follows

the MACHine selector because it selects a branch directly below the

MACHine level in the command tree.

Command Syntax: :MACHine{ 1| 2} :SFORmat

Example: OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

SFORmat

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-3

www.valuetronics.com

CLOCk command/query

The CLOCk command selects the clocking mode for a given pod when

the pod is assigned to the state analyzer. When the NORMal option is

specified, the pod will sample all 16 channels on the master clock. When

the MIXed option is specified, the upper 8 bits will be sampled by the

master clock and the lower 8 bits will be sampled by the slave clock.

When the DEMultiplex option is specified, the lower 8 bits will be

sampled on the slave clock and then sampled again on the master clock.

The master clock always follows the slave clock when both are used.

The CLOCk query returns the current clocking mode for a given pod.

Command Syntax: :MACHine{ 1| 2} :SFORmat:CLOCk< N> < clock_mode>

where:

< N> ::= { 1| 2| 3| 4| 5}

< clock_mode> ::= { NORMal | MIXed | DEMultiplex}

Example: OUTPUT XXX;":MACHINE1:SFORMAT:CLOCK2 NORMAL"

Query Syntax: :MACHine{ 1| 2} :SFORmat:CLOCk< N> ?

Returned Format: [:MACHine{ 1| 2} :SFORmat:CLOCK< N>] < clock_mode> < NL>

Example: 10 DIM String$ [100]

20 OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"

30 ENTER XXX; String$

40 PRINT String$

50 END

CLOCk

SFORmat Subsystem HP 1650B/HP 1651B

11-4 Programming Reference

www.valuetronics.com

CPERiod command/query

The CPERiod command allows you to set the state analyzer for input

clock periods of greater than or less than 60 ns. Either LT or GT can be

specified. LT signifies a state input clock period of less than 60 ns, and

GT signifies a period of greater than 60 ns.

Because count tagging requires a minimum clock period of 60 ns, the

CPERiod and TAG commands are interrelated (the TAG command is in

the STRace subsystem). When the clock period is set to Less Than, count

tagging is turned off. When count tagging is set to either state or time, the

clock period is automatically set to Greater Than.

The CPERiod query returns the current setting of clock period.

Command Syntax: :MACHine{ 1| 2} :SFORmat:CPERiod { LT| GT}

where:

GT ::= greater than 60 ns

LT ::= less than 60 ns

Example: OUTPUT XXX;":MACHINE2:SFORMAT:CPERIOD GT"

Query Syntax: :MACHine{ 1| 2} :SFORmat:CPERiod?

Returned Format: [:MACHine{ 1| 2} :SFORmat:CPERiod] { GT| LT} < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SFORMAT:CPERIOD?

30 ENTER XXX; String$

40 PRINT String$

50 END

CPERiod

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-5

www.valuetronics.com

LABel command/query

The LABel command allows you to specify polarity and assign channels to

new or existing labels. If the specified label name does not match an

existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one

listed will match the highest-numbered pod assigned to the machine

you’re using. Each pod specification after that is assigned to the

next-highest-numbered pod. This way they match the left-to-right

descending order of the pods you see on the Format display. Not

including enough pod specifications results in the lowest-numbered

pod(s) being assigned a value of zero (all channels excluded). If you

include more pod specifications than there are pods for that machine, the

extra ones will be ignored. However, an error is reported anytime more

than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be

between 0 and 65535 (2
16
-1). When giving the pod assignment in binary

(base 2), each bit will correspond to a single channel. A "1" in a bit

position means the associated channel in that pod is assigned to that pod

and bit. A "0" in a bit position means the associated channel in that pod is

excluded from the label. For example, assigning # B1111001101 is

equivalent to entering "......****..**.*" through the front-panel user

interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by

name) label. If the label does not exist, nothing is returned. The polarity

is always returned as the first parameter. Numbers are always returned in

decimal format.

LABel

SFORmat Subsystem HP 1650B/HP 1651B

11-6 Programming Reference

www.valuetronics.com

Command Syntax: :MACHine{ 1| 2} :SFORmat:LABel < name> [, { < polarity> | < assignment> }]...

where:

< name> ::= string of up to 6 alphanumeric characters

< polarity> ::= { POSitive | NEGative}

< assignment> ::= format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

Examples: OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’STAT’, POSITIVE, 65535,127,40312"

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’SIG 1’, 64, 12, 0, 20, NEGATIVE"

OUTPUT XXX;":MACHINE1:SFORMAT:LABEL ’ADDR’, NEG, #B0011110010101010"

Query Syntax: :MACHine{ 1| 2} :SFORmat:LABel?< name>

Returned Format: [:MACHine{ 1| 2} :SFORmat:LABel] < name> ,< polarity> [, < assignment>]...< NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? ’DATA’"

30 ENTER XXX String$

40 PRINT String$

50 END

LABel

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-7

www.valuetronics.com

MASTer command/query

The MASTer clock command allows you to specify a master clock for a

given machine. The master clock is used in all clocking modes (Normal,

Mixed, and Demultiplexed). Each command deals with only one clock

(J,K,L,M,N); therefore, a complete clock specification requires five

commands, one for each clock. Edge specifications (RISing, FALLing, or

BOTH) are ORed. Level specifications (LOW or HIGH) are ANDed.

Note
At least one clock edge must be specified.

The MASTer query returns the clock specification for the specified clock.

Command Syntax: :MACHine{ 1| 2} :SFORmat:MASTer < clock_id> ,< clock_spec>

where:

< clock_id> ::= { J| K| L| M| N}

< clock_spec> ::= { OFF| RISing| FALLing| BOTH| LOW| HIGH}

Example: OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

Query Syntax: :MACHine{ 1| 2} :SFORmat:MASTer? < clock_id>

Returned Format: [:MACHine{ 1| 2} :SFORmat:MASTer] < clock_id> ,< clock_spec> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SFORMAT:MASTER?<clock_id>"

30 ENTER XXX String$

40 PRINT String$

50 END

MASTer

SFORmat Subsystem HP 1650B/HP 1651B

11-8 Programming Reference

www.valuetronics.com

REMove command

The REMove command allows you to delete all labels or any one label for

a given machine.

Command Syntax: :MACHine{ 1| 2} :SFORmat:REMove { < name> | ALL}

where:

< name> ::= string of up to 6 alphanumeric characters

Examples: OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ’A’"

OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

REMove

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-9

www.valuetronics.com

SLAVe command/query

The SLAVe clock command allows you to specify a slave clock for a given

machine. The slave clock is only used in the Mixed and Demultiplexed

clocking modes. Each command deals with only one clock (J,K,L,M,N);

therefore, a complete clock specification requires five commands, one for

each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

Level specifications (LOW or HIGH) are ANDed.

Note
The slave clock must have at least one edge specified.

The SLAVe query returns the clock specification for the specified clock.

Command Syntax: :MACHine{ 1| 2} :SFORmat:SLAVe < clock_id> ,< clock_spec>

where:

< clock_id> ::= { J| K| L| M| N}

< clock_spec> ::= { OFF| RISing| FALLing| BOTH| LOW| HIGH}

Example: OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

Query Syntax: :MACHine{ 1| 2} :SFORmat:SLAVe?< clock_id>

Returned Format: [:MACHine{ 1| 2} :SFORmat:SLAVe] < clock_id> ,< clock_spec> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? <clock_id>"

30 ENTER XXX String$

40 PRINT String$

50 END

SLAVe

SFORmat Subsystem HP 1650B/HP 1651B

11-10 Programming Reference

www.valuetronics.com

THReshold command/query

The THReshold command allows you to set the voltage threshold for a

given pod to ECL, TTL, or a specific voltage from -9.9V to + 9.9V in 0.1

volt increments.

Note
On the HP 1650B, the pod thresholds of pods 1, 2 and 3 can be set

independently. The pod thresholds of pods 4 and 5 are slaved together;

therefore when you set the threshold on either pod 4 or 5, both thresholds

will be changed to the specified value. On the HP 1651B, pods 1 and 2 can

be set independently.

The THReshold query returns the current threshold for a given pod.

Command Syntax: :MACHine{ 1| 2} :SFORmat:THReshold< N> { TTL| ECL| < value> }

where:

< N> ::= pod number { 1| 2| 3| 4| 5}

< value> ::= voltage (real number) -9.9 to + 9.9

TTL ::= default value of + 1.6V

ECL ::= default value of -1.3V

Example: OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD1 4.0"

Query Syntax: :MACHine{ 1| 2} :SFORmat:THReshold< N> ?

Returned Format: [:MACHine{ 1| 2} :SFORmat:THReshold< N>] < value> < NL>

Example: 10 DIM Value$ [100]

20 OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD4?"

30 ENTER XXX;Value$

40 PRINT Value$

50 END

THReshold

HP 1650B/HP 1651B SFORmat Subsystem

Programming Reference 11-11

www.valuetronics.com

12STRace Subsystem

Introduction The STRace subsystem contains the commands available for the State

Trace menu in the HP 1650B/51B logic analyzer. The STRace subsystem

commands are:

· BRANch

· FIND

· PREStore

· RANGe

· RESTart

· SEQuence

· STORe

· TAG

· TERM

Figure 12-1. STRace Subsystem Syntax Diagram

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-1

www.valuetronics.com

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

STRace Subsystem HP 1650B/HP 1651B

12-2 Programming Reference

www.valuetronics.com

branch_qualifier = < qualifier>

to_lev_num = integer from 1 to trigger level when < N> is less than or equal to the trigger level, or

from (trigger level + 1) to < num_of_levels> when < N> is greater than the trigger level

proceed_qualifier = < qualifier>

occurrence = number from 1 to 65535

prestore_qual = < qualifier>

label_name = string of up to 6 alphanumeric characters

start_pattern = "{# B{0| 1} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

stop_pattern = "{# B{0| 1} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

restart_qualifier = < qualifier>

num_of_levels = integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise

lev_of_trig = integer from 1 to (number of existing sequence levels - 1)

store_qualifier = < qualifier>

state_tag_qualifier = < qualifier>

term_id = {A| B| C| D| E| F| G| H}

pattern = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

qualifier = { ANYState | NOSTate | < any_term> | (expression1[{AND| OR} < expression2>]) |

(expression2[{AND| OR} < expression1>]) }

any_term = {< or_term1> | < and_term1> | < or_term2> | and_term2}

expression1 = {< or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

expression2 = {< or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

or_term1 = {A| B| C| D| INRange| OUTRange}

and_term1 = {NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

or_term2 = {E| F| G| H}

and_term2 = {NOTE| NOTF| NOTG| NOTH}

Figure 12-1. STRace Subsystem Syntax Diagram (continued)

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-3

www.valuetronics.com

STRace selector

The STRace (State Trace) selector is used as a part of a compound

header to access the settings found in the State Trace menu. It always

follows the MACHine selector because it selects a branch directly below

the MACHine level in the command tree.

Command Syntax: :MACHine{ 1| 2} :STRace

Example: OUTPUT XXX;":MACHINE1:STRACE:TAG TIME"

STRace

STRace Subsystem HP 1650B/HP 1651B

12-4 Programming Reference

www.valuetronics.com

BRANch command/query

The BRANch command defines the branch qualifier for a given sequence

level. When this branch qualifier is matched, it will cause the sequencer

to jump to the specified sequence level.

Note
"RESTART PERLEVEL" must have been invoked for this command to

have an effect (see RESTart command).

The terms used by the branch qualifier (A through H) are defined by the

TERM command. The meaning of INRange and OUTRange is

determined by the RANGe command.

Within the limitations shown by the syntax definitions, complex

expressions may be formed using the AND and OR operators.

Expressions are limited to what you could manually enter through the

front panel. Regarding parentheses, the syntax definitions on the next

page show only the required ones. Additional parentheses are allowed as

long as the meaning of the expression is not changed. For example, the

following two statements are both correct and have the same meaning.

Notice that the conventional rules for precedence are not followed.

OUTPUT XXX;":MACHINE1:STRACE:BRANCH1 (C OR D AND F OR G), 1"

OUTPUT XXX;":MACHINE1:STRACE:BRANCH1 ((C OR D) AND (F OR G)), 1"

Figure 12-2 (on page 12-7) shows a complex expression as seen on the

Format display.

Note
Branching across the trigger level is not allowed. Therefore, the values for

< N> and < to_level_num> must both be either on or before the trigger

level, or they must both be after the trigger level . The trigger level is

determined through the SEQuence command.

The BRANch query returns the current branch qualifier specification for

a given sequence level.

BRANch

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-5

www.valuetronics.com

Command Syntax: :MACHine{ 1| 2} :STRace:BRANch< N> < branch_qualifier> ,< to_level_number>

where:

< N> ::= an integer from 1 to < number_of_levels>

< to_level_number> ::= integer from 1 to trigger level, when < N> is less than or equal to the trigger level

or from (trigger level + 1) to < number_of_levels> , when < N> is greater than the

trigger level

< number_of_levels> ::= integer from 2 to the number of existing sequence levels (maximum 8)

< branch_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

Examples: OUTPUT XXX;":MACHINE1:STRACE:BRANCH1 ANYSTATE, 3"

OUTPUT XXX;":MACHINE2:STRACE:BRANCH2 A, 7"

OUTPUT XXX;":MACHINE1:STRACE:BRANCH3 ((A OR B) OR NOTG), 1"

Query Syntax :MACHine{ 1| 2} :STRace:BRANch< N> ?

Returned Format: [:MACHine{ 1| 2} :STRace:BRANch< N>]

< branch_qualifier> ,< to_level_num> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:BRANCH3?"

30 ENTER XXX;String$

40 PRINT String$

50 END

BRANch

STRace Subsystem HP 1650B/HP 1651B

12-6 Programming Reference

www.valuetronics.com

Figure 12-2. Complex qualifier

Figure 12-2 is a front panel representation of the complex qualifier (a Or

b) And (¹ e And ¹ h). The following example would be used to specify

this complex qualifier.

OUTPUT XXX;":MACHINE1:STRACE:BRANCH1 ((A OR B) AND (NOTE AND NOTH)), 2"

Note
Terms A through D and RANGE must be grouped together and terms

E through H must be grouped together. In the first level, terms from

one group may not be mixed with terms from the other. For example, the

expression ((A OR INRANGE) AND (C OR H)) is not allowed because

the term C cannot be specified in the E through H group.

Keep in mind that, at the first level, the operator you use determines

which terms are available. When AND is chosen, only the NOT terms

may be used. Either AND or OR may be used at the second level to join

the two groups together. It is acceptable for a group to consist of a single

term. Thus, an expression like (B AND G) is allowed, since the two

operands are both simple terms from separate groups.

BRANch

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-7

www.valuetronics.com

FIND command/query

The FIND command defines the proceed qualifier for a given sequence

level. The qualifier tells the state analyzer when to proceed to the next

sequence level. When this proceed qualifier is matched the specified

number of times, the sequencer will proceed to the next sequence level.

The state that causes the sequencer to switch levels is automatically stored

in memory whether it matches the associated store qualifier or not. In the

sequence level where the trigger is specified, the FIND command

specifies the trigger qualifier (see SEQuence command).

The terms A through H are defined by the TERM command. The

meaning of INRange and OUTRange is determined by the RANGe

command. Expressions are limited to what you could manually enter

through the Format menu. Regarding parentheses, the syntax definitions

below show only the required ones. Additional parentheses are allowed

as long as the meaning of the expression is not changed. See figure 12-2

for a detailed example.

The FIND query returns the current proceed qualifier specification for a

given sequence level.

Command Syntax: :MACHine{ 1| 2} :STRace:FIND< N> < proceed_qualifier> ,< occurrence>

where:

< N> ::= integer from 1 to the number of existing sequence levels (maximum 8)

< occurrence> ::= integer from 1 to 65535

< proceed_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

FIND

STRace Subsystem HP 1650B/HP 1651B

12-8 Programming Reference

www.valuetronics.com

Examples: OUTPUT XXX;":MACHINE1:STRACE:FIND1 ANYSTATE, 1"

OUTPUT XXX;":MACHINE1:STRACE:FIND2 A, 512"

OUTPUT XXX;":MACHINE1:STRACE:FIND3 ((NOTA AND NOTB) OR G), 1"

Query Syntax: :MACHine{ 1| 2} :STRace:FIND4?

Returned Format: [:MACHine{ 1| 2} :STRace:FIND< N>] < proceed_qualifier> ,< occurrence> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:FIND<N>?"

30 ENTER XXX;String$

40 PRINT String$

50 END

FIND

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-9

www.valuetronics.com

PREStore command/query

The PREStore command turns the prestore feature on and off. It also

defines the qualifier required to prestore only selected states. The terms

A through H are defined by the TERM command. The meaning of

INRange and OUTRange is determined by the RANGe command.

Expressions are limited to what you could manually enter through the

Format menu. Regarding parentheses, the syntax definitions below show

only the required ones. Additional parentheses are allowed as long as the

meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The PREStore query returns the current prestore specification.

Command Syntax: :MACHine{ 1| 2} :STRace:PREStore { OFF | < prestore_qualifier> }

where:

< prestore_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

PREStore

STRace Subsystem HP 1650B/HP 1651B

12-10 Programming Reference

www.valuetronics.com

Examples: OUTPUT XXX;":MACHINE1:STRACE:PRESTORE OFF"

OUTPUT XXX;":MACHINE1:STRACE:PRESTORE ANYSTATE"

OUTPUT XXX;":MACHINE1:STRACE:PRESTORE (E)"

OUTPUT XXX;":MACHINE1:STRACE:PRESTORE (A OR B OR D OR F OR H)"

Query Syntax: :MACHine{ 1| 2} :STRace:PREStore?

Returned Format: [:MACHine{ 1| 2} :STRace:PREStore] { OFF| < prestore_qualifier> } < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:PRESTORE?"

30 ENTER XXX;String$

40 PRINT String$

50 END

PREStore

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-11

www.valuetronics.com

RANGe command/query

The RANGe command allows you to specify a range recognizer term in

the specified machine. Since a range can only be defined across one label

and, since a label must contain 32 or less bits, the value of the start pattern

or stop pattern will be between (2
32
)-1 and 0.

Note
Since a label can only be defined across a maximum of two pods, a range

term is only available across a single label; therefore, the end points of the

range cannot be split between labels.

When these values are expressed in binary, they represent the bit values

for the label at one of the range recognizers’ end points. Don’t cares are

not allowed in the end point pattern specifications. Since only one range

recognizer exists, it is always used by the first state machine defined.

The RANGe query returns the range recognizer end point specifications

for the range.

Note
When two state analyzers are on, the RANGe term is not available in the

second state analyzer assigned and there are only 4 pattern recognizers

per analyzer.

RANGe

STRace Subsystem HP 1650B/HP 1651B

12-12 Programming Reference

www.valuetronics.com

Command Syntax: :MACHine{ 1| 2} :STRace:RANGE < label_name> ,< start_pattern> ,< stop_pattern>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< start_pattern> ::= "{ # B{ 0| 1} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

< stop_pattern> ::= "{ # B{ 0| 1} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Examples: OUTPUT XXX;":MACHINE1:STRACE:RANGE ’DATA’, ’127’, ’255’ "

OUTPUT XXX;":MACHINE1:STRACE:RANGE ’ABC’, ’#B00001111’, ’#HCF’ "

Query Syntax: :MACHine{ 1| 2} :STRace:RANGe?

Returned Format: [:MACHine{ 1| 2} :STRAce:RANGe]

< label_name> ,< start_pattern> ,< stop_pattern> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:RANGE?"

30 ENTER XXX;String$

40 PRINT String$

50 END

RANGe

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-13

www.valuetronics.com

RESTart command/query

The RESTart command selects the type of restart to be enabled during

the trace sequence. It also defines the global restart qualifier that restarts

the sequence in global restart mode. The qualifier may be a single term or

a complex expression. The terms A through H are defined by the TERM

command. The meaning of INRange and OUTRange is determined by

the RANGe command.

Expressions are limited to what you could manually enter through the

Format menu. Regarding parentheses, the syntax definitions below show

only the required ones. Additional parentheses are allowed as long as the

meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The RESTart query returns the current restart specification.

Command Syntax: :MACHine{ 1| 2} :STRace:RESTart { OFF | PERLevel | < restart_qualifier> }

where:

< restart_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

Examples: OUTPUT XXX;":MACHINE1:STRACE:RESTART OFF"

OUTPUT XXX;":MACHINE1:STRACE:RESTART PERLEVEL"

OUTPUT XXX;":MACHINE1:STRACE:RESTART (NOTA AND NOTB AND INRANGE)"

OUTPUT XXX;":MACHINE1:STRACE:RESTART (B OR (NOTE AND NOTF))"

RESTart

STRace Subsystem HP 1650B/HP 1651B

12-14 Programming Reference

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :STRace:RESTart?

Returned Format: [:MACHine{ 1| 2} :STRace:RESTart] { OFF | PERLevel | < restart_qualifier> } < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:RESTART?"

30 ENTER XXX;String$

40 PRINT String$

50 END

RESTart

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-15

www.valuetronics.com

SEQuence command/query

The SEQuence command redefines the state analyzer trace sequence.

First, it deletes the current trace sequence. Then it inserts the number of

levels specified, with default settings, and assigns the trigger to be at a

specified sequence level. The number of levels can be between 2 and 8

when the analyzer is armed by the RUN key. When armed by the BNC or

the other machine, a level is used by the arm in; therefore, only seven

levels are available in the sequence.

The SEQuence query returns the current sequence specification.

Command Syntax: :MACHine{ 1| 2} :STRace:SEQuence < number_of_levels> ,< level_of_trigger>

where:

< number_of_levels> ::= integer from 2 to 8 when ARM is RUN or from 2 to 7 otherwise

< level_of_trigger> ::= integer from 1 to (number of existing sequence levels - 1)

Example: OUTPUT XXX;":MACHINE1:STRACE:SEQUENCE 4,3"

Query Syntax: :MACHine{ 1| 2} :STRace:SEQuence?

Returned Format: [:MACHine{ 1| 2} :STRace:SEQuence]

< number_of_levels> ,< level_of_trigger> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:SEQUENCE?"

30 ENTER XXX;String$

40 PRINT String$

50 END

SEQuence

STRace Subsystem HP 1650B/HP 1651B

12-16 Programming Reference

www.valuetronics.com

STORe command/query

The STORe command defines the store qualifier for a given sequence

level. Any data matching the STORe qualifier will actually be stored in

memory as part of the current trace data. The qualifier may be a single

term or a complex expression. The terms A through H are defined by the

TERM command. The meaning of INRange and OUTRange is

determined by the RANGe command.

Expressions are limited to what you could manually enter through the

Format menu. Regarding parentheses, the syntax definitions below show

only the required ones. Additional parentheses are allowed as long as the

meaning of the expression is not changed.

A detailed example is provided in figure 12-2.

The STORe query returns the current store qualifier specification for a

given sequence level < N> .

Command Syntax: :MACHine{ 1| 2} :STRace:STORe< N> < store_qualifier>

where:

< N> ::= an integer from 1 to the number of existing sequence levels (maximum 8)

< store_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

STORe

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-17

www.valuetronics.com

Examples: OUTPUT XXX;":MACHINE1:STRACE:STORE1 ANYSTATE"

OUTPUT XXX;":MACHINE1:STRACE:STORE2 OUTRANGE"

OUTPUT XXX;":MACHINE1:STRACE:STORE3 (NOTC AND NOTD AND NOTH)"

Query Syntax: :MACHine{ 1| 2} :STRace:STORe< N> ?

Returned Format: [:MACHine{ 1| 2} :STRace:STORe< N>] < store_qualifier> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:STORE4?"

30 ENTER XXX;String$

40 PRINT String$

50 END

STORe

STRace Subsystem HP 1650B/HP 1651B

12-18 Programming Reference

www.valuetronics.com

TAG command/query

The TAG command selects the type of count tagging (state or time) to be

performed during data acquisition. State tagging is indicated when the

parameter is the state tag qualifier, which will be counted in the qualified

state mode. The qualifier may be a single term or a complex expression.

The terms A through H are defined by the TERM command. The terms

INRange and OUTRange are defined by the RANGe command.

Expressions are limited to what you could manually enter through the

Format menu. Regarding parentheses, the syntax definitions below show

only the required ones. Additional parentheses are allowed as long as the

meaning of the expression is not changed. A detailed example is provided

in figure 12-2.

Because count tagging requires a minimum clock period of 60 ns, the

CPERiod and TAG commands are interrelated (the CPERiod command

is in the SFORmat subsystem). When the clock period is set to Less

Than, count tagging is turned off. When count tagging is set to either state

or time, the clock period is automatically set to Greater Than.

The TAG query returns the current count tag specification.

Command Syntax: :MACHine{ 1| 2} :STRace:TAG { OFF | TIME | < state_tag_qualifier> }

where:

< state_tag_qualifier> ::= { ANYState | NOSTate | < any_term> |

(< expression1> [{ AND| OR} < expression2>]) |

(< expression2> [{ AND| OR} < expression1>]) }

< any_term> ::= { < or_term1> | < and_term1> | < or_term2> | < and_term2> }

< expression1> ::= { < or_term1> [OR < or_term1>]... | < and_term1> [AND < and_term1>]...}

< expression2> ::= { < or_term2> [OR < or_term2>]... | < and_term2> [AND < and_term2>]...}

< or_term1> ::= { A| B| C| D| INRange| OUTRange}

< and_term1> ::= { NOTA| NOTB| NOTC| NOTD| INRange| OUTRange}

< or_term2> ::= { E| F| G| H}

< and_term2> ::= { NOTE| NOTF| NOTG| NOTH}

TAG

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-19

www.valuetronics.com

Examples: OUTPUT XXX;":MACHINE1:STRACE:TAG OFF"

OUTPUT XXX;":MACHINE1:STRACE:TAG TIME"

OUTPUT XXX;":MACHINE1:STRACE:TAG (INRANGE OR NOTF)"

OUTPUT XXX;":MACHINE1:STRACE:TAG ((INRANGE OR A) AND E)"

Query Syntax: :MACHine{ 1| 2} :STRace:TAG?

Returned Format: [:MACHine{ 1| 2} :STRace:TAG] { OFF| TIME| < state_tag_qualifier> } < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:TAG?"

30 ENTER XXX;String$

40 PRINT String$

50 END

TAG

STRace Subsystem HP 1650B/HP 1651B

12-20 Programming Reference

www.valuetronics.com

TERM command/query

The TERM command allows you to a specify a pattern recognizer term in

the specified machine. Each command deals with only one label in the

given term; therefore, a complete specification could require several

commands. Since a label can contain 32 or less bits, the range of the

pattern value will be between 2
32
 - 1 and 0. When the value of a pattern is

expressed in binary, it represents the bit values for the label inside the

pattern recognizer term. Since the pattern parameter may contain don’t

cares and be represented in several bases, it is handled as a string of

characters rather than a number.

When a single state machine is on, all eight terms (A through H) are

available in that machine. When two state machines are on, terms A

through D are used by the first state machine defined, and terms E

through H are used by the second state machine defined.

The TERM query returns the specification of the term specified by term

identification and label name.

Command Syntax: :MACHine{ 1| 2} :STRace:TERM < term_id> ,< label_name> ,< pattern>

where:

< term_id> ::= { A| B| C| D| E| F| G| H}

< label_name> ::= string of up to 6 alphanumeric characters

< pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX;":MACHINE1:STRACE:TERM A,’DATA’,’255’ "

OUTPUT XXX;":MACHINE1:STRACE:TERM B,’ABC’,’#BXXXX1101’ "

TERM

HP 1650B/HP 1651B STRace Subsystem

Programming Reference 12-21

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :STRace:TERM? < term_id> ,< label_name>

Returned Format: [:MACHine{ 1| 2} :STRAce:TERM] < term_id> ,< label_name> ,< pattern> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:STRACE:TERM? B,’DATA’ "

30 ENTER XXX;String$

40 PRINT String$

50 END

TERM

STRace Subsystem HP 1650B/HP 1651B

12-22 Programming Reference

www.valuetronics.com

13SLISt Subsystem

Introduction The SLISt subsystem contains the commands available for the State

Listing menu in the HP 1650B/51B logic analyzer. These commands are:

· COLumn

· DATA

· LINE

· MMODe

· OPATtern

· OSEarch

· OSTate

· OTAG

· RUNTil

· TAVerage

· TMAXimum

· TMINimum

· VRUNs

· XOTag

· XPATtern

· XSEarch

· XSTate

· XTAG

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-1

www.valuetronics.com

Figure 13-1. SLISt Subsystem Syntax Diagram

SLIST Subsystem HP 1650B/HP 1651B

13-2 Programming Reference

www.valuetronics.com

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-3

www.valuetronics.com

module_num = {1| 2| 3| 4| 5}

mach_num = {1| 2}

col_num = {1| 2| 3| 4| 5| 6| 7| 8}

line_number = integer from -1023 to + 1023

label_name = a string of up to 6 alphanumeric characters

base = {BINary| HEXadecimal| OCTal| DECimal| ASCii| SYMBol| IASSembler} for labels or

{ABSolute| RELative} for tags

line_num_mid_screen = integer from -1023 to + 1023

label_pattern = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

occurrence = integer from -1023 to + 1023

time_value = real number

state_value = real number

run_until_spec = {OFF| LT,< value> | GT,< value> | INRange,< value> ,< value> |

OUTRange,< value> ,< value> }

value = real number

Figure 13-1. SLISt Subsystem Syntax Diagram (continued)

SLIST Subsystem HP 1650B/HP 1651B

13-4 Programming Reference

www.valuetronics.com

SLISt selector

The SLISt selector is used as part of a compound header to access those

settings normally found in the State Listing menu. It always follows the

MACHine selector because it selects a branch directly below the

MACHine level in the command tree.

Command Syntax: :MACHine{ 1| 2} :SLISt

Example: OUTPUT XXX;":MACHINE1:SLIST:LINE 256"

SLISt

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-5

www.valuetronics.com

COLumn command/query

The COLumn command allows you to configure the state analyzer

list display by assigning a label name and base to one of the eight vertical

columns in the menu. A column number of 1 refers to the left most

column. When a label is assigned to a column it replaces the original label

in that column. The label originally in the specified column is placed in

the column the specified label is moved from.

When the label name is "TAGS," the TAGS column is assumed and the

next parameter must specify RELative or ABSolute.

The COLumn query returns the column number, label name, and base for

the specified column.

Command Syntax: :MACHine{ 1| 2} :SLISt:COLumn < col_num> ,< label_name> ,< base>

where:

< col_num> ::= { 1| 2| 3| 4| 5| 6| 7| 8}

< label_name> ::= a string of up to 6 alphanumeric characters

< base> ::= { BINary| HEXadecimal| OCTal| DECimal| ASCii| SYMBol| IASSembler} for labels

or

::= { ABSolute| RELative} for tags

COLumn

SLIST Subsystem HP 1650B/HP 1651B

13-6 Programming Reference

www.valuetronics.com

Note
A label for tags must be assigned in order to use ABSolute or RELative

state tagging.

Examples: OUTPUT XXX;":MACHINE1:SLIST:COLUMN 4,’A’,HEX"

OUTPUT XXX;":MACHINE1:SLIST:COLUMN 1,’TAGS’, ABSOLUTE"

Query Syntax: :MACHine{ 1| 2} :SLISt:COLumn? < col_num>

Returned Format: [:MACHine{ 1| 2} :SLISt:COLumn] < col_num> ,< label_name> ,< base> < NL>

Example: 10 DIM Cl$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:COLUMN? 4"

30 ENTER XXX;Cl$

40 PRINT Cl$

50 END

COLumn

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-7

www.valuetronics.com

DATA query

The DATA query returns the value at a specified line number for a given

label. The format will be the same as the one shown in the Listing display.

Query Syntax: :MACHine{ 1| 2} :SLISt:DATA? < line_number> ,< label_name>

Returned Format: [:MACHine{ 1| 2} :SLISt:DATA]

< line_number> ,< label_name> ,< pattern_string> < NL>

where:

< line_number> ::= integer from -1023 to + 1023

< label_name> ::= string of up to 6 alphanumeric characters

< pattern_string> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: 10 DIM Sd$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:DATA? 512, ’RAS’"

30 ENTER XXX;Sd$

40 PRINT Sd$

50 END

DATA

SLIST Subsystem HP 1650B/HP 1651B

13-8 Programming Reference

www.valuetronics.com

LINE command/query

The LINE command allows you to scroll the state analyzer listing

vertically. The command specifies the state line number relative to the

trigger that the analyzer will be highlighted at center screen.

The LINE query returns the line number for the state currently in the

box at center screen.

Command Syntax: :MACHine{ 1| 2} :SLISt:LINE < line_num_mid_screen>

where:

< line_num_mid_screen> ::= integer from -1023 to + 1023

Example: OUTPUT XXX;":MACHINE1:SLIST:LINE 0"

Query Syntax: :MACHine{ 1| 2} :SLISt:LINE?

Returned Format: [:MACHine{ 1| 2} :SLISt:LINE] < line_num_mid_screen> < NL>

Example: 10 DIM Ln$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:LINE?"

30 ENTER XXX;Ln$

40 PRINT Ln$

50 END

LINE

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-9

www.valuetronics.com

MMODe command/query

The MMODe command (Marker Mode) selects the mode controlling the

marker movement and the display of marker readouts. When PATTern is

selected, the markers will be placed on patterns. When STATe is selected

and state tagging is on, the markers move on qualified states counted

between normally stored states. When TIME is selected and time tagging

is enabled, the markers move on time between stored states. When

MSTats is selected and time tagging is on, the markers are placed on

patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode selected.

Command Syntax: :MACHine{ 1| 2} :SLISt:MMODe < marker_mode>

where:

< marker_mode> ::= { OFF| PATTern| STATe| TIME| MSTats}

Example: OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"

Query Syntax: :MACHine{ 1| 2} :SLISt:MMODe?

Returned Format: [:MACHine{ 1| 2} :SLISt:MMODe] < marker_mode> < NL>

Example: 10 DIM Mn$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:MMODE?"

30 ENTER XXX;Mn$

40 PRINT Mn$

50 END

MMODe

SLIST Subsystem HP 1650B/HP 1651B

13-10 Programming Reference

www.valuetronics.com

OPATtern command/query

The OPATtern command allows you to construct a pattern recognizer

term for the O Marker which is then used with the OSEarch criteria when

moving the marker on patterns. Since this command deals with only one

label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit

values for the label inside the pattern recognizer term. In whatever base

is used, the value must be between 0 and 2
32
 - 1, since a label may not have

more than 32 bits. Because the < label_pattern> parameter may contain

don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query returns the pattern specification for a given label

name.

Command Syntax: :MACHine{ 1| 2} :SLISt:OPATtern < label_name> ,< label_pattern>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< label_pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Examples: OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’DATA’,’255’ "

OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

OPATtern

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-11

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :SLISt:OPATtern? < label_name>

Returned Format: [:MACHine{ 1| 2} :SLISt:OPATtern] < label_name> ,< label_pattern> < NL>

Example: 10 DIM Op$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:OPATTERN? ’A’"

30 ENTER XXX;Op$

40 PRINT Op$

50 END

OPATtern

SLIST Subsystem HP 1650B/HP 1651B

13-12 Programming Reference

www.valuetronics.com

OSEarch command/query

The OSEarch command defines the search criteria for the O marker,

which is then used with associated OPATtern recognizer

specification when moving the markers on patterns. The origin parameter

tells the marker to begin a search with the trigger, the start of data, or with

the X marker. The actual occurrence the marker searches for is

determined by the occurrence parameter of the OPATtern

recognizer specification, relative to the origin. An occurrence of 0 places

the marker on the selected origin. With a negative occurrence, the

marker searches before the origin. With a positive occurrence, the

marker searches after the origin.

The OSEarch query returns the search criteria for the O marker.

Command Syntax: :MACHine{ 1| 2} :SLISt:OSEarch < occurrence> ,< origin>

where:

< occurrence> ::= integer from -1023 to + 1023

< origin> ::= { TRIGger| STARt| XMARker}

Example: OUTPUT XXX;":MACHINE1:SLIST:OSEARCH +10,TRIGGER"

Query Syntax: :MACHine{ 1| 2} :SLISt:OSEarch?

Returned Format: [:MACHine{ 1| 2} :SLISt:OSEarch] < occurrence> ,< origin> < NL>

Example: 10 DIM Os$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:OSEARCH?"

30 ENTER XXX;Os$

40 PRINT Os$

50 END

OSEarch

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-13

www.valuetronics.com

OSTate query

The OSTate query returns the line number in the listing where the O

marker resides (-1023 to + 1023). If data is not valid , the query returns

32767.

Query Syntax: :MACHine{ 1| 2} :SLISt:OSTate?

Returned Format: [:MACHine{ 1| 2} :SLISt:OSTate] < state_num> < NL>

where:

< state_num> ::= an integer from -1023 to + 1023, or 32767

Example: 10 DIM Os$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"

30 ENTER XXX;Os$

40 PRINT Os$

50 END

OSTate

SLIST Subsystem HP 1650B/HP 1651B

13-14 Programming Reference

www.valuetronics.com

OTAG command/query

The OTAG command specifies the tag value on which the O Marker

should be placed. The tag value is time when time tagging is on or states

when state tagging is on. If the data is not valid tagged data, no action is

performed.

The OTAG query returns the O Marker position in time when time

tagging is on or in states when state tagging is on, regardless of whether

the marker was positioned in time or through a pattern search. If data is

not valid, the query returns 9.9E37 for time tagging, 32767 for state

tagging.

Command Syntax: :MACHine{ 1| 2} :SLISt:OTAG { < time_value> | < state_value> }

where:

< time_value> ::= real number

< state_value> ::= integer

Example: :OUTPUT XXX;":MACHINE1:SLIST:OTAG 40.0E-6"

Query Syntax: :MACHine{ 1| 2} :SLISt:OTAG?

Returned Format: [:MACHine{ 1| 2} :SLISt:OTAG] { < time_value> | < state_value> } < NL>

Example: 10 DIM Ot$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:OTAG?"

30 ENTER XXX;Ot$

40 PRINT Ot$

50 END

OTAG

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-15

www.valuetronics.com

RUNTil command/query

The RUNTil (run until) command allows you to define a stop condition

when the trace mode is repetitive. Specifying OFF causes the analyzer to

make runs until either the STOP key is pressed or the STOP command is

issued.

There are four conditions based on the time between the X and O

markers. Using this difference in the condition is effective only when time

tags have been turned on (see the TAG command in the STRace

subsystem). These four conditions are as follows:

· The difference is less than (LT) some value.

· The difference is greater than (GT) some value.

· The difference is inside some range (INRange).

· The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 10 ns apart.

There are two conditions which are based on a comparison of the

acquired state data and the compare data image. You can run until one of

the following conditions is true:

· Compare equal (EQUal) - Every channel of every label has the

same value.

· Compare not equal (NEQual) - Any channel of any label has a

different value.

The RUNTil query returns the current stop criteria.

Note
The RUNTil instruction (for state analysis) is available in both the SLISt

and COMPare subsystems.

RUNTil

SLIST Subsystem HP 1650B/HP 1651B

13-16 Programming Reference

www.valuetronics.com

Command Syntax: :MACHine{ 1| 2} :SLISt:RUNTil < run_until_spec>

where:

< run_until_spec> ::= { OFF| LT,< value> | GT,< value> | INRange,< value> ,< value>

| OUTRange,< value> ,< value> | EQUal| NEQUal}

< value> ::= real number from -9E9 to + 9E9

Example: OUTPUT XXX;":MACHINE1:SLIST:RUNTIL GT,800.0E-6"

Query Syntax: :MACHine{ 1| 2} :SLISt:RUNTil?

Returned Format: [:MACHine{ 1| 2} :SLISt:RUNTil] < run_until_spec> < NL>

Example: 10 DIM Ru$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"

30 ENTER XXX;Ru$

40 PRINT Ru$

50 END

RUNTil

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-17

www.valuetronics.com

TAVerage query

The TAVerage query returns the value of the average time between the X

and O Markers. If the number of valid runs is zero, the query returns

9.9E37. Valid runs are those where the pattern search for both the X and

O markers was successful, resulting in valid delta-time measurements.

Query Syntax: :MACHine{ 1| 2} :SLISt:TAVerage?

Returned Format: [:MACHine{ 1| 2} :SLISt:TAVerage] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Tv$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:TAVERAGE?"

30 ENTER XXX;Tv$

40 PRINT Tv$

50 END

TAVerage

SLIST Subsystem HP 1650B/HP 1651B

13-18 Programming Reference

www.valuetronics.com

TMAXimum query

The TMAXimum query returns the value of the maximum time between

the X and O Markers. If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :SLISt:TMAXimum?

Returned Format: [:MACHine{ 1| 2} :SLISt:TMAXimum] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Tx$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"

30 ENTER XXX;Tx$

40 PRINT Tx$

50 END

TMAXimum

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-19

www.valuetronics.com

TMINimum query

The TMINimum query returns the value of the minimum time between

the X and O Markers. If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :SLISt:TMINimum?

Returned Format: [:MACHine{ 1| 2} :SLISt:TMINimum] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Tm$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:TMINIMUM?"

30 ENTER XXX;Tm$

40 PRINT Tm$

50 END

TMINimum

SLIST Subsystem HP 1650B/HP 1651B

13-20 Programming Reference

www.valuetronics.com

VRUNs query

The VRUNs query returns the number of valid runs and total number of

runs made. Valid runs are those where the pattern search for both the X

and O markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{ 1| 2} :SLISt:VRUNs?

Returned Format: [:MACHine{ 1| 2} :SLISt:VRUNs] < valid_runs> ,< total_runs> < NL>

where:

< valid_runs> ::= zero or positive integer

< total_runs> ::= zero or positive integer

Example: 10 DIM Vr$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:VRUNS?"

30 ENTER XXX;Vr$

40 PRINT Vr$

50 END

VRUNs

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-21

www.valuetronics.com

XOTag query

The XOTag query returns the time from the X to O markers when the

marker mode is time or number of states from the X to O markers when

the marker mode is state. If there is no data in the time mode the query

returns 9.9E37. If there is no data in the state mode, the query returns

32767.

Query Syntax: :MACHine{ 1| 2} :SLISt:XOTag?

Returned Format: [:MACHine{ 1| 2} :SLISt:XOTag] { < XO_time> | < XO_states> } < NL>

where:

< XO_time> ::= real number

< XO_states> ::= integer

Example: 10 DIM Xot$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XOTAG?"

30 ENTER XXX;Xot$

40 PRINT Xot$

50 END

XOTag

SLIST Subsystem HP 1650B/HP 1651B

13-22 Programming Reference

www.valuetronics.com

XPATtern command/query

The XPATtern command allows you to construct a pattern recognizer

term for the X Marker which is then used with the XSEarch criteria when

moving the marker on patterns. Since this command deals with only one

label at a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit

values for the label inside the pattern recognizer term. In whatever base

is used, the value must be between 0 and 2
32
 - 1, since a label may not have

more than 32 bits. Because the < label_pattern> parameter may contain

don’t cares, it is handled as a string of characters rather than a number.

The XPATtern query returns the pattern specification for a given label

name.

Command Syntax: :MACHine{ 1| 2} :SLISt:XPATtern < label_name> ,< label_pattern>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< label_pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Examples: OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’DATA’,’255’ "

OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

XPATtern

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-23

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :SLISt:XPATtern? < label_name>

Returned Format: [:MACHine{ 1| 2} :SLISt:XPATtern] < label_name> ,< label_pattern> < NL>

Example: 10 DIM Xp$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XPATTERN? ’A’"

30 ENTER XXX;Xp$

40 PRINT Xp$

50 END

XPATtern

SLIST Subsystem HP 1650B/HP 1651B

13-24 Programming Reference

www.valuetronics.com

XSEarch command/query

 The XSEarch command defines the search criteria for the X Marker,

which is then with associated XPATtern recognizer specification when

moving the markers on patterns. The origin parameter tells the Marker

to begin a search with the trigger or with the start of data. The

occurrence parameter determines which occurrence of the XPATtern

recognizer specification, relative to the origin, the marker actually

searches for. An occurrence of 0 places a marker on the selected origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{ 1| 2} :SLISt:XSEarch < occurrence> ,< origin>

where:

< occurrence> ::= integer from -1023 to + 1023

< origin> ::= { TRIGger| STARt}

Example: OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"

Query Syntax: :MACHine{ 1| 2} :SLISt:XSEarch?

Returned Format: [:MACHine{ 1| 2} :SLISt:XSEarch] < occurrence> ,< origin> < NL>

Example: 10 DIM Xs$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XSEARCH?"

30 ENTER XXX;Xs$

40 PRINT Xs$

50 END

XSEarch

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-25

www.valuetronics.com

XSTate query

The XSTate query returns the line number in the listing where the X

marker resides (-1023 to + 1023). If data is not valid, the query returns

32767.

Query Syntax: :MACHine{ 1| 2} :SLISt:XSTate?

Returned Format: [:MACHine{ 1| 2} :SLISt:XSTate] < state_num> < NL>

where:

< state_num> ::= an integer from -1023 to + 1023, or 32767

Example: 10 DIM Xs$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"

30 ENTER XXX;Xs$

40 PRINT Xs$

50 END

XSTate

SLIST Subsystem HP 1650B/HP 1651B

13-26 Programming Reference

www.valuetronics.com

XTAG command/query

The XTAG command specifies the tag value on which the X Marker

should be placed. The tag value is time when time tagging is on or states

when state tagging is on. If the data is not valid tagged data, no action is

performed.

The XTAG query returns the X Marker position in time when time

tagging is on or in states when state tagging is on, regardless of whether

the marker was positioned in time or through a pattern search. If data is

not valid tagged data, the query returns 9.9E37 for time tagging, 32767 for

state tagging.

Command Syntax: :MACHine{ 1| 2} :SLISt:XTAG { < time_value> | < state_value> }

where:

< time_value> ::= real number

< state_value> ::= integer

Example: :OUTPUT XXX;":MACHINE1:SLIST:XTAG 40.0E-6"

Query Syntax: :MACHine{ 1| 2} :SLISt:XTAG?

Returned Format: [:MACHine{ 1| 2} :SLISt:XTAG] { < time_value> | < state_value> } < NL>

Example: 10 DIM Xt$[100]

20 OUTPUT XXX;":MACHINE1:SLIST:XTAG?"

30 ENTER XXX;Xt$

40 PRINT Xt$

50 END

XTAG

HP 1650B/HP 1651B SLIST Subsystem

Programming Reference 13-27

www.valuetronics.com

14SWAVeform Subsystem

Introduction The commands in the State Waveform subsystem allow you to configure

the display so that you can view state data as waveforms on up to 24

channels identified by label name and bit number. The five commands are

analogous to their counterparts in the Timing Waveform subsystem.

However, in this subsystem the x-axis is restricted to representing only

samples (states), regardless of whether time tagging is on or off. As a

result, the only commands which can be used for scaling are DELay and

RANGe.

The way to manipulate the X and O markers on the Waveform display is

through the State Listing (SLISt) subsystem. Using the marker commands

from the SLISt subsystem will affect the markers on the Waveform display.

The commands in the SWAVeform subsystem are:

· ACCumulate

· DELay

· INSert

· RANGe

· REMove

HP 1650B/HP 1651B SWAVeform Subsystem

Programming Reference 14-1

www.valuetronics.com

number_of_samples = integer from -1023 to + 1024

label_name = string of up to 6 alphanumeric characters

bit_id = {OVERlay| < bit_num> }

bit_num = integer representing a label bit from 0 to 31

Figure 14-1. SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem HP 1650B/HP 1651B

14-2 Programming Reference

www.valuetronics.com

SWAVeform selector

The SWAVeform (State Waveform) selector is used as part of a

compound header to access the settings in the State Waveform menu. It

always follows the MACHine selector because it selects a branch directly

below the MACHine level in the command tree.

Command Syntax: :MACHine{ 1| 2} :SWAVeform

Example: OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

SWAVeform

HP 1650B/HP 1651B SWAVeform Subsystem

Programming Reference 14-3

www.valuetronics.com

ACCumulate command/query

The ACCumulate command allows you to control whether the waveform

display gets erased between individual runs or whether subsequent

waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always

shows the setting as the character "0" (off) or "1" (on).

Command Syntax: :MACHine{ 1| 2} :SWAVeform:ACCumulate { { ON | 1} | { OFF | 0} }

Example: OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE ON"

Query Syntax: MACHine{ 1| 2} :SWAVeform:ACCumulate?

Returned Format: [MACHine{ 1| 2} :SWAVeform:ACCumulate] { 0 | 1} < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE?"

30 ENTER XXX; String$

40 PRINT String$

50 END

ACCumulate

SWAVeform Subsystem HP 1650B/HP 1651B

14-4 Programming Reference

www.valuetronics.com

DELay command/query

The DELay command allows you to specify the number of samples

between the state trigger and the horizontal center of the screen for the

waveform display. The allowed number of samples is from -1023 to

+ 1024.

The DELay query returns the current sample offset value.

Command Syntax: :MACHine{ 1| 2} :SWAVeform:DELay < number_of_samples>

where:

< number_of_samples> ::= integer from –1023 to + 1024

Example: OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

Query Syntax: MACHine{ 1| 2} :SWAVeform:DELay?

Returned Format: [MACHine{ 1| 2} :SWAVeform:DELay] < number_of_samples> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SWAVEFORM:DELAY?"

30 ENTER XXX;String$

40 PRINT String$

50 END

DELay

HP 1650B/HP 1651B SWAVeform Subsystem

Programming Reference 14-5

www.valuetronics.com

INSert command

The INSert command allows you to add waveforms to the state waveform

display. Waveforms are added from top to bottom on the screen. When

24 waveforms are present, inserting additional waveforms replaces the last

waveform. Bit numbers are zero based, so a label with 8 bits is referenced

as bits 0-7. Specifying OVERlay causes a composite waveform display of

all bits or channels for the specified label.

Command Syntax: MACHine{ 1| 2} :SWAVeform:INSert < label_name> ,< bit_id>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< bit_id> ::= { OVERlay| < bit_num> }

< bit_num> ::= integer representing a label bit from 0 to 31

Examples: OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’WAVE’, 19"

OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’ABC’, OVERLAY"

OUTPUT XXX;":MACH1:SWAV:INSERT ’POD1’, #B1001"

INSert

SWAVeform Subsystem HP 1650B/HP 1651B

14-6 Programming Reference

www.valuetronics.com

RANGe command/query

The RANGe command allows you to specify the number of samples

across the screen on the State Waveform display. It is equivalent to ten

times the states per division setting (st/Div) shown on screen. A number

between 10 and 1040 may be entered.

The RANGe query returns the current range value.

Command Syntax: MACHine{ 1| 2} :SWAVeform:RANGe < number_of_samples>

where:

< number_of_samples> ::= integer from 10 to 1040

Example: OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

Query Syntax: MACHine{ 1| 2} :SWAVeform:RANGe?

Returned Format: [MACHine{ 1| 2} :SWAVeform:RANGe] < number_of_samples> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"

30 ENTER XXX; String$

40 PRINT String$

50 END

RANGe

HP 1650B/HP 1651B SWAVeform Subsystem

Programming Reference 14-7

www.valuetronics.com

REMove command

The REMove command allows you to clear the waveform display before

building a new display.

Command Syntax: :MACHine{ 1| 2} :SWAVeform:REMove

Example: OUTPUT XXX;":MACHINE1:SWAVEFORM:REMOVE"

REMove

SWAVeform Subsystem HP 1650B/HP 1651B

14-8 Programming Reference

www.valuetronics.com

15SChart Subsystem

Introduction The State Chart subsystem provides the commands necessary for

programming the HP 1650B/51B’s Chart display. The commands allow

you to build charts of label activity, using data normally found in the

Listing display. The chart’s y-axis is used to show data values for the label

of your choice. The x-axis can be used in two different ways. In one, the

x-axis represents states (shown as rows in the State Listing display). In the

other, the x-axis represents the data values for another label. When states

are plotted along the x-axis, X and O markers are available. Since the

State Chart display is simply an alternative way of looking at the data in

the State Listing, the X and O markers can be manipulated through the

SLISt subsystem. In fact, because the programming commands do not

force the menus to switch, you can position the markers in the SLISt

subsystem and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

· ACCumulate

· HAXis

· VAXis

HP 1650B/HP 1651B SCHart Subsystem

Programming Reference 15-1

www.valuetronics.com

state_low_value = integer from –1023 to + 1024

state_high_value = integer from < state_low_value> to + 1024

label_name = a string of up to 6 alphanumeric characters

label_low_value = string from 0 to 2
32
 - 1 (# HFFFFFFFF)

label_high_value = string from < label_low_value> to 2
32
 - 1 (# HFFFFFFFF)

low_value = string from 0 to 2
32
 - 1 (# HFFFFFFFF)

high_value = string from low_value to 2
32
 - 1 (# HFFFFFFFF)

Figure 15-1. SCHart Subsystem Syntax Diagram

SCHart Subsystem HP 1650B/HP 1651B

15-2 Programming Reference

www.valuetronics.com

SCHart selector

The SCHart selector is used as part of a compound header to access the

settings found in the State Chart menu. It always follows the MACHine

selector because it selects a branch below the MACHine level in the

command tree.

Command Syntax: :MACHine{ 1| 2} :SCHart

Example: OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’A’, ’0’, ’9’"

SCHart

HP 1650B/HP 1651B SCHart Subsystem

Programming Reference 15-3

www.valuetronics.com

ACCumulate command/query

The ACCumulate command allows you to control whether the chart

display gets erased between each individual run or whether subsequent

waveforms are allowed to be displayed over the previous waveforms.

The ACCumulate query returns the current setting. The query always

shows the setting as the character "0" (off) or "1" (on).

Command Syntax: MACHine{ 1| 2} :SCHart:ACCumulate { { ON | 1} | { OFF | 0} }

Example: OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE OFF"

Query Syntax: MACHine{ 1| 2} :SCHart:ACCumulate?

Returned Format: [MACHine{ 1| 2} :SCHart:ACCumulate] { 0 | 1} < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"

30 ENTER XXX; String$

40 PRINT String$

50 END

ACCumulate

SCHart Subsystem HP 1650B/HP 1651B

15-4 Programming Reference

www.valuetronics.com

HAXis command/query

The HAXis command allows you to select whether states or a label’s

values will be plotted on the horizontal axis of the chart. The axis is scaled

by specifying the high and low values.

Note
The shortform for STATES is STA. This is an intentional deviation from

the normal truncation rule.

The HAXis query returns the current horizontal axis label and scaling.

Command Syntax: MACHine{ 1| 2} :SCHart:HAXis { STAtes,< state_low_value> ,< state_high_value> |

< label_name> ,< label_low_value> ,< label_high_value> }

where:

< state_low_value> ::= integer from -1023 to 1024

< state_high_value> ::= integer from < state_low_value> to + 1024

< label_name> ::= a string of up to 6 alphanumeric characters

< label_low_value> ::= string from 0 to 232-1 (# HFFFFFFFF)

< label_high_value> ::= string from < label_low_value> to 232-1 (# HFFFFFFFF)

Examples: OUTPUT XXX;":MACHINE1:SCHART:HAXIS STATES, -100, 100"

OUTPUT XXX;":MACHINE1:SCHART:HAXIS ’DATA’, ’-511’, ’511’"

Query Syntax: MACHine{ 1| 2} :SCHart:HAXis?

Returned Format: [MACHine{ 1| 2} :SCHart:HAXis] { STAtes,< state_low_value> ,< state_high_value> |

< label_name> ,< label_low_value> ,< label_high_value> }

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SCHART:HAXIS?"

30 ENTER XXX; String$

40 PRINT String$

50 END

HAXis

HP 1650B/HP 1651B SCHart Subsystem

Programming Reference 15-5

www.valuetronics.com

VAXis command/query

The VAXis command allows you to choose which label will be plotted on

the vertical axis of the chart and scale the vertical axis by specifying the

high value and low value.

The VAXis query returns the current vertical axis label and scaling.

Command Syntax: MACHine{ 1| 2} :SCHart:VAXis < label_name> ,< low_value> ,< high_value>

where:

< label_name> ::= a string of up to 6 alphanumeric characters

< low_value> ::= string from 0 to 232 -1 (# HFFFFFFFF)

< high_value> ::= string from < low_value> to 232 -1 (# HFFFFFFFF)

Examples: OUTPUT XXX;":MACHINE2:SCHART:VAXIS ’SUM1’, ’0’, ’99’"

OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’BUS’, ’#H00FF’, ’#H0500’"

Query Syntax: MACHine{ 1| 2} :SCHart:VAXis?

Returned Format: [MACHine{ 1| 2} :SCHart:VAXis] < label_name> ,< low_value> ,< high_value> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE1:SCHART:VAXIS?"

30 ENTER XXX; String$

40 PRINT String$

50 END

VAXis

SCHart Subsystem HP 1650B/HP 1651B

15-6 Programming Reference

www.valuetronics.com

16COMPare Subsystem

Introduction Commands in the state COMPare subsystem provide the ability to do a

bit-by-bit comparison between the acquired state data listing and a

compare data image. The commands are:

· COPY

· DATA

· CMASk

· RANGe

· RUNTil

· FIND

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-1

www.valuetronics.com

label_name = string of up to 6 characters

care_spec = string of characters "{*| .} ..."

* = care (compare)

. = don’t care (don’t compare)

line_num = integer from –1023 to + 1023

data_pattern = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

difference_occurrence = integer from 1 to 1024

start_line = integer from –1023 to + 1023

stop_line = integer from < start_line> to + 1023

Figure 16-1. COMPare Subsystem Syntax Diagram

COMPare Subsystem HP 1650B/HP 1651B

16-2 Programming Reference

www.valuetronics.com

COMPare selector

The COMPare selector is used as part of a compound header to access

the settings found in the Compare menu. It always follows the MACHine

selector because it selects a branch directly below the MACHine level in

the command tree.

Command Syntax: :MACHine{ 1| 2} :COMPare

Example: OUTPUT XXX;":MACHINE1:COMPARE:FIND? 819"

COMPare

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-3

www.valuetronics.com

CMASk command/query

The CMASk (Compare Mask) command allows you to set the bits in the

channel mask for a given label in the compare listing image to "compares"

or "don’t compares."

The CMASk query returns the state of the bits in the channel mask for a

given label in the compare listing image.

Command Syntax: :MACHine{ 1| 2} :COMPare:CMASk < label_name> ,< care__spec>

where:

< label_name> ::= a string of up to 6 alphanumeric characters

< care_spec> ::= string of characters "{ *| .} ..." (32 characters maximum)

* ::= care (compare)

. ::= don’t care (don’t compare)

Example: OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’STAT’, ’*.**..**’"

Query Syntax: :MACHine{ 1| 2} :COMPare:CMASk? < label_name>

Returned Format: [:MACHine{ 1| 2} :COMPare:CMASk] < label_name> ,< care_spec> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:COMPARE:CMASK? ’POD5’"

30 ENTER XXX; String$

40 PRINT String$

50 END

CMASk

COMPare Subsystem HP 1650B/HP 1651B

16-4 Programming Reference

www.valuetronics.com

COPY command

The COPY command copies the current acquired State Listing for the

specified machine into the Compare Listing template. It does not affect

the compare range or channel mask settings.

Command Syntax: :MACHine{ 1| 2} :COMPare:COPY

Example: OUTPUT XXX;":MACHINE2:COMPARE:COPY"

COPY

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-5

www.valuetronics.com

DATA command/query

The DATA command allows you to edit the compare listing image for a

given label and state row. When DATA is sent to an instrument where no

compare image is defined (such as at power-up) all other data in the

image is set to don’t cares.

Not specifying the < label_name> parameter allows you to write data

patterns to more than one label for the given line number. The first

pattern is placed in the top-most label, with the following patterns being

placed in a top-to-bottom fashion (as seen on the State Format Menu).

Specifying more patterns than there are labels simply results in the extra

patterns being ignored.

Because don’t cares (Xs) are allowed in the data pattern, it must always

be expressed as a string. You may still use different bases, though don’t

cares cannot be used in a decimal number.

The DATA query returns the value of the compare listing image for a

given label and state row.

Command Syntax: MACHine{ 1| 2} :COMPare:DATA { < label_name> ,< line_num> ,< data_pattern> |

< line_num> ,< data_pattern> [, < data_pattern>]... }

where:

< label_name> ::= a string of up 6 alphanumeric characters

< line_num> ::= integer from –1023 to + 1023

< data_pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Examples: OUTPUT XXX;":MACHINE2:COMPARE:DATA ’CLOCK’, 42, ’#B011X101X’"

OUTPUT XXX;":MACHINE2:COMPARE:DATA ’OUT3’, 0, ’#HFF40’"

OUTPUT XXX;":MACHINE1:COMPARE:DATA 129, ’#BXX00’, ’#B1101’, ’#B10XX’"

OUTPUT XXX;":MACH2:COMPARE:DATA -511, ’4’, ’64’, ’16’, 256’, ’8’, ’16’"

DATA

COMPare Subsystem HP 1650B/HP 1651B

16-6 Programming Reference

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :COMPare:DATA? < label_name> ,< line_num>

Returned Format: [:MACHine{ 1| 2} :COMPare:DATA]

< label_name> ,< line_num> ,< data_pattern> < NL>

Example: 10 DIM Label$[6], Response$[80]

15 PRINT "This program shows the values for a signal’s Compare listing"

20 INPUT "Enter signal label: ", Label$

25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from responses)

30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"

35 ENTER XXX; First, Last !Read in the range’s end-points

40 PRINT "LINE #", "VALUE of "; Label$

45 FOR State = First TO Last !Print compare value for each state

50 OUTPUT XXX;":MACH2:COMPARE:DATA? ’" & Label$ & "’," & VAL$(State)

55 ENTER XXX; Response$

60 PRINT State, Response$

65 NEXT State

70 END

DATA

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-7

www.valuetronics.com

FIND query

The FIND query is used to get the line number of a specified difference

occurrence (first, second, third, etc) within the current compare range, as

dictated by the RANGe command (see RANGe). A difference is counted

for each line where at least one of the current labels has a difference

between its acquired state data listing and its compare data image.

Invoking the FIND query updates both the Listing and Compare displays

so that the line number returned is in the center of the screen.

Query Syntax: :MACHine{ 1| 2} :COMPare:FIND? < difference_occurrence>

Returned Format: [:MACHine{ 1| 2} :COMPare:FIND] < difference_occurrence> ,

< line_number> < NL>

where:

< difference_occurrence> ::= integer from 0 to 1024

< line_number> ::= integer from –1023 to + 1023

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:COMPARE:FIND? 26"

30 ENTER XXX; String$

40 PRINT String$

50 END

FIND

COMPare Subsystem HP 1650B/HP 1651B

16-8 Programming Reference

www.valuetronics.com

RANGe command/query

The RANGe command allows you to define the boundaries for the

comparison. The range entered must be a subset of the lines stored in the

acquisition memory.

The RANGe query returns the current boundaries for the comparison.

Command Syntax: MACHine{ 1| 2} :COMPare:RANGe { FULL | PARTial,< start_line> ,< stop_line> }

where:

< start_line> ::= integer from –1023 to + 1023

< stop_line> ::= integer from < start_line> to + 1023

Examples: OUTPUT XXX;":MACHINE2:COMPARE:RANGE PARTIAL, –511, 512"

OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

Query Syntax: :MACHine{ 1| 2} :COMPare:RANGe?

Returned Format: [:MACHine{ 1| 2} :COMPare:RANGe] { FULL | PARTial,< start_line> ,

< stop_line> } < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"

30 ENTER XXX; String$

40 REM See if substring "FULL" occurs in response string:

50 PRINT "Range is ";

60 IF POS(String$,"FULL") > 0 THEN PRINT "Full" ELSE PRINT "Partial"

70 END

RANGe

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-9

www.valuetronics.com

RUNTil command/query

The RUNTil (run until) command allows you to define a stop condition

when the trace mode is repetitive. Specifying OFF causes the analyzer to

run until either the front-panel STOP key is pressed or the STOP

command is issued.

There are four conditions based on the time between the X and O

markers. Using this difference in the condition is effective only when time

tags have been turned on (see the TAG command in the STRace

subsystem). These four conditions are as follows:

· The difference is less than (LT) some value.

· The difference is greater than (GT) some value.

· The difference is inside some range (INRange).

· The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 10 ns apart.

There are two conditions which are based on a comparison of the

acquired state data and the compare data image. You can run until one of

the following conditions is true:

· Compare equal (EQUal) - Every channel of every label has the

same value.

· Compare not equal (NEQual) - Any channel of any label has a

different value.

The RUNTil query returns the current stop criteria for the comparison

when running in repetitive trace mode.

Note
The RUNTil instruction (for state analysis) is available in both the SLISt

and COMPare subsystems.

RUNTil

COMPare Subsystem HP 1650B/HP 1651B

16-10 Programming Reference

www.valuetronics.com

Command Syntax: MACHine{ 1| 2} :COMPare:RUNTil { OFF| LT,< value> | GT,< value> |

INRange,< value> ,< value> | OUTRange,< value> ,< value> | EQUal| NEQual}

where:

< value> ::= real number from -9E9 to + 9E9

Example: OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

Query Syntax: :MACHine{ 1| 2} :COMPare:RUNTil?

Returned Format: [:MACHine{ 1| 2} :COMPare:RUNTil] { OFF| LT,< value> | GT,< value> |

INRange,< value> ,< value> | OUTRange,< value> ,< value> | EQUal| NEQual} < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"

30 ENTER XXX; String$

40 PRINT String$

50 END

RUNTil

HP 1650B/HP 1651B COMPare Subsystem

Programming Reference 16-11

www.valuetronics.com

17TFORmat Subsystem

Introduction The TFORmat subsystem contains the commands available for the Timing

Format menu in the HP 1650B/51B logic analyzer. These commands are:

· LABel

· REMove

· THReshold

< N> = {1 | 2 | 3 | 4 | 5}

name = string of up to 6 alphanumeric characters

polarity = {POSitive | NEGative}

pod_specification = format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

value = voltage (real number) -9.9 to + 9.9

Figure 17-1. TFORmat Subsystem Syntax Diagram

HP 1650B/HP 1651B TFORmat Subsystem

Programming Reference 17-1

www.valuetronics.com

TFORmat selector

The TFORmat selector is used as part of a compound header to access

those settings normally found in the Timing Format menu. It always

follows the MACHine selector because it selects a branch directly below

the MACHine level in the command tree.

Command Syntax: :MACHine{ 1| 2} :TFORmat

Example: OUTPUT XXX;":MACHINE1:TFORMAT:LABEL?"

TFORmat

TFORmat Subsystem HP 1650B/HP 1651B

17-2 Programming Reference

www.valuetronics.com

LABel command/query

The LABel command allows you to specify polarity and assign channels to

new or existing labels. If the specified label name does not match an

existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one

listed will match the highest-numbered pod assigned to the machine

you’re using. Each pod specification after that is assigned to the

next-highest-numbered pod. This way they match the left-to-right

descending order of the pods you see on the Format display. Not

including enough pod specifications results in the lowest-numbered

pod(s) being assigned a value of zero (all channels excluded). If you

include more pod specifications than there are pods for that machine, the

extra ones will be ignored. However, an error is reported anytime more

than five pod specifications are listed.

The polarity can be specified at any point after the label name.

Since pods contain 16 channels, the format value for a pod must be

between 0 and 65535 (2
16
-1). When giving the pod assignment in binary

(base 2), each bit will correspond to a single channel. A "1" in a bit

position means the associated channel in that pod is assigned to that pod

and bit. A "0" in a bit position means the associated channel in that pod is

excluded from the label. For example, assigning # B1111101110 is

equivalent to entering "......*****.***." through the front-panel user

interface.

A label can not have a total of more than 32 channels assigned to it.

The LABel query returns the current specification for the selected (by

name) label. If the label does not exist, nothing is returned. Numbers are

always returned in decimal format.

LABel

HP 1650B/HP 1651B TFORmat Subsystem

Programming Reference 17-3

www.valuetronics.com

Command Syntax: :MACHine{ 1| 2} :TFORmat:LABel < name> [, { < polarity> | < assignment> }]...

where:

< name> ::= string of up to 6 alphanumeric characters

< polarity> ::= { POSitive | NEGative}

< assignment> ::= format (integer from 0 to 65535) for a pod (pods are assigned in decreasing order)

Examples: OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’DATA’, POS, 65535, 127, 40312"

OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’STAT’, 1, 8096, POSITIVE"

OUTPUT XXX;":MACHINE1:TFORMAT:LABEL ’ADDR’, NEGATIVE, #B11110010101010"

Query Syntax: :MACHine{ 1| 2} :TFORmat:LABel? < name>

Returned Format: [:MACHine{ 1| 2} :TFORmat:LABel] < name> [,< assignment>]...,< polarity> < NL>

Example: 10 DIM String$[100]

20 OUTPUT XXX;":MACHINE2:TFORMAT:LABEL? ’DATA’"

30 ENTER XXX String$

40 PRINT String$

50 END

LABel

TFORmat Subsystem HP 1650B/HP 1651B

17-4 Programming Reference

www.valuetronics.com

REMove command

The REMove command allows you to delete all labels or any one label

specified by name for a given machine.

Command Syntax: :MACHine{ 1| 2} :TFORmat:REMove { < name> | ALL}

where:

< name> ::= string of up to 6 alphanumeric characters

Examples: OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ’A’"

OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ALL"

REMove

HP 1650B/HP 1651B TFORmat Subsystem

Programming Reference 17-5

www.valuetronics.com

THReshold command/query

The THReshold command allows you to set the voltage threshold for a

given pod to ECL, TTL or a specific voltage from -9.9V to + 9.9V in 0.1

volt increments.

Note
On the HP 1650B, the pod thresholds of pods 1, 2, and 3 can be set

independently. The pod thresholds of pods 4 and 5 are slaved together;

therefore, when you set the threshold on pod 4 or 5, both thresholds will

be changed to the specified value. On the HP 1651B, both pods 1 and 2

can be set independently.

The THReshold query returns the current threshold for a given pod.

Command Syntax: :MACHine{ 1| 2} :TFORmat:THReshold< N> { TTL| ECL| < value> }

where:

< N> ::= pod number { 1| 2| 3| 4| 5}

< value> ::= voltage (real number) -9.9 to + 9.9

TTL ::= default value of + 1.6V

ECL ::= default value of -1.3V

Example: OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD1 4.0"

Query Syntax: :MACHine{ 1| 2} :TFORmat:THReshold< N> ?

Returned Format: [:MACHine{ 1| 2} :TFORmat:THReshold< N>] < value> < NL>

Example: 10 DIM Value$ [100]

20 OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD2?"

30 ENTER XXX;Value$

40 PRINT Value$

50 END

THReshold

TFORmat Subsystem HP 1650B/HP 1651B

17-6 Programming Reference

www.valuetronics.com

18TTRace Subsystem

Introduction The TTRace subsystem contains the commands available for the Timing

Trace menu in the HP 1650B/51B logic analyzer. These commands are:

· AMODe

· DURation

· EDGE

· GLITch

· PATTern

HP 1650B/HP 1651B TTRace Subsystem

Programming Reference 18-1

www.valuetronics.com

GT = greater than

LT = less than

duration_value = real number

label_name = string of up to 6 alphanumeric characters

edge_spec = string of characters "{R| F| T| X} ..."

R = rising edge

F = falling edge

T = toggling or either edge

X = don’t care or ignore this channel

glitch_spec = string of characters "{*| .} ..."

* = search for a glitch on this channel

. = ignore this channel

pattern_spec = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

Figure 18-1. TTRace Subsystem Syntax Diagram

TTRace Subsystem HP 1650B/HP 1651B

18-2 Programming Reference

www.valuetronics.com

TTRace selector

The TTRace selector is used as part of a compound header to access the

settings found in the Timing Trace menu. It always follows the MACHine

selector because it selects a branch directly below the MACHine level in

the command tree.

Command Syntax: :MACHine{ 1| 2} :TTRace

Example: OUTPUT XXX;":MACHINE1:TTRACE:GLITCH ’ABC’, ’....****’"

TTRace

HP 1650B/HP 1651B TTRace Subsystem

Programming Reference 18-3

www.valuetronics.com

AMODe command/query

The AMODe command allows you to select the acquisition mode used for

a particular timing trace. The acquisition modes available are

TRANsitional and GLITch.

The AMODe query returns the current acquisition mode.

Command Syntax: :MACHine{ 1| 2} :TTRace:AMODe < acquisition_mode>

where:

< acquisition_mode> ::= { GLITch| TRANsitional}

Example: OUTPUT XXX; ":MACHINE1:TTRACE:AMODE GLITCH"

Query Syntax: :MACHine1:TTRace:AMODe?

Returned Format: [:MACHine1:TTRace:AMODe] { GLITCH| TRANSITIONAL}

Example: 10 DIM M$[100]

20 OUTPUT XXX; ":MACHINE1:TTRACE:AMODE?"

30 ENTER XXX;M$

40 PRINT M$

50 END

AMODe

TTRace Subsystem HP 1650B/HP 1651B

18-4 Programming Reference

www.valuetronics.com

DURation command/query

The DURation command allows you to specify the duration qualifier to

be used with the pattern recognizer term in generating the timing trigger.

The duration value can be specified in 10 ns increments within the

following ranges:

· Greater than (GT) qualification - 30 ns to 10 ms

· Less than (LT) qualification - 40 ns to 10 ms.

The DURation query returns the current pattern duration qualifier

specification.

Command Syntax: :MACHine{ 1| 2} :TTRace:DURation { GT| LT} ,< duration_value>

where:

GT ::= greater than

LT ::= less than

< duration_value> ::= real number

Example: OUTPUT XXX; ":MACHINE1:TTRACE:DURATION GT, 40.0E-9"

Query Syntax: :MACHine{ 1| 2} :TTRace:DURation?

Returned Format: [:MACHine{ 1| 2} :TTRace:DURation] { GT| LT} ,< duration_value> < NL>

Example: 10 DIM D$[100]

20 OUTPUT XXX; ":MACHINE1:TTRACE:DURATION?"

30 ENTER XXX;D$

40 PRINT D$

50 END

DURation

HP 1650B/HP 1651B TTRace Subsystem

Programming Reference 18-5

www.valuetronics.com

EDGE command/query

The EDGE command allows you to specify the edge recognizer term for

the timing analyzer trigger on a per label basis. Each command deals with

only one label in the given edge specification; therefore, a complete

specification could require several commands. The edge specification

uses the characters R, F, T, X to indicate the edges or don’t cares as

follows:

R = rising edge

F = falling edge

T = toggling or either edge

X = don’t care or ignore the channel

The position of these characters in the string corresponds with the

position of the channels within the label. All channels without "X" are

ORed together to form the edge trigger specification.

The EDGE query returns the edge specification for the specified label.

Command Syntax: :MACHine{ 1| 2} :TTRace:EDGE < label_name> ,< edge_spec>

where:

< label_name> ::= string or up to 6 alphanumeric characters

< edge_spec> ::= string of characters "{ R| F| T| X} ..."

Example: OUTPUT XXX; ":MACHINE1:TTRACE:EDGE ’POD1’,’XXXXXXXR’"

EDGE

TTRace Subsystem HP 1650B/HP 1651B

18-6 Programming Reference

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :TTRace:EDGE? < label_name>

Returned Format: [:MACHine{ 1| 2} :TTRace:] < label_name> ,< edge_spec> < NL>

Example: 10 DIM E$[100]

20 OUTPUT XXX; ":MACHINE1:TTRACE:EDGE? ’POD1’"

30 ENTER XXX;E$

40 PRINT E$

50 END

EDGE

HP 1650B/HP 1651B TTRace Subsystem

Programming Reference 18-7

www.valuetronics.com

GLITch command/query

The GLITch command allows you to specify the glitch recognizer term for

the timing analyzer trigger on a per label basis. Each command deals with

only one label in a given glitch specification, and, therefore a complete

specification could require several commands. The glitch specification

uses the characters "*" and "." as follows:.

"*" (asterisk) = search for a glitch on this channel

"." (period) = ignore this channel

The position of these characters in the string corresponds with the

position of the channels within the label. All channels with the "*" are

ORed together to form the glitch trigger specification.

The GLITch query returns the glitch specification for the specified label.

Command Syntax: :MACHine{ 1| 2} :TTRace:GLITch < label_name> ,< glitch_spec>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< glitch_spec> ::= string of characters "{ * | .} ..."

Example: OUTPUT XXX; ":MACHINE1:TTRACE:GLITCH ’POD1’,’**.......*’"

Query Syntax: :MACHine1:TTRace:GLITch? < label_name>

Returned Format: [:MACHine1:TTRace:GLITch] < label_name> ,< glitch_spec> < NL>

Example: 10 DIM G$[100]

20 OUTPUT XXX; ":MACHINE1:TTRACE:GLITCH? ’POD1’"

30 ENTER XXX;G$

40 PRINT G$

50 END

GLITch

TTRace Subsystem HP 1650B/HP 1651B

18-8 Programming Reference

www.valuetronics.com

PATTern command/query

The PATTern command allows you to construct a pattern recognizer

term for the timing analyzer trigger on a per label basis. Each command

deals with only one label in the given pattern; therefore, a complete timing

trace specification could require several commands. Since a label can

contain up to 32 bits, the range of the pattern value will be between 0 and

(2
32
)-1. The value may be expressed in binary (# B), octal (# Q),

hexadecimal (# H) or decimal (default). When the value of a pattern is

expressed in binary, it represents the bit values for the label inside the

pattern recognizer term. Since a pattern value can contain don’t cares,

the pattern specification parameter is handled as a string of characters

instead of a number.

The PATTern query returns the pattern specification for the specified

label in the base previously defined for the label.

Command Syntax: :MACHine{ 1| 2} :TTRace:PATTern < label_name> ,< pattern_spec>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< pattern_spec> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX; ":MACHINE1:TTRACE:PATTERN ’DATA’, ’255’"

PATTern

HP 1650B/HP 1651B TTRace Subsystem

Programming Reference 18-9

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :TTRace:PATTern? < label_name>

Returned Format: [:MACHine{ 1| 2} :TTRace:PATTern] < label_name> ,< pattern_spec> < NL>

Example: 10 DIM P$[100]

20 OUTPUT XXX; ":MACHINE2:TTRACE:PATTERN? ’DATA’"

30 ENTER XXX;P$

40 PRINT P$

50 END

PATTern

TTRace Subsystem HP 1650B/HP 1651B

18-10 Programming Reference

www.valuetronics.com

19TWAVeform Subsystem

Introduction The TWAVeform subsystem contains the commands available for the

Timing Waveforms menu in the HP 1650B/51B. These commands are:

· ACCumulate

· DELay

· INSert

· MMODe

· OCONdition

· OPATtern

· OSEarch

· OTIMe

· RANGe

· REMove

· RUNTil

· SPERiod

· TAVerage

· TMAXimum

· TMINimum

· VRUNs

· XCONdition

· XOTime

· XPATtern

· XSEarch

· XTIMe

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-1

www.valuetronics.com

Figure 19-1. TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem HP 1650B/HP 1651B

19-2 Programming Reference

www.valuetronics.com

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-3

www.valuetronics.com

delay_value = real number between -2500 s and + 2500 s

bit_id = integer from 0 to 31

label_name = string of up to 6 alphanumeric characters

label_pattern = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

occurrence = integer

time_value = real number

label_id = string of one alpha and one numeric character

time_range = real number between 100 ns and 10 ks

run_until_spec = {OFF| LT,< value> | GT,< value> | INRange< value> ,< value> |

OUTRange< value> ,< value> }

GT = greater than

LT = less than

value = real number

Figure 19-1. TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem HP 1650B/HP 1651B

19-4 Programming Reference

www.valuetronics.com

TWAVeform selector

The TWAVeform selector is used as part of a compound header to access

the settings found in the Timing Waveforms menu. It always follows the

MACHine selector because it selects a branch below the MACHine level

in the command tree.

Command Syntax: :MACHine{ 1| 2} :TWAVeform

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E-9"

TWAVeform

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-5

www.valuetronics.com

ACCumulate command/query

The ACCumulate command allows you to control whether the chart

display gets erased between each individual run or whether subsequent

waveforms are allowed to be displayed over the previous ones.

The ACCumulate query returns the current setting. The query always

shows the setting as the character "0" (off) or "1" (on).

Command Syntax: :MACHine{ 1| 2} :TWAVeform:ACCumulate < setting>

where:

< setting> ::= { 0| OFF} or { 1| ON}

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE ON"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:ACCumulate?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:ACCumulate] { 0| 1} < NL>

Example: 10 DIM P$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE?"

30 ENTER XXX; P$

40 PRINT P$

50 END

ACCumulate

TWAVeform Subsystem HP 1650B/HP 1651B

19-6 Programming Reference

www.valuetronics.com

DELay command/query

The DELay command specifies the amount of time between the timing

trigger and the horizontal center of the timing waveform display. The

allowable values for delay are -2500 s to + 2500 s. In glitch acquisition

mode, as delay becomes large in an absolute sense, the sample rate is

adjusted so that data will be acquired in the time window of interest. In

transitional acquisition mode, data may not fall in the time window since

the sample period is fixed at 10 ns and the amount of time covered in

memory is dependent on how frequently the input signal transitions occur.

The DELay query returns the current time offset (delay) value from the

trigger.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:DELay < delay_value>

where:

< delay_value> ::= real number between -2500 s and + 2500 s

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E-6"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:DELay?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:DELay] < time_value> < NL>

Example: 10 DIM Dl$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY?"

30 ENTER XXX; Dl$

40 PRINT Dl$

50 END

DELay

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-7

www.valuetronics.com

INSert command

The INSert command inserts waveforms in the timing waveform display.

The waveforms are added from top to bottom. When 24 waveforms are

present, inserting additional waveforms replaces the last waveform .

The first parameter specifies the label name that will be inserted. The

second parameter specifies the label bit number or overlay.

If OVERlay is specified, all the bits of the label are displayed as a

composite overlaid waveform.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:INSert< label_name> ,{ < bit_id> | OVERlay}

where:

< label_name> ::= string of up to 6 alphanumeric characters

< bit_id> ::= integer from 0 to 31

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT, ’WAVE’,10"

INSert

TWAVeform Subsystem HP 1650B/HP 1651B

19-8 Programming Reference

www.valuetronics.com

MMODe command/query

The MMODe (Marker Mode) command selects the mode controlling

marker movement and the display of the marker readouts. When

PATTern is selected, the markers will be placed on patterns. When

TIME is selected, the markers move on time. In MSTats, the markers are

placed on patterns, but the readouts will be time statistics.

The MMODe query returns the current marker mode.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:MMODe { OFF| PATTern| TIME| MSTats}

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:MMODE TIME"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:MMODe?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:MMODe] < marker_mode> < NL>

where

< marker_mode> ::= { OFF| PATTern| TIME| MSTats}

Example: 10 DIM M$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:MMODE?"

30 ENTER XXX; M$

40 PRINT M$

50 END

MMODe

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-9

www.valuetronics.com

OCONdition command/query

The OCONdition command specifies where the O marker is placed. The

O marker can be placed on the entry or exit point of the OPATtern when

in the PATTern marker mode.

The OCONdition query returns the current setting.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:OCONdition { ENTering| EXITing}

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:OCONDITION ENTERING"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:OCONdition?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:OCONdition] { ENTering| EXITing} < NL>

Example: 10 DIM Oc$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OCONDITION?"

30 ENTER XXX; Oc$

40 PRINT Oc$

50 END

OCONdition

TWAVeform Subsystem HP 1650B/HP 1651B

19-10 Programming Reference

www.valuetronics.com

OPATtern command/query

The OPATtern command allows you to construct a pattern recognizer

term for the O marker which is then used with the OSEarch criteria and

OCONdition when moving the marker on patterns. Since this command

deals with only one label at a time, a complete specification could require

several commands.

When the value of a pattern is expressed in binary, it represents the bit

values for the label inside the pattern recognizer term. In whatever base

is used, the value must be between 0 and 2
32
 - 1, since a label may not have

more than 32 bits. Because the < label_pattern> parameter may contain

don’t cares, it is handled as a string of characters rather than a number.

The OPATtern query, in pattern marker mode, returns the pattern

specification for a given label name. In the time marker mode, the query

returns the pattern under the O marker for a given label. If the O marker

is not placed on valid data, don’t cares (XX...X) are returned.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:OPATtern < label_name> ,< label_pattern>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< label_pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:OPATTERN ’A’,’511’"

OPATtern

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-11

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :TWAVeform:OPATtern? < label_name>

Returned Format: [:MACHine{ 1| 2} :TWAVeform:OPATtern] < label_name> ,< label_pattern> < NL>

Example: 10 DIM Op$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OPATTERN? ’A’"

30 ENTER XXX; Op$

40 PRINT Op$

50 END

OPATtern

TWAVeform Subsystem HP 1650B/HP 1651B

19-12 Programming Reference

www.valuetronics.com

OSEarch command/query

The OSEarch command defines the search criteria for the O marker

which is then used with the associated OPATtern recognizer specification

and the OCONdition when moving markers on patterns. The origin

parameter tells the marker to begin a search with the trigger or with the X

marker. The actual occurrence the marker searches for is determined by

the occurrence parameter of the OPATtern recognizer specification,

relative to the origin. An occurrence of 0 places a marker on the selected

origin. With a negative occurrence, the marker searches before the origin.

With a positive occurrence, the marker searches after the origin.

The OSEarch query returns the search criteria for the O marker.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:OSEarch < occurrence> ,< origin>

where:

< origin> ::= { TRIGger| XMARker}

< occurrence> ::= integer from -9999 to + 9999

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:OSEARCH +10,TRIGGER"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:OSEarch?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:OSEarch] < occurrence> ,< origin> < NL>

Example: 10 DIM Os$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OSEARCH?"

30 ENTER XXX; Os$

40 PRINT Os$

50 END

OSEarch

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-13

www.valuetronics.com

OTIMe command/query

The OTIMe command positions the O marker in time when the marker

mode is TIME. If data is not valid, the command performs no action.

The OTIMe query returns the O marker position in time. If data is not

valid, the query returns 9.9E37.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:OTIMe < time_value>

where:

< time_value> ::= real number -2.5Ks to + 2.5Ks

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:OTIME 30.0E-6"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:OTIMe?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:OTIMe] < time_value> < NL>

Example: 10 DIM Ot$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:OTIME?"

30 ENTER XXX; Ot$

40 PRINT Ot$

50 END

OTIMe

TWAVeform Subsystem HP 1650B/HP 1651B

19-14 Programming Reference

www.valuetronics.com

RANGe command/query

The RANGe command specifies the full-screen time in the timing

waveform menu. It is equivalent to ten times the seconds-per-division

setting on the display. The allowable values for RANGe are from 100 ns

to 10 ks.

The RANGe query returns the current full-screen time.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:RANGe < time_value>

where:

< time_range> ::= real number between 100 ns and 10 ks

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE 100E-9"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:RANGe?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:RANGe] < time_value> < NL>

Example: 10 DIM Rg$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

30 ENTER XXX; Rg$

40 PRINT Rg$

50 END

RANGe

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-15

www.valuetronics.com

REMove command

The REMove command deletes all waveforms from the display.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:REMove

Example: OUTPUT XXX;":MACHINE1:TWAVEFORM:REMOVE"

REMove

TWAVeform Subsystem HP 1650B/HP 1651B

19-16 Programming Reference

www.valuetronics.com

RUNTil command/query

The RUNTil (run until) command defines stop criteria based on the time

between the X and O markers when the trace mode is in repetitive. When

OFF is selected, the analyzer will run until either the front-panel STOP

key is pressed or the STOP command is sent. Run until the time between

X and O marker options are:

· Less Than (LT) a specified time value

· Greater Than (GT) a specified time value

· In the range (INRange) between two time values

· Out of the range (OUTRange) between two time values

End points for the INRange and OUTRange should be at least 10 ns apart

since this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the

RUNTil commands in the SLISt and COMPare subsystems.

The RUNTil query returns the current stop criteria.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:RUNTil < run_until_spec>

where:

< run_until_spec> ::= { OFF | LT,< value> | GT,< value> | INRange< value> ,< value> |

 OUTRange< value> ,< value> }

< value> ::= real number

Examples: OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL GT, 800.0E-6"

OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

RUNTil

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-17

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :TWAVeform:RUNTil?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:RUNTil] < run_until_spec> < NL>

Example: 10 DIM Ru$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL?"

30 ENTER XXX; Ru$

40 PRINT Ru$

50 END

RUNTil

TWAVeform Subsystem HP 1650B/HP 1651B

19-18 Programming Reference

www.valuetronics.com

SPERiod query

The SPERiod query returns the sample period of the last run.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:SPERiod?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:SPERiod] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Sp$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD?"

30 ENTER XXX; Sp$

40 PRINT Sp$

50 END

SPERiod

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-19

www.valuetronics.com

TAVerage query

The TAVerage query returns the value of the average time between the X

and O markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:TAVerage?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:TAVerage] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Tv$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:TAVERAGE?"

30 ENTER XXX; Tv$

40 PRINT Tv$

50 END

TAVerage

TWAVeform Subsystem HP 1650B/HP 1651B

19-20 Programming Reference

www.valuetronics.com

TMAXimum query

The TMAXimum query returns the value of the maximum time between

the X and O markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:TMAXimum?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:TMAXimum] < time_value> < NL>

where

< time_value> ::= real number

Example: 10 DIM Tx$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:TMAXIMUM?"

30 ENTER XXX; Tx$

40 PRINT Tx$

50 END

TMAXimum

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-21

www.valuetronics.com

TMINimum query

The TMINimum query returns the value of the minimum time between

the X and O markers. If there is no valid data, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:TMINimum?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:TMINimum] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Tm$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:TMINIMUM?"

30 ENTER XXX; Tm$

40 PRINT Tm$

50 END

TMINimum

TWAVeform Subsystem HP 1650B/HP 1651B

19-22 Programming Reference

www.valuetronics.com

VRUNs query

The VRUNs query returns the number of valid runs and total number of

runs made. Valid runs are those where the pattern search for both the X

and O markers was successful resulting in valid delta time measurements.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:VRUNs?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:VRUNs] < valid_runs> ,< total_runs> < NL>

where:

< valid_runs> ::= zero or positive integer

< total_runs> ::= zero or positive integer

Example: 10 DIM Vr$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:VRUNS?"

30 ENTER XXX; Vr$

40 PRINT Vr$

50 END

VRUNs

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-23

www.valuetronics.com

XCONdition command/query

The XCONdition command specifies where the X marker is placed. The

X marker can be placed on the entry or exit point of the XPATtern when

in the PATTern marker mode.

The XCONdition query returns the current setting.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:XCONdition { ENTering| EXITing}

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:XCONdition?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:XCONdition] { ENTering| EXITing} < NL>

Example: 10 DIM Xc$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XCONDITION?"

30 ENTER XXX; Xc$

40 PRINT Xc$

50 END

XCONdition

TWAVeform Subsystem HP 1650B/HP 1651B

19-24 Programming Reference

www.valuetronics.com

XOTime query

The XOTime query returns the time from the X marker to the O marker.

If data is not valid, the query returns 9.9E37.

Query Syntax: :MACHine{ 1| 2} :TWAVeform:XOTime?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:XOTime] < time_value> < NL>

where:

< time_value> ::= real number

Example: 10 DIM Xot$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XOTIME?"

30 ENTER XXX; Xot$

40 PRINT Xot$

50 END

XOTime

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-25

www.valuetronics.com

XPATtern command/query

The XPATtern command allows you to construct a pattern recognizer

term for the X marker which is then used with the XSEarch criteria and

XCONdition when moving the marker on patterns. Since this command

deals with only one label at a time, a complete specification could require

several commands.

When the value of a pattern is expressed in binary, it represents the bit

values for the label inside the pattern recognizer term. In whatever base

is used, the value must be between 0 and 2
32
 - 1, since a label may not have

more than 32 bits. Because the < label_pattern> parameter may contain

don’t cares, it is handled as a string of characters rather than a number.

The XPATtern query, in pattern marker mode, returns the pattern

specification for a given label name. In the time marker mode, the query

returns the pattern under the X marker for a given label. If the X marker

is not placed on valid data, don’t cares (XX...X) are returned.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:XPATtern < label_name> ,< label_pattern>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< label_pattern> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:XPATTERN ’A’,’511’"

XPATtern

TWAVeform Subsystem HP 1650B/HP 1651B

19-26 Programming Reference

www.valuetronics.com

Query Syntax: :MACHine{ 1| 2} :TWAVeform:XPATtern? < label_name>

Returned Format: [:MACHine{ 1| 2} :TWAVeform:XPATtern] < label_name> ,< label_pattern> < NL>

Example: 10 DIM Xp$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? ’A’"

30 ENTER XXX; Xp$

40 PRINT Xp$

50 END

XPATtern

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-27

www.valuetronics.com

XSEarch command/query

The XSEarch command defines the search criteria for the X marker

which is then used with the associated XPATtern recognizer specification

and the XCONdition when moving markers on patterns. The origin

parameter tells the marker to begin a search with the trigger. The

occurrence parameter determines which occurrence of the XPATtern

recognizer specification, relative to the origin, the marker actually

searches for. An occurrence of 0 (zero) places a marker on the origin.

The XSEarch query returns the search criteria for the X marker.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:XSEarch < occurrence> ,< origin>

where:

< origin> ::= TRIGger

< occurrence> ::= integer from -9999 to + 9999

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:XSEarch? < occurrence> ,< origin>

Returned Format: [:MACHine{ 1| 2} :TWAVeform:XSEarch] < occurrence> ,< origin> < NL>

Example: 10 DIM Xs$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XSEARCH?"

30 ENTER XXX; Xs$

40 PRINT Xs$

50 END

XSEarch

TWAVeform Subsystem HP 1650B/HP 1651B

19-28 Programming Reference

www.valuetronics.com

XTIMe command/query

The XTIMe command positions the X marker in time when the marker

mode is TIME. If data is not valid, the command performs no action.

The XTIMe query returns the X marker position in time. If data is not

valid, the query returns 9.9E37.

Command Syntax: :MACHine{ 1| 2} :TWAVeform:XTIMe < time_value>

where:

< time_value> ::= real number from -2.5Ks to + 2.5Ks

Example: OUTPUT XXX; ":MACHINE1:TWAVEFORM:XTIME 40.0E-6"

Query Syntax: :MACHine{ 1| 2} :TWAVeform:XTIMe?

Returned Format: [:MACHine{ 1| 2} :TWAVeform:XTIMe] < time_value> < NL>

Example: 10 DIM Xt$ [100]

20 OUTPUT XXX;":MACHINE1:TWAVEFORM:XTIME?"

30 ENTER XXX; Xt$

40 PRINT Xt$

50 END

XTIMe

HP 1650B/HP 1651B TWAVeform Subsystem

Programming Reference 19-29

www.valuetronics.com

20SYMBol Subsystem

Introduction The SYMBol subsystem contains the commands that allow you to define

symbols on the controller and download them to the HP 1650B/51B logic

analyzer. The commands in this subsystem are:

· BASE

· PATTern

· RANGe

· REMove

· WIDTh

Figure 20-1. SYMBol Subsystem Diagram

HP 1650B/HP 1651B SYMBol Subsystem

Programming Reference 20-1

www.valuetronics.com

label_name = string of up to 6 alphanumeric characters

symbol_name = string of up to 16 alphanumeric characters

pattern_value = "{# B{0| 1| X} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

start_value = "{# B{0| 1} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

stop_value = "{# B{0| 1} . . . |

Q{0| 1| 2| 3| 4| 5| 6| 7} . . . |

H{0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

{0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . }"

width_value = integer from 1 to 16

Figure 20-1. SYMBol Subsystem Syntax Diagram (continued)

SYMBol Subsystem HP 1650B/HP 1651B

20-2 Programming Reference

www.valuetronics.com

SYMBol selector

The SYMBol selector is used as a part of a compound header to access

the commands used to create symbols. It always follows the MACHine

selector because it selects a branch directly below the MACHine level in

the command tree.

Command Syntax: :MACHine{ 1| 2} :SYMBol

Example: OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’, BINARY"

SYMBol

HP 1650B/HP 1651B SYMBol Subsystem

Programming Reference 20-3

www.valuetronics.com

BASE command

The BASE command sets the base in which symbols for the specified label

will be displayed in the symbol menu. It also specifies the base in which

the symbol offsets are displayed when symbols are used.

Note
BINary is not available for labels with more than 20 bits assigned. In this

case the base will default to HEXadecimal.

Command Syntax: :MACHine{ 1| 2} :SYMBol:BASE < label_name> ,< base_value>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< base_value> ::= { BINary | HEXadecimal | OCTal | DECimal | ASCii}

Example: OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’,HEXADECIMAL"

BASE

SYMBol Subsystem HP 1650B/HP 1651B

20-4 Programming Reference

www.valuetronics.com

PATTern command

The PATTern command allows you to create a pattern symbol for the

specified label.

Because don’t cares (X) are allowed in the pattern value, it must always

be expressed as a string. You may still use different bases, though don’t

cares cannot be used in a decimal number.

Command Syntax: :MACHine{ 1| 2} :SYMBol:PATTern

< label_name> ,< symbol_name> ,< pattern_value>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< symbol_name> ::= string of up to 16 alphanumeric characters

< pattern_value> ::= "{ # B{ 0| 1| X} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7| X} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F| X} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN ’STAT’, ’MEM_RD’,’#H01XX’"

PATTern

HP 1650B/HP 1651B SYMBol Subsystem

Programming Reference 20-5

www.valuetronics.com

RANGe command

The RANGe command allows you to create a range symbol containing a

start value and a stop value for the specified label. The values may be in

binary (# B), octal (# Q), hexadecimal (# H) or decimal (default). You

may not use "don’t cares" in any base.

Command Syntax: :MACHine{ 1| 2} :SYMBol:RANGe

< label_name> ,< symbol_name> ,< start_value> ,< stop_value>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< symbol_name> ::= string of up to 16 alphanumeric characters

< start_value> ::= "{ # B{ 0| 1} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

< stop_value> ::= "{ # B{ 0| 1} . . . |

 # Q{ 0| 1| 2| 3| 4| 5| 6| 7} . . . |

 # H{ 0| 1| 2| 3| 4| 5| 6| 7| 8| 9| A| B| C| D| E| F} . . . |

 { 0| 1| 2| 3| 4| 5| 6| 7| 8| 9} . . . } "

Example: OUTPUT XXX;":MACHINE1:SYMBOL:RANGE ’STAT’, ’IO_ACC’,’0’,’#H000F’"

RANGe

SYMBol Subsystem HP 1650B/HP 1651B

20-6 Programming Reference

www.valuetronics.com

REMove command

The REMove command deletes all symbols from a specified machine.

Command Syntax: :MACHine{ 1| 2} :SYMBol:REMove

Example: OUTPUT XXX;":MACHINE1:SYMBOL:REMOVE"

REMove

HP 1650B/HP 1651B SYMBol Subsystem

Programming Reference 20-7

www.valuetronics.com

WIDTh command

The WIDTh command specifies the width (number of characters) in

which the symbol names will be displayed when symbols are used.

Note
The WIDTh command does not affect the displayed length of the symbol

offset value.

Command Syntax: :MACHine{ 1| 2} :SYMBol:WIDTh < label_name> ,< width_value>

where:

< label_name> ::= string of up to 6 alphanumeric characters

< width_value> ::= integer from 1 to 16

Example: OUTPUT XXX;":MACHINE1:SYMBOL:WIDTH ’DATA’,9 "

WIDTh

SYMBol Subsystem HP 1650B/HP 1651B

20-8 Programming Reference

www.valuetronics.com

AMessage Communication
and System Functions

Introduction This appendix describes the operation of instruments that operate in

compliance with the IEEE 488.2 (syntax) standard. Although the

HP 1650B and HP 1651B logic analyzers are RS-232C instruments, they

were designed to be compatible with other Hewlett-Packard IEEE 488.2

compatible instruments.

The IEEE 488.2 standard is a new standard. Instruments that are

compatible with IEEE 488.2 must also be compatible with IEEE 488.1

(HP-IB bus standard); however, IEEE 488.1 compatible instruments may

or may not conform to the IEEE 488.2 standard. The IEEE 488.2

standard defines the message exchange protocols by which the instrument

and the controller will communicate. It also defines some common

capabilities, which are found in all IEEE 488.2 instruments. This

appendix also contains a few items which are not specifically defined by

IEEE 488.2, but deal with message communication or system functions.

Note
The syntax and protocol for RS-232C program messages and response

messages for the HP 1650B/1651B are structured very similar to those

described by 488.2. In most cases, the same structure shown in this

appendix for 488.2 will also work for RS-232C. Because of this, no

additional information has been included for RS-232C.

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-1

www.valuetronics.com

Protocols The protocols of IEEE 488.2 define the overall scheme used by the

controller and the instrument to communicate. This includes defining

when it is appropriate for devices to talk or listen, and what happens when

the protocol is not followed.

Functional Elements Before proceeding with the description of the protocol, a few system

components should be understood.

Input Buffer. The input buffer of the instrument is the memory area

where commands and queries are stored prior to being parsed and

executed. It allows a controller to send a string of commands to the

instrument which could take some time to execute, and then proceed to

talk to another instrument while the first instrument is parsing and

executing commands.

Output Queue. The output queue of the instrument is the memory area

where all output data (< response messages>) are stored until read by

the controller.

Parser. The instrument’s parser is the component that interprets the

commands sent to the instrument and decides what actions should be

taken. "Parsing" refers to the action taken by the parser to achieve this

goal. Parsing and executing of commands begins when either the

instrument recognizes a < program message terminator> (defined later

in this appendix) or the input buffer becomes full. If you wish to send a

long sequence of commands to be executed and then talk to another

instrument while they are executing, you should send all the commands

before sending the < program message terminator> .

Message Communication and System Functions HP 1650B/HP 1651B

A-2 Programming Reference

www.valuetronics.com

Protocol Overview The instrument and controller communicate using < program message> s

and < response message> s. These messages serve as the containers into

which sets of program commands or instrument responses are placed.

< program message> s are sent by the controller to the instrument, and

< response message> s are sent from the instrument to the controller in

response to a query message. A < query message> is defined as being a

< program message> which contains one or more queries. The

instrument will only talk when it has received a valid query message, and

therefore has something to say. The controller should only attempt to

read a response after sending a complete query message, but before

sending another < program message> . The basic rule to remember is

that the instrument will only talk when prompted to, and it then expects to

talk before being told to do something else.

Protocol Operation When the instrument is turned on, the input buffer and output queue are

cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete

< program message> s and < response message> s. This means that the

controller should always terminate a < program message> before

attempting to read a response. The instrument will terminate < response

message> s except during a hardcopy output.

If a query message is sent, the next message passing over the bus should

be the < response message> . The controller should always read the

complete < response message> associated with a query message before

sending another < program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query

message. This is referred to as sending a "compound query." As will be

noted later in this appendix, multiple queries in a query message are

separated by semicolons. The responses to each of the queries in a

compound query will also be separated by semicolons.

Commands are executed in the order they are received.

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-3

www.valuetronics.com

Protocol Exceptions If an error occurs during the information exchange, the exchange may not

be completed in a normal manner. Some of the protocol exceptions are

shown below.

Command Error. A command error will be reported if the instrument

detects a syntax error or an unrecognized command header.

Execution Error. An execution error will be reported if a parameter is

found to be out of range, or if the current settings do not allow execution

of a requested command or query.

Device-specific Error. A device-specific error will be reported if the

instrument is unable to execute a command for a strictly device dependent

reason.

Query Error. A query error will be reported if the proper protocol for

reading a query is not followed. This includes the interrupted and

unterminated conditions described in the following paragraphs.

Message Communication and System Functions HP 1650B/HP 1651B

A-4 Programming Reference

www.valuetronics.com

Syntax
Diagrams

The syntax diagrams in this appendix are similar to the syntax diagrams in

the IEEE 488.2 specification. Commands and queries are sent to the

instrument as a sequence of data bytes. The allowable byte sequence for

each functional element is defined by the syntax diagram that is shown

with the element description.

The allowable byte sequence can be determined by following a path in the

syntax diagram. The proper path through the syntax diagram is any path

that follows the direction of the arrows. If there is a path around an

element, that element is optional. If there is a path from right to left

around one or more elements, that element or those elements may be

repeated as many times as desired.

Syntax
Overview

This overview is intended to give a quick glance at the syntax defined by

IEEE 488.2. It should allow you to understand many of the things about

the syntax you need to know. This appendix also contains the details of

the IEEE 488.2 defined syntax.

IEEE 488.2 defines the blocks used to build messages which are sent to

the instrument. A whole string of commands can therefore be broken up

into individual components.

Figure A-1 shows a breakdown of an example < program message> .

There are a few key items to notice:

1. A semicolon separates commands from one another. Each < program

message unit> serves as a container for one command. The

< program message unit> s are separated by a semicolon.

2. A < program message> is terminated by a < NL> (new line). The

recognition of the < program message terminator> , or < PMT> , by

the parser serves as a signal for the parser to begin execution of

commands. The < PMT> also affects command tree traversal (see

the Programming and Documentation Conventions chapter).

3. Multiple data parameters are separated by a comma.

4. The first data parameter is separated from the header with one or more

spaces.

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-5

www.valuetronics.com

5. The header MACHINE1:ASSIGN 2,3 is an example of a compound

header. It places the parser in the machine subsystem until the < NL>

is encountered.

6. A colon preceding the command header returns you to the top of the

command tree.

Message Communication and System Functions HP 1650B/HP 1651B

A-6 Programming Reference

www.valuetronics.com

Figure A-1. < program message> Parse Tree

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-7

www.valuetronics.com

Device Listening

Syntax

The listening syntax of IEEE 488.2 is designed to be more forgiving than

the talking syntax. This allows greater flexibility in writing programs, as

well as allowing them to be easier to read.

Upper/Lower Case Equivalence. Upper and lower case letters are

equivalent. The mnemonic SINGLE has the same semantic meaning as

the mnemonic single.

< white space> . < white space> is defined to be one or more characters

from the ASCII set of 0 - 32 decimal, excluding 10 decimal (NL). < white

space> is used by several instrument listening components of the syntax.

It is usually optional, and can be used to increase the readability of a

program.

Figure A-2. < white space>

Message Communication and System Functions HP 1650B/HP 1651B

A-8 Programming Reference

www.valuetronics.com

< program message> . The < program message> is a complete message

to be sent to the instrument. The instrument will begin executing

commands once it has a complete < program message> , or when the

input buffer becomes full. The parser is also repositioned to the root of

the command tree after executing a complete < program message> .

Refer to the "Tree Traversal Rules" in the "Programming and

Documentation Conventions" chapter for more details.

Figure A-3. < program message>

< program message unit> . The < program message unit> is the

container for individual commands within a < program message> .

Figure A-4. < program message unit>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-9

www.valuetronics.com

Figure A-5. < command message unit>

Figure A-6. < query message unit>

Message Communication and System Functions HP 1650B/HP 1651B

A-10 Programming Reference

www.valuetronics.com

< program message unit separator> . A semicolon separates < program

message unit> s, or individual commands.

Figure A-7. < program message unit separator>

< command program header> /< query program header> . These

elements serve as the headers of commands or queries. They represent

the action to be taken.

Figure A-8. < command program header>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-11

www.valuetronics.com

Where < simple command program header> is defined as

Where < compound command program header> is defined as

Where < common command program header> is defined as

Where < program mnemonic> is defined as

Where < upper/lower case alpha> is defined as a single ASCII encoded

byte in the range 41 - 5A, 61 - 7A (65 - 90, 97 - 122 decimal).

Where < digit> is defined as a single ASCII encoded byte in the range 30 -

39 (48 - 57 decimal).

Where (_) represents an "underscore", a single ASCII-encoded byte with the

value 5F (95 decimal).

Figure A-8. < command program header> (continued)

Message Communication and System Functions HP 1650B/HP 1651B

A-12 Programming Reference

www.valuetronics.com

Where < simple query program header> is defined as

Where < compound query program header> is defined as

Where < common query program header> is defined as

Figure A-9. < query program header>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-13

www.valuetronics.com

< program data> . The < program data> element represents the

possible types of data which may be sent to the instrument. The

HP 1650B/1651B will accept the following data types: < character

program data> , < decimal numeric program data> , < suffix program

data> , < string program data> , and < arbitrary block program data> .

Figure A-10. < program data>

Figure A-11. < character program data>

Message Communication and System Functions HP 1650B/HP 1651B

A-14 Programming Reference

www.valuetronics.com

Where < mantissa> is defined as

Where < optional digits> is defined as

Where < exponent> is defined as

Figure A-12. < decimal numeric program data>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-15

www.valuetronics.com

Figure A-13. < suffix program data>

Suffix Multiplier. The suffix multipliers that the instrument will accept

are shown in table A-1.

Table A-1. < suffix mult>

Suffix Unit. The suffix units that the instrument will accept are shown in

table A-2.

Table A-2. < suffix unit>

Value Mnemonic

1E18 EX

1E15 PE

1E12 T

1E9 G

1E6 MA

1E3 K

1E-3 M

1E-6 U

1E-9 N

1E-12 P

1E-15 F

1E-18 A

Suffix Referenced Unit

 V Volt

 S Second

Message Communication and System Functions HP 1650B/HP 1651B

A-16 Programming Reference

www.valuetronics.com

Where < inserted ’> is defined as a single ASCII character with the value 27

(39 decimal).

Where < non-single quote char> is defined as a single ASCII character of

any value except 27 (39 decimal).

Where < inserted "> is defined as a single ASCII character with the value 22

(34 decimal).

Where < non-double quote char> is defined as a single ASCII character of

any value except 22 (34 decimal)

Figure A-14. < string program data>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-17

www.valuetronics.com

Where < non-zero digit> is defined as a single ASCII encoded byte in the

range 31 - 39 (49 - 57 decimal).

Where < 8-bit byte> is defined as an 8-bit byte in the range 00 - FF (0 - 255

decimal).

Figure A-15. < arbitrary block program data>

< program data separator> . A comma separates multiple data

parameters of a command from one another.

Figure A-16. < program data separator>

Message Communication and System Functions HP 1650B/HP 1651B

A-18 Programming Reference

www.valuetronics.com

< program header separator> . A space separates the header from the

first or only parameter of the command.

Figure A-17. < program header separator>

< program message terminator> . The < program message terminator>

or < PMT> serves as the terminator to a complete < program

message> . When the parser sees a complete < program message> it

will begin execution of the commands within that message. The < PMT>

also resets the parser to the root of the command tree.

Where < NL> is defined as a single ASCII-encoded byte 0A (10 decimal).

Figure A-18. < program message terminator>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-19

www.valuetronics.com

Figure A-19. < response message> Tree

Message Communication and System Functions HP 1650B/HP 1651B

A-20 Programming Reference

www.valuetronics.com

Device Talking Syntax The talking syntax of IEEE 488.2 is designed to be more precise than the

listening syntax. This allows the programmer to write routines which can

easily interpret and use the data the instrument is sending. One of the

implications of this is the absence of < white space> in the talking

formats. The instrument will not pad messages which are being sent to the

controller with spaces.

< response message> . This element serves as a complete response from

the instrument. It is the result of the instrument executing and buffering

the results from a complete < program message> . The complete

< response message> should be read before sending another < program

message> to the instrument.

Figure A-20. < response message>

< response message unit> . This element serves as the container of

individual pieces of a response. Typically a < query message unit> will

generate one < response message unit> , although a < query message

unit> may generate multiple < response message unit> s.

< response header> . The < response header> , when returned,

indicates what the response data represents.

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-21

www.valuetronics.com

Where < simple response mnemonic> is defined as

Where < compound response header> is defined as

Where < common response header> is defined as

Figure A-21. < response message unit>

Message Communication and System Functions HP 1650B/HP 1651B

A-22 Programming Reference

www.valuetronics.com

Where < response mnemonic> is defined as

Where < uppercase alpha> is defined as a single ASCII encoded byte in the

range 41 - 5A (65 - 90 decimal).

Where (_) represents an "underscore", a single ASCII-encoded byte with the

value 5F (95 decimal).

Figure A-21. < response message unit> (Continued)

< response data> . The < response data> element represents the

various types of data which the instrument may return. These types

include: < character response data> , < nr1 numeric response data> ,

< nr3 numeric response data> , < string response data> , < definite

length arbitrary block response data> , and < arbitrary ASCII response

data> .

Figure A-22. < character response data>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-23

www.valuetronics.com

Figure A-23. < nr1 numeric response data>

Figure A-24. < nr3 numeric response data>

Figure A-25. < string response data>

Message Communication and System Functions HP 1650B/HP 1651B

A-24 Programming Reference

www.valuetronics.com

Figure A-26. < definite length arbitrary block response data>

Where < ASCII data byte> represents any ASCII-encoded data byte except

< NL> (0A, 10 decimal).

Notes

1. The END message provides an unambiguous termination to an element

that contains arbitrary ASCII characters.

2. The IEEE 488.1 END message serves the dual function of terminating

this element as well as terminating the < RESPONSE MESSAGE> .

It is only sent once with the last byte of the indefinite block data. The

NL is present for consistency with the

< RESPONSE MESSAGE TERMINATOR> . Indefinite block data

format is not supported in the HP 1650B/1651B.

Figure A-27. < arbitrary ASCII response data>

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-25

www.valuetronics.com

< response data separator> . A comma separates multiple pieces of

response data within a single < response message unit> .

Figure A-28. < response data separator>

< response header separator> . A space (ASCII decimal 32) delimits the

response header, if returned, from the first or only piece of data.

Figure A-29. < response header separator>

< response message unit separator> . A semicolon delimits the

< response message unit> s if multiple responses are returned.

Figure A-30. < response message unit separator>

< response message terminator> . A < response message terminator>

(NL) terminates a complete < response message> . It should be read

from the instrument along with the response itself.

Message Communication and System Functions HP 1650B/HP 1651B

A-26 Programming Reference

www.valuetronics.com

Common
Commands

IEEE 488.2 defines a set of common commands. These commands

perform functions which are common to any type of instrument. They can

therefore be implemented in a standard way across a wide variety of

instrumentation. All the common commands of IEEE 488.2 begin with an

asterisk. There is one key difference between the IEEE 488.2 common

commands and the rest of the commands found in this instrument. The

IEEE 488.2 common commands do not affect the parser’s position within

the command tree. More information about the command tree and tree

traversal can be found in the Programming and Documentation

Conventions chapter.

Table A-3. HP 1650B/51B’s Common Commands

Command Command Name

*CLS Clear Status Command

*ESE Event Status Enable Command

*ESE? Event Status Enable Query

*ESR? Event Status Register Query

*IDN? Identification Query

*OPC Operation Complete Command

*OPC? Operation Complete Query

*RST Reset (not implemented on HP 1650B/1651B)

*SRE Service Request Enable Command

*SRE? Service Request Enable Query

*STB? Read Status Byte Query

*WAI Wait-to-Continue Command

HP 1650B/HP 1651B Message Communication and System Functions

Programming Reference A-27

www.valuetronics.com

BStatus Reporting

Introduction The status reporting feature available over the bus is the serial poll. IEEE

488.2 defines data structures, commands, and common bit definitions.

There are also instrument defined structures and bits.

The bits in the status byte act as summary bits for the data structures

residing behind them. In the case of queues, the summary bit is set if the

queue is not empty. For registers, the summary bit is set if any enabled bit

in the event register is set. The events are enabled via the corresponding

event enable register. Events captured by an event register remain set

until the register is read or cleared. Registers are read with their

associated commands. The "*CLS" command clears all event registers

and all queues except the output queue. If "*CLS" is sent immediately

following a < program message terminator> , the output queue will also

be cleared.

HP 1650B/HP 1651B Status Reporting

Programming Reference B-1

www.valuetronics.com

Figure B-1. Status Byte Structures and Concepts

Status Reporting HP 1650B/HP 1651B

B-2 Programming Reference

www.valuetronics.com

Event Status Register The Event Status Register is a 488.2 defined register. The bits in this

register are "latched." That is, once an event happens which sets a bit, that

bit will only be cleared if the register is read.

Service Request

Enable Register

The Service Request Enable Register is an 8-bit register. Each bit enables

the corresponding bit in the status byte to cause a service request. The

sixth bit does not logically exist and is always returned as a zero. To read

and write to this register use the *SRE? and *SRE commands.

Bit Definitions The following mnemonics are used in figure B-1 and in the "Common

Commands" chapter:

MAV - message available. Indicates whether there is a response in the

output queue.

ESB - event status bit. Indicates if any of the conditions in the Standard

Event Status Register are set and enabled.

MSS - master summary status. Indicates whether the device has a reason

for requesting service. This bit is returned for the *STB? query.

RQS - request service. Indicates if the device is requesting service. This

bit is returned during a serial poll. RQS will be set to 0 after being read

via a serial poll (MSS is not reset by *STB?).

MSG - message. Indicates whether there is a message in the message

queue.

PON - power on. Indicates power has been turned on.

URQ - user request. Always 0 on the HP 1650B/1651B.

CME - command error. Indicates whether the parser detected an error.

Note
The error numbers and/or strings for CME, EXE, DDE, and QYE can be

read from a device defined queue (which is not part of 488.2) with the

query :SYSTEM:ERROR?.

HP 1650B/HP 1651B Status Reporting

Programming Reference B-3

www.valuetronics.com

EXE - execution error. Indicates whether a parameter was out of range,

or inconsistent with current settings.

DDE - device specific error. Indicates whether the device was unable to

complete an operation for device dependent reasons.

QYE - query error. Indicates whether the protocol for queries has been

violated.

RQC - request control. Always 0 on the HP 1650B/1651B.

OPC - operation complete. Indicates whether the device has completed

all pending operations. OPC is controlled by the *OPC common

command. Because this command can appear after any other command,

it serves as a general purpose operation complete message generator.

LCL - remote to local. Indicates whether a remote to local transition has

occurred.

MSB - module summary bit. Indicates that an enable event in one of the

modules Status registers has occurred.

Key Features A few of the most important features of Status Reporting are listed in the

following paragraphs.

Operation Complete. The IEEE 488.2 structure provides one technique

which can be used to find out if any operation is finished. The *OPC

command, when sent to the instrument after the operation of interest, will

set the OPC bit in the Standard Event Status Register. If the OPC bit and

the RQS bit have been enabled a service request will be generated. The

commands which affect the OPC bit are the overlapped commands.

OUTPUT XXX;"*SRE 32 ; *ESE 1" !enables an OPC service request

Status Reporting HP 1650B/HP 1651B

B-4 Programming Reference

www.valuetronics.com

Status Byte. The Status Byte contains the basic status information which

is sent over the bus in a serial poll. If the device is requesting service

(RQS set), and the controller serial polls the device, the RQS bit is

cleared. The MSS (Master Summary Status) bit (read with *STB?) and

other bits of the Status Byte are not be cleared by reading them. Only the

RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

Figure B-2. Service Request Enabling

HP 1650B/HP 1651B Status Reporting

Programming Reference B-5

www.valuetronics.com

Serial Poll The HP 1650B/1651B supports the IEEE 488.1 serial poll feature. When

a serial poll of the instrument is requested, the RQS bit is returned on bit

6 of the status byte.

Using Serial Poll

(HP-IB)

This example will show how to use the service request by conducting a

serial poll of all instruments on the HP-IB bus. In this example, assume

that there are two instruments on the bus; a Logic Analyzer at address 7

and a printer at address 1.

The program command for serial poll using HP BASIC 4.0 is Stat =

SPOLL(707). The address 707 is the address of the oscilloscope in the

this example. The command for checking the printer is Stat =

SPOLL(701) because the address of that instrument is 01 on bus address

7. This command reads the contents of the HP-IB Status Register into the

variable called Stat. At that time bit 6 of the variable Stat can be tested to

see if it is set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1. Enable interrupts on the bus. This allows the controller to "see" the

SRQ line.

2. Disable interrupts on the bus.

3. If the SRQ line is high (some instrument is requesting service) then

check the instrument at address 1 to see if bit 6 of its status register

is high.

Status Reporting HP 1650B/HP 1651B

B-6 Programming Reference

www.valuetronics.com

4. To check whether bit 6 of an instruments status register is high, use

the following Basic statement:

IF BIT (Stat, 6) THEN

5. If bit 6 of the instrument at address 1 is not high, then check the

instrument at address 7 to see if bit 6 of its status register is high.

6. As soon as the instrument with status bit 6 high is found check the

rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than

simply reading the register. This command clears the bus automatically,

addresses the talker and listener, sends SPE (serial poll enable) and SPD

(serial poll disable) bus commands, and reads the data. For more

information about serial poll, refer to your controller manual, and

programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1650B/1651B

Status Byte Register will be reset if it was set. Once a bit in the Status

Byte Register is set, it will remain set until the status is cleared with a

*CLS command, or the instrument is reset.

HP 1650B/HP 1651B Status Reporting

Programming Reference B-7

www.valuetronics.com

Parallel Poll Parallel poll is a controller initiated operation which is used to obtain

information from several devices simultaneously. When a controller

initiates a Parallel Poll, each device returns a Status Bit via one of the DIO

data lines. Device DIO assignments are made by the controller using the

PPC (Parallel Poll Configure) sequence. Devices respond either

individually, each on a separate DIO line; collectively on a single DIO

line; or any combination of these two ways. When responding collectively,

the result is a logical AND (True High) or logical OR (True Low) of the

groups of status bits.

Figure B-2 shows the Parallel Poll Data Structure. The summary bit is

sent in response to a Parallel Poll. This summary bit is the "ist" (individual

status) local message.

The Parallel Poll Enable Register determines which events are

summarized in the ist. The *PRE command is used to write to the enable

register and the *PRE? query is used to read the register. The *IST?

query can be used to read the "ist" without doing a parallel poll.

Status Reporting HP 1650B/HP 1651B

B-8 Programming Reference

www.valuetronics.com

Figure B-3. Parallel Poll Data Structure

HP 1650B/HP 1651B Status Reporting

Programming Reference B-9

www.valuetronics.com

Polling HP-IB Devices Parallel Poll is the fastest means of gathering device status when several

devices are connected to the bus. Each device (with this capability) can

be programmed to respond with one bit of status when parallel polled.

This makes it possible to obtain the status of several devices in one

operation. If a device responds affirmatively to a parallel poll, more

information about its specific status can be obtained by conducting a serial

poll of the device.

Configuring Parallel

Poll Responses

Certain devices, including the HP 1650B/1651B, can be remotely

programmed by a controller to respond to a parallel poll. A device which

is currently configured for a parallel poll responds to the poll by placing

its current status on one of the bus data lines. The response and the

data-bit number can then be programmed by the PPC (parallel Poll

Configure) statement. No multiple listeners can be specified in this

statement. If more than one device is to respond on a single bit, each

device must be configured with a separate PPC statement.

Example: ASSIGN @Device TO 707

PPOLL CONFIGURE @Device;Mask

The value of Mask (any numeric expression can be specified) is first

rounded and then used to configure the device’s parallel response. The

least significant 3 bits (bits 0 through 2) of the expression are used to

determine which data line the device is to respond on (place its status on).

Bit 3 specifies the "true" state of the parallel poll response bit of the

device. A value of 0 implies that the device’s response is 0 when its status

bit message is true.

Example: The following statement configures the device at address 07 on the

interface select code 7 to respond by placing a 0 on bit 4 when its status

response is "true."

PPOLL CONFIGURE 707;4

Status Reporting HP 1650B/HP 1651B

B-10 Programming Reference

www.valuetronics.com

Conducting a Parallel

Poll

The PPOLL (Parallel Poll) function returns a single byte containing up to

8 status bit messages for all devices on the bus capable of responding to

the poll. Each bit returned by the function corresponds to the status bit of

the device(s) configured to respond to the parallel poll (one or more

devices can respond on a single line). The PPOLL function can only be

executed by the controller. It is initiated by the simultaneous assertion of

ATN and EOI.

Example: Response = PPOLL(7)

Disabling Parallel Poll

Responses

The PPU (Parallel Poll Unconfigure) statement gives the controller the

capability of disabling the parallel poll responses of one or more devices

on the bus.

Examples: The following statement disables device 5 only:

PPOLL UNCONFIGURE 705

This statement disables all devices on interface select code 8 from

responding to a parallel poll:

PPOLL UNCONFIGURE 8

If no primary address is specified, all bus devices are disabled from

responding to a parallel poll. If a primary address is specified, only the

specified devices (which have the parallel poll configure capability) are

disabled.

HP 1650B/HP 1651B Status Reporting

Programming Reference B-11

www.valuetronics.com

HP-IB Commands The following paragraphs describe actual HP-IB commands which can be

used to perform the functions of the Basic commands shown in the

previous examples.

Parallel Poll Unconfigure Command. The parallel poll unconfigure

command (PPU) resets all parallel poll devices to the idle state (unable to

respond to a parallel poll).

Parallel Poll Configure Command. The parallel poll configure command

(PPC) causes the addressed listener to be configured according to the

parallel poll enable secondary command PPE.

Parallel Poll Enable Command. The parallel poll enable secondary

command (PPE) configures the devices which have received the PPC

command to respond to a parallel poll on a particular HP-IB DIO line

with a particular level.

Parallel Poll Disable Command. The parallel poll disable secondary

command (PPD) disables the devices which have received the PPC

command from responding to the parallel poll.

Table B-1. Parallel Poll Commands

Command Mnemonic Decimal ASCII/ISO

 Code Character

Parallel Poll Unconfigure PPU 21 NAK

(Multiline Command)

Parallel Poll Configure PPC 5 ENQ

(Addressed Command)

Parallel Poll Enable PPE 96-111 I-O

(Secondary Command)

Parallel Poll Disable PPD 112 P

(Secondary Command)

Status Reporting HP 1650B/HP 1651B

B-12 Programming Reference

www.valuetronics.com

CError Messages

This section covers the error messages that relate to the HP 1650A/51A

Logic Analyzers.

Device Dependent

Errors

200 Label not found

201 Pattern string invalid

202 Qualifier invalid

203 Data not available

300 RS-232C error

HP 1650B/HP 1651B Error Messages

Programming Reference C-1

www.valuetronics.com

Command Errors -100 Command error (unknown command)(generic error)

-101 Invalid character received

-110 Command header error

-111 Header delimiter error

-120 Numeric argument error

-121 Wrong data type (numeric expected)

-123 Numeric overflow

-129 Missing numeric argument

-130 Non numeric argument error (character,string, or block)

-131 Wrong data type (character expected)

-132 Wrong data type (string expected)

-133 Wrong data type (block type # D required)

-134 Data overflow (string or block too long)

-139 Missing non numeric argument

-142 Too many arguments

-143 Argument delimiter error

-144 Invalid message unit delimiter

Error Messages HP 1650B/HP 1651B

C-2 Programming Reference

www.valuetronics.com

Execution Errors -200 No Can Do (generic execution error)

-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on

-203 Trigger ignored

-211 Legal command, but settings conflict

-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration

-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-247 Duplicate file name

-248 Media protected

HP 1650B/HP 1651B Error Messages

Programming Reference C-3

www.valuetronics.com

Internal Errors -300 Device Failure (generic hardware error)

-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

-321 ROM checksum

-322 Hardware and Firmware incompatible

-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

Error Messages HP 1650B/HP 1651B

C-4 Programming Reference

www.valuetronics.com

Query Errors -400 Query Error (generic)

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. Indefinite block response in progress

-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

HP 1650B/HP 1651B Error Messages

Programming Reference C-5

www.valuetronics.com

Index

*CLS command 5-3

*ESE command 5-4

*ESR command 5-6

*IDN command 5-8

*OPC command 5-9

*RST command 5-10

*SRE command 5-11

*STB command 5-13

*WAI command 5-15

32767 4-2

9.9E+ 37 4-2

::= 4-3

A

ACCumulate command/query 14-4, 15-4, 19-6

Acquisition data 6-11

Addressed talk/listen mode 2-2

AMODe command/query 18-4

Analyzer 1 Data Information 6-9

Analyzer 2 Data Information 6-11

Angular brackets 4-3

Arguments 1-4

ARM command/query 10-4

ARMBnc command 6-4

ASSign command/query 10-5

AUToload command/query 7-4

AUToscale command 10-6

B

BASE command 20-4

Bases 1-9

BASIC 1-2

Baud rate 3-5

Bit definitions B-3

Block data 1-3, 1-17, 6-6

Block length specifier 6-6

Block length specifier 6-7, 6-35

Braces 4-3

BRANch command/query 12-5 - 12-7

C

Cable

RS-232C 3-2

CATalog query 7-5

chart display 15-1

Clear To Send (CTS) 3-4

CLOCk command/query 11-4

CMASk command/query 16-4

CME B-3

COLumn command/query 8-3, 13-6 - 13-7

Combining commands 1-6

Comma 1-8

Command 1-3, 1-14

*CLS 5-3

*ESE 5-4

*OPC 5-9

HP 1650B/HP 1651B Index-1

Programming Reference

www.valuetronics.com

*RST 5-10

*SRE 5-11

*WAI 5-15

ACCumulate 14-4, 15-4, 19-6

AMODe 18-4

ARM 10-4

ARMBnc 6-4

ASSign 10-5

AUToload 7-4

AUToscale 10-6

BASE 20-4

BRANch 12-5

CLOCk 11-4

CMASk 16-4

COLumn 8-3, 13-6

COMPare 16-3

CONFig 7-9, 7-14

COPY 7-6, 16-5

CPERiod 11-5

DATA 6-5, 16-6

DELay 14-5, 19-7

DLISt 8-2

DOWNload 7-7

DSP 6-18

DURation 18-5

EDGE 18-6

FIND 12-8

GLITch 18-8

HAXis 15-5

HEADer 1-13, 6-20

IASSembler 7-10

INITialize 7-8

INSert 14-6, 19-8

KEY 6-21

LABel 11-6, 17-3

LINE 8-5, 13-9

LOAD:CONFig 7-9

LOAD:IASSembler 7-10

LOCKout 3-7, 6-24

LONGform 1-13, 6-25

MACHine 10-3

MASTer 11-8

MENU 6-26

MESE 6-27

MMODe 13-10, 19-9

NAME 10-7

OCONdition 19-10

OPATtern 13-11, 19-11

OSEarch 13-13, 19-13

OTAG 13-15

OTIMe 9-5, 19-14

PACK 7-11

PATTern 18-9, 20-5

PREstore 12-10

PRINt 6-32

PURGe 7-12

RANGe 12-12, 14-7, 16-9, 19-15, 20-6

REMove 11-9, 14-8, 17-5, 19-16, 20-7

REName 7-13

RESTart 12-14

RMODe 6-33

Run Control 6-1

RUNTil 13-16, 16-10, 19-17

SCHart 15-3

SEQuence 12-16

SETup 6-34

SFORmat 11-3

SLAVe 11-10

SLISt 13-5

STARt 6-36

STOP 6-37

STORe 12-17

STORe:CONFig 7-14

STRace 12-4

SWAVeform 14-3

SYMBol 20-3

SYStem:DATA 6-5

SYStem:SETup 6-34

TAG 12-19

TERM 12-21

TFORmat 17-2

THReshold 11-11, 17-6

Index-2 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

TTRace 18-3

TWAVeform 19-5

TYPE 10-8

VAXis 15-6

WIDTh 20-8

WLISt 9-2

XCONdition 19-24

XPATtern 13-23, 19-26

XSEarch 13-25, 19-28

XTAG 13-27

XTIMe 9-6, 19-29

Command errors C-2

Command mode 2-1

Command set organization 4-8

Command structure 1-12

Command tree 4-4

Command types 4-4

Common commands 1-5, 4-4, 5-1, A-27

Communication 1-2

COMPare selector 16-3

COMPare Subsystem 16-1

Complex qualifier 12-7

Compound commands 1-4

CONFig command 7-9, 7-14

Configuration file 1-11 - 1-12

Controller mode 2-2

Controllers 1-2

Conventions 4-2

COPY command 7-6, 16-5

CPERiod command/query 11-5

D

DATA 6-5

command 6-5

State (no tags 6-12

State (with either time or stata tags 6-12

Timing Glitch 6-14

Transitional Timing 6-15

Data bits 3-5 - 3-6

8-Bit mode 3-6

Data block

Acquisition data 6-11

Analyzer 1 data 6-9

Analyzer 2 data 6-11

Data preamble 6-8

Section data 6-8

Section header 6-8

Data Carrier Detect (DCD) 3-4

DATA command/query 6-5 - 6-17, 16-6 - 16-7

Data Communications Equipment 3-1

Data mode 2-1

Data preamble 6-8

DATA query 13-8

Data Set Ready (DSR) 3-4

Data Terminal Equipment 3-1

Data Terminal Ready (DTR) 3-3

DCE 3-1

DCL 2-5

DDE B-4

Definite-length block response data 1-17

DELay command/query 14-5, 19-7

Device address 1-3

HP-IB 2-3

RS-232C 3-6

Device clear 2-5

Device dependent errors C-1

DLISt selector 8-2

DLISt Subsystem 8-1

Documentation conventions 4-2

DOWNload command 7-7

DSP command 6-18

DTE 3-1

Duplicate keywords 1-6

DURation command/query 18-5

E

EDGE command/query 18-6 - 18-7

Ellipsis 4-3

HP 1650B/HP 1651B Index-3

Programming Reference

www.valuetronics.com

Embedded strings 1-2 - 1-3

Enter statement 1-2

Error messages C-1

ERRor query 6-19

ESB B-3

Event Status Register B-3

EXE B-4

Execution errors C-3

Exponents 1-9

Extended interface 3-3

F

FIND command/query 12-8 - 12-9

FIND query 16-8

Fractional values 1-9

G

GET 2-5

GLITch command/query 18-8

Glitch Timing Data 6-14

Group execute trigger 2-5

H

HAXis command/query 15-5

HEADer command 1-13

HEADer command/query 6-20

Headers 1-3 - 1-4, 1-8

Host language 1-3

HP-IB 2-1 - 2-2, B-6

HP-IB address 2-2

HP-IB commands B-12

HP-IB device address 2-3

HP-IB interface 2-2

HP-IB interface code 2-3

HP-IB interface functions 2-1

I

IASSembler command 7-10

IEEE 488.1 2-1, A-1

IEEE 488.1 bus commands 2-5

IEEE 488.2 A-1

IEEE 488.2 Standard 1-1

IFC 2-5

Infinity 4-2

Initialization 1-11

INITialize command 7-8

Input buffer A-2

INSert command 14-6, 19-8

Instruction headers 1-3

Instruction parameters 1-4

Instruction syntax 1-2

Instruction terminator 1-10

Instructions 1-3

Instrument address 2-3

Interface capabilities 2-1

RS-232C 3-5

Interface clear 2-5

Interface code

HP-IB 2-3

Interface select code

RS-232C 3-6

Internal errors C-4

K

KEY command/query 6-21

Keyword data 1-9

Keywords 4-1

Index-4 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

L

LABel command/query 11-6 - 11-7, 17-3 - 17-4

LCL B-4

LER query 6-23

LINE command/query 8-5, 13-9

Linefeed 4-3

Listening syntax A-8

LOAD:CONFig command 7-9

LOAD:IASSembler command 7-10

Local 2-4

Local lockout 2-4

LOCKout command 3-7

LOCKout command/query 6-24

Longform 1-8

LONGform command 1-13

LONGform command/query 6-25

Lowercase 1-8

M

Machine selector 10-3

MACHine Subsystem 10-1

MASTer command/query 11-8

MAV B-3

MENU command/query 6-26

MESE command/query 6-27

MESR query 6-29 - 6-30

MMEMory subsystem 7-1

MMODe command/query 13-10, 19-9

Mnemonics 1-9, 4-1

MSB B-4

MSG B-3

MSS B-3

Multiple numeric variables 1-18

Multiple program commands 1-10

Multiple queries 1-18

Multiple subsystems 1-10

N

NAME command/query 10-7

New Line character 1-10

NL 1-10, 4-3

Notation conventions 4-2

Numeric base 1-16

Numeric bases 1-9

Numeric data 1-9

Numeric variables 1-16

O

OCONdition command/query 19-10

OPATtern command/query 13-11 - 13-12,

19-11 - 19-12

OPC B-4

Operation Complete B-4

OR notation 4-3

OSEarch command/query 13-13, 19-13

OSTate 13-14

OSTate query 9-3

OTAG command/query 13-15

OTIMe command/query 9-5, 19-14

Output buffer 1-7

Output command 1-3

Output queue A-2

OUTPUT statement 1-2

Overlapped command 5-9, 5-15, 6-36 - 6-37

Overlapped commands 4-2

HP 1650B/HP 1651B Index-5

Programming Reference

www.valuetronics.com

P

PACK command 7-11

Parallel poll B-8

Parallel poll commands B-12

Parameter syntax rules 1-8

Parameters 1-4

Parity 3-5

Parse tree A-7

Parser A-2

PATTern command 20-5

PATTern command/query 18-9 - 18-10

PON B-3

PPC B-12

PPD B-12

PPE B-12

PPOWer query 6-31

PPU B-12

Preamble description 6-8

PREstore command/query 12-10 - 12-11

PRINt command 6-32

Printer mode 2-2

Program data A-14

Program examples 4-9

Program message A-9

Program message syntax 1-2

Program message terminator 1-10

Program syntax 1-2

Programming conventions 4-2

Protocol 3-5, A-3

None 3-5

XON/XOFF 3-5

Protocol exceptions A-4

Protocols A-2

PURGe command 7-12

Q

Query 1-3, 1-7, 1-14

*ESE 5-4

*ESR 5-6

*IDN 5-8

*OPC 5-9

*SRE 5-11

*STB 5-13

ACCumulate 14-4, 15-4, 19-6

AMODe 18-4

ARM 10-4

ARMBnc 6-4

ASSign 10-5

AUToload 7-4

BRANch 12-5

CATalog 7-5

CLOCk 11-4

CMASk 16-4

COLumn 8-3, 13-6

CPERiod 11-5

DATA 6-5, 13-8, 16-6

DELay 14-5, 19-7

DURation 18-5

EDGE 18-6

ERRor 6-19

FIND 12-8, 16-8

GLITch 18-8

HAXis 15-5

HEADer 6-20

KEY 6-21

LABel 11-6, 17-3

LER 6-23

LINE 8-5, 13-9

LOCKout 6-24

LONGform 6-25

MASTer 11-8

MENU 6-26

MESE 6-27

Index-6 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

MESR 6-29

MMODe 13-10, 19-9

NAME 10-7

OCONdition 19-10

OPATtern 13-11, 19-11

OSEarch 13-13, 19-13

OSTate 9-3, 13-14

OTAG 13-15

OTIMe 9-5, 19-14

PATTern 18-9

PPOWer 6-31

RANGe 12-12, 14-7, 16-9, 19-15

RESTart 12-14

RMODe 6-33

RUNTil 13-16, 16-10, 19-17

SEQuence 12-16

SETup 6-34

SLAVe 11-10

SPERiod 19-19

STORe 12-17

SYSTem:DATA 6-5

SYStem:SETup 6-34

TAG 12-19

TAVerage 13-18, 19-20

TERM 12-21

THReshold 11-11, 17-6

TMAXimum 13-19, 19-21

TMINimum 13-20, 19-22

TYPE 10-8

UPLoad 7-15

VAXis 15-6

VRUNs 13-21, 19-23

XCONdition 19-24

XOTag 13-22

XOTime 19-25

XPATtern 13-23, 19-26

XSEarch 13-25, 19-28

XSTate 9-4, 13-26

XTAG 13-27

XTIMe 9-6, 19-29

Query errors C-5

Query responses 1-12, 4-2

Question mark 1-7

QYE B-4

R

RANGe command 20-6

RANGe command/query 12-12 - 12-13, 14-7,

16-9, 19-15

Receive Data (RD) 3-2 - 3-3

Remote 2-4

Remote enable 2-4

REMove command 11-9, 14-8, 17-5, 19-16,

20-7

REN 2-4

REName command 7-13

Request To Send (RTS) 3-4

Response data 1-17

Response message A-21

Responses 1-13

RESTart command/query 12-14 - 12-15

RMODe command/query 6-33

Root 4-4

RQC B-4

RQS B-3

RS-232C 3-1, 3-6, A-1

Run Control Commands 6-1

RUNTil command/query 13-16 - 13-17, 16-10 -

16-11, 19-17 - 19-18

S

SCHart selector 15-3

SCHart Subsystem 15-1

SDC 2-5

Section data 6-8

Section data format 6-6

Section header 6-8

HP 1650B/HP 1651B Index-7

Programming Reference

www.valuetronics.com

Selected device clear 2-5

Separator A-18

SEQuence command/query 12-16

Sequential commands 4-2

Serial poll B-6

Service Request Enable Register B-3

SETup 6-34

SETup command/query 6-34 - 6-35

SFORmat selector 11-3

SFORmat Subsystem 11-1

Shortform 1-8

Simple commands 1-4

SLAVe command/query 11-10

SLISt selector 13-5

SLISt Subsystem 13-1

Spaces 1-4

SPERiod query 19-19

Square brackets 4-3

STARt command 6-36

State data

with either time or state tags 6-12

without tags 6-12

Status 1-18, 5-2, B-1

Status byte B-5

Status registers 1-18

Status reporting B-1

Stop bits 3-5

STOP command 6-37

STORe command/query 12-17 - 12-18

STORe:CONFig command 7-14

STRace selector 12-4

STRace Subsystem 12-1

String data 1-9

String variables 1-15

Subsystem

COMPare 16-1

DLIST 8-1

MACHine 10-1

MMEMory 7-1

SCHart 15-1

SFORmat 11-1

SLISt 13-1

STRace 12-1

SWAVeform 14-1

SYMBol 20-1

TFORmat 17-1

TTRace 18-1

TWAVeform 19-1

WLISt 9-1

Subsystem commands 4-4

Suffix multiplier A-16

Suffix units A-16

SWAVeform selector 14-3

SWAVeform Subsystem 14-1

SYMBol selector 20-3

SYMBol Subsystem 20-1

Syntax A-8

Syntax diagram

Common commands 5-2

DLISt Subsystem 8-1

MMEMory subsystem 7-2 - 7-3

SFORmat Subsystem 11-1

SLISt Subsystem 13-2

STRace Subsystem 12-1

SYMBol Subsystem 20-2

System commands 6-3

TFORmat Subsystem 17-1

TTRace Subsystem 18-2

TWAVeform Subsystem 19-2

WLISt Subsystem 9-1

Syntax diagrams 4-2

IEEE 488.2 A-5

System commands 4-4, 6-1

T

TAG command/query 12-19 - 12-20

Talk only mode 2-2

Talking syntax A-21

TAVerage query 13-18, 19-20

TERM command/query 12-21 - 12-22

Index-8 HP 1650B/HP 1651B

Programming Reference

www.valuetronics.com

Terminator 1-10, A-26

TFORmat selector 17-2

TFORmat Subsystem 17-1

Three-wire Interface 3-2

Threshold command/query 11-11, 17-6

Timing Glitch Data 6-14

TMAXimum query 13-19, 19-21

TMINimum query 13-20, 19-22

Trailing dots 4-3

Transitional Timing Data 6-15

Transmit Data (TD) 3-2 - 3-3

Truncation rule 4-1

TTRace selector 18-3

TTRace Subsystem 18-1

TWAVeform selector 19-5

TWAVeform Subsystem 19-1

TYPE command/query 10-8

U

Units 1-9

UPLoad query 7-15

Uppercase 1-8

URQ B-3

V

VAXis command/query 15-6

VRUNs query 13-21, 19-23

W

White space 1-4

WIDTh command 20-8

WLISt selector 9-2

WLISt Subsystem 9-1

X

XCONdition command/query 19-24

XOTag query 13-22

XOTime query 19-25

XPATtern command/query 13-23 - 13-24,

19-26 - 19-27

XSEarch command/query 13-25, 19-28

XSTate query 9-4, 13-26

XTAG command/query 13-27

XTIMe command/query 9-6, 19-29

XXX 4-3, 4-5

XXX (meaning of) 1-3

HP 1650B/HP 1651B Index-9

Programming Reference

www.valuetronics.com

Printing History

New editions are complete revisions of the manual. Update packages,

which are issued between editions, contain additional and replacement

pages to be merged into the manual by the customer. The dates on the

title page change only when a new edition or a new update is published.

No information is incorporated into a reprinting unless it appears as a

prior update; the edition does not change when an update is incorporated.

A software code may be printed before the date; this indicates the version

level of the software product at the time of the manual or update was

issued. Many product updates and fixes do not require manual changes

and, conversely, manual corrections may be done without accompanying

product changes. Therefore, do not expect a one-to-one correspondence

between product updates and manual updates.

Edition 1 August 1989 01650-90913

www.valuetronics.com

List of Effective Pages

The List of Effective Pages gives the data of the current edition and of any

pages changed in updates to that edition. Within the manual, any page

changed since the last edition will have the date the changes were made

printed on the bottom of the page. If an update is incorporated when a

new edition of the manual is printed, the change dates are removed from

the bottom of the pages and the new edition date is listed in Printing

History and on the title page.

Pages Effective Date

All August 1989

www.valuetronics.com

Product

Warranty

This Hewlett-Packard product has a warranty against defects in material

and workmanship for a period of one year from date of shipment. During

warranty period, Hewlett-Packard Company will, at its option, either

repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service

facility designated by Hewlett-Packard. However, warranty service for

products installed by Hewlett-Packard and certain other products

designated by Hewlett-Packard will be performed at the Buyer’s facility at

no charge within the Hewlett-Packard service travel area. Outside

Hewlett-Packard service travel areas, warranty service will be performed

at the Buyer’s facility only upon Hewlett-Packard’s prior agreement and

the Buyer shall pay Hewlett-Packard’s round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer

shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard

shall pay shipping charges to return the product to the Buyer. However,

the Buyer shall pay all shipping charges, duties, and taxes for products

returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by

Hewlett-Packard for use with an instrument will execute its programming

instructions when properly installed on that instrument. Hewlett-Packard

does not warrant that the operation of the instrument software, or

firmware will be uninterrupted or error free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from improper

or inadequate maintenance by the Buyer, Buyer-supplied software or

interfacing, unauthorized modification or misuse, operation outside of the

environmental specifications for the product, or improper site preparation

or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.

HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE

IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

www.valuetronics.com

Exclusive Remedies THE REMEDIES PROVIDED HEREIN ARE THE BUYER’S SOLE

AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL

NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER

BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL

THEORY.

Assistance Product maintenance agreements and other customer assistance

agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and

Service Office.

Certification Hewlett-Packard Company certifies that this product met its published

specifications at the time of shipment from the factory. Hewlett-Packard

further certifies that its calibration measurements are traceable to the

United States National Bureau of Standards, to the extent allowed by the

Bureau’s calibration facility, and to the calibration facilities of other

International Standards Organization members.

Safety This product has been designed and tested according to International

Safety Requirements. To ensure safe operation and to keep the product

safe, the information, cautions, and warnings in this manual must be

heeded.

www.valuetronics.com

