# Introduction

Use the tests in this chapter if you want to check that the Agilent 81130A Pulse Generator Frame with the Agilent 81132A 660 MHz Output Channel(s) is working correctly. Before starting any testing allow all test equipment to warm up for at least 30 minutes.

#### **Conventions Used**

When referring to actions that you perform during the tests, the following conventions are used:

FUNCTION This indicates that a labelled button must be pressed

[MODE/TRG] This shows that a soft-key must be pressed. A soft-key is an unlabelled button whose label is shown on the display, and which can vary according to the job that the button is doing

**CONTINUOUS PULSES** This is an option shown on the display, and is selected by use of the vernier keys. It is shown in upper or lower case to match the case displayed.

#### **Test Results Tables**

Tables for entering the results of the tests are included at the end of this chapter. The tests are numbered and reference numbers for each Test Result (TR) are given in a small table at the end of each test. The reference number shows you where the actual results should be entered in the Test Results Tables.

The Test Results tables at the end of the chapter should be photocopied, and the Test Results entered on the copies. Then, if the tests need to be repeated, the tables can be copied again.

If Channel 2 has been fitted to your instrument, make an extra copy of the Test Results tables for entry of the results of tests on that channel. In this case, however, it is not necessary to repeat the Period tests, as these are common to both channels.

# **Recommended Test Equipment and Accessories**

The following tables list the recommended test equipment you need to perform all the tests in this chapter. You can use alternative instruments if they meet the critical specifications given. The test set-ups and procedures assume you are using the recommended equipment.

| Test Equipment     | Model                              | Critical Specifications                                                    |
|--------------------|------------------------------------|----------------------------------------------------------------------------|
| Oscilloscope<br>or | Agilent 54121T                     | 20 GHz, 10 bit vertical resolution, Histogram                              |
| Oscilloscope       | Agilent 54750A +<br>Agilent 54751A | 20 GHz, 15 bit vertical resolution, Histogram                              |
| Counter<br>or      | Agilent 53132A<br>#001/010, 030    | Frequency measurements > 150 MHz<br>High-Stability Timebase, 3 GHz Channel |
| Counter            | Agilent 5334B<br>#010, 030         | Period and Time Interval measurements<br>Oven Osci, 1.3 GHz C-Channel      |
| Digital Voltmeter  | Agilent 3458A                      | DCV up to 20 V                                                             |
| Delay line         | Agilent 54008A                     | 22 ns                                                                      |

| Accessories                                                                                                | Model                                                      | Critical Specifications |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|
| Digitizing Oscilloscopes Accessories<br>Attenuators                                                        | 33340C#020<br>33340C#006                                   | 20 dB<br>6 dB           |
| Power Splitter<br>SMA/SMA (m-m) adaptor<br>SMA (f)/BNC (m) Adaptor<br>SMA (m)/BNC (f) Adaptor<br>SMA Cable | 11667B<br>1250-1159<br>1250-1700<br>1250-1200<br>8120-4948 | 0.00                    |

### Agilent 81130A/'32A Performance Test

| Accessories                         | Model                | Critical Specifications   |
|-------------------------------------|----------------------|---------------------------|
| 50 $\Omega$ Feedthrough Termination | 10100C<br>See Figure | 2 W,1%<br>10 W,0.1%       |
| Adaptor                             | 1251-2277            | BNC to Banana             |
| Cable Assemblies, BNC               | 8120-1839            |                           |
| Torque Wrench                       | 8710-1582            | 5/16 in, 5 lb-in (56 Ncm) |

NOTE:

When you connect the test equipment for the first time, and whenever you change the setup during the course of these tests, use the 8710 - 1582 torque wrench to tighten and loosen SMA connectors. This will ensure that the connectors are at the correct tightness and give the best signal transfer.

### 50 Ohm, 0.1%, 10 W Feedthrough Termination

The following figure provides a schematic and a parts list except for the case. The case must provide shielding and maintain grounding integrity.



50 Ohm, 0.1%, 10 W Feedthrough Termination

The following parts are required:

- 1.  $R1 = 53.6\Omega$ , 1%, 10 W; Part Number: 0699-0146.
- 2.  $R2 = 200 \Omega$ , 10%, 0.5 W, Variable trimmer; Part Number: 2100-3350.
- 3.  $R3 = 681 \Omega$ ; 1%, 0.5 W; Part Number: 0757-0816.
- 4. BNC (M): Part Number: 1250-0045.
- 5. BNC (F): Part Number: 1250-0083.

6

# **Getting Started**

The Agilent 81130A is controlled by selecting options in a series of **pages** that are displayed on the instrument's screen. These options vary with the boards that are fitted in the instrument. When the Agilent 81130A is being tested, therefore, different situations can arise, depending on whether you have a standard instrument or one that has had additional boards fitted. The following examples illustrate this

#### **Typical Examples of Displayed Screens**

| Per            | 1.000µs                      | off 1           |            | DIFY        |
|----------------|------------------------------|-----------------|------------|-------------|
| Delay<br>Width | Ops Offset<br>100.0ns Amplit | +0.0mV<br>1.00V | *OFF<br>ON | norm<br>out |
| MODE/I         | RG OUTPUT                    | LIMITS          | PAT        | FERN        |

The OUTPUT Screen in a Standard Agilent 81130A

|         | <b>Per 1.000</b> µs | off 2   | MODIFY    |
|---------|---------------------|---------|-----------|
| Delay   | 0ps Delay           | 0ps     | *Period   |
| Width   | 100.0ns Width       | 100.0ns | Frequency |
| MODE/TR | G TIMING            | LEVELS  | PATTERN   |

The TIMING Screen in an Agilent 81130A with qty 2 of Agilent 81132A

| 1  on off |          |         | ON OFF 2 | MODIFY    |
|-----------|----------|---------|----------|-----------|
| S         | Seperate | Outputs |          | Set TTL   |
| High      | +500mV   | Offset  | +0.0mV   | *High-Low |
| Low       | -500mV   | Amplit  | 1.00V    | Offs-Ampl |
|           |          |         |          | Set ECL   |
| MODE/TR   | G TIM    | IING    | LEVELS   | PATTERN   |

The LEVELS Screen in an Agilent 81130A with qty 2 of Agilent 81132A

#### **Instrument Serial Numbers**

You will need to write the serial numbers of the instrument at the top of the Test Reports. These can be found as follows:

Press <u>HELP</u>, [SERIAL #]

The Agilent 81130A display lists the instrument's products and serial number.

The display on your instrument should look similar to this:

| FRAME     | : | 81130A     | 660 MHz |
|-----------|---|------------|---------|
| Serial No | : | DE38B00132 |         |

#### **OUTPUTS**

| Ch1-Bd. | : | 81132A |
|---------|---|--------|
| Ch2-Bd. | : | 81132A |

The serial number given for the **FRAME** applies to the Mainframe, the Power Supply, the Microprocessor Board, and the Timing Board. The number(s) available of the Output Channel(s) applies to the installed numbers of outputs and Model Number.

#### Initial Setup of the Agilent 81130A

In the majority of these tests the initial setting up of the instrument is identical. Therefore, it is described once here, and then referredto where appropriate. In cases where the initial setup differs, an illustration of the settings is shown.

Set up the Agilent 81130A as follows:

- 1. Select [MODE/TRG]
- CONTINUOUS PULSES
- 2. Select [OUTPUT 2], if second channel is installed
- Separate Out 2
- 3. Select <u>MORE</u> [CONFIG] screen and set up as follows. If a second output channel is installed select grouped by OUT-PUT 1 / 2



CONFIG Screen, Parameters grouped by OUTPUT

NOTE:Set-ups are given in all the tests for [OUTPUT 1] and [OUTPUT 2].If you are testing a single channel instrument set up the<br/>[OUTPUT] screen with the settings given for [OUTPUT 1].

# **Test 1: Frequency**

#### **Test Specifications**

Range1 kHz to 660 MHzResolution4 digits, best case 2 psAccuracy $\pm$  0.01%

### **Equipment Needed**

Counter Agilent 53132A Cable, 50 Ω, coaxial, BNC; SMA/BNC Adaptor

### Procedure

Connect the Agilent 81130A to the counter as follows:



Connecting Agilent 81130A to the Counter

- 4. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 5. Press  $\overline{\text{MORE}}$  and select the [MODE/TRG] screen on the Agilent 81130A and set up as follows:

| CONTINUOUS | PULSES   |          | MODIFY                         |
|------------|----------|----------|--------------------------------|
|            |          |          | *Continous<br>Started<br>Gated |
| MODE/TRG   | OUTPUT 1 | OUTPUT 2 | PATTERN                        |

The MODE/TRG Screen Setup

6. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as follows:

| Freq (<br>Delay<br>DtyCyc | 0ps Offset<br>50.00% Amplit | OFF <b>1</b><br>+0.0mV<br>1.00V | MODIFY<br>660.0<br>MHz |
|---------------------------|-----------------------------|---------------------------------|------------------------|
| MODE/TR                   | G OUTPUT 1                  | OUTPUT 2                        | PATTERN                |

Configuring Output 1



Configuring Output 2

*NOTE:* When you are testing instruments with 2 output channels it is necessary to:

a. Configure *both* channels.

b. You can switch OFF the channels that are not being tested.

7. Set the Counter to measure the frequency at the choosen input 1/3

| Period   | Frequency  | Acceptable Range             | TR Entry                                                                                        |
|----------|------------|------------------------------|-------------------------------------------------------------------------------------------------|
| 1.515 ns | 660.000MHz | 659.9340 MHz to 660.0660 MHz | $ \begin{array}{r} 1 - 1 \\ 1 - 2 \\ 1 - 3 \\ 1 - 4 \\ 1 - 5 \\ 1 - 6 \\ 1 - 7 \\ \end{array} $ |
| 10.00 ns | 100 MHz    | 99.990 MHz to 100.010 MHz    |                                                                                                 |
| 50.00 ns | 20 MHz     | 19.9980 MHz to 20.0020 MHz   |                                                                                                 |
| 100 ns   | 10 MHz     | 9.9990 MHz to 10.0010 MHz    |                                                                                                 |
| 500 ns   | 2 MHz      | 1.9998 MHz to 2.0002 MHz     |                                                                                                 |
| 1 μs     | 1 MHz      | 999.9 kHz to 1.0001 MHz      |                                                                                                 |
| 5.882 μs | 170.0 kHz  | 169.983 kHz to 170.017 kHz   |                                                                                                 |

8. Check the Agilent 81130A frequency at the following settings:

# Test 2: Width

#### **Test Specifications**

Range750 ps to (period - 750 ps)Resolution4 digits, best case 2 psAccuracy $\pm 0.01\% \pm 200$  ps

#### **Equipment Needed**

Digitizing Oscilloscope with Accessories Counter Cable, 50 Ω, coaxial, BNC; SMA/BNC Adaptor

## Procedure

1. Connect Agilent 81130A to the Scope as shown:



Connecting Agilent 81130A to the Scope

2. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"

3. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:

| Per<br>Delay<br>Width | 200 ns<br>Ops Offset<br>100.0ns Amplit | ON<br>OFF <b>1</b><br>+0.0mV<br>1.00V | MODIFY<br>100.0<br>ns |
|-----------------------|----------------------------------------|---------------------------------------|-----------------------|
| MODE/T                | RG OUTPUT 1                            | OUTPUT 2                              | PATTERN               |

Configuring Output Screen 1

| Per            | 200 ns                            | $_{\rm off}^{\rm off}$ 2        | MODIFY                 |
|----------------|-----------------------------------|---------------------------------|------------------------|
| Delay<br>Width | 0ps Offse<br>750ps Ampli<br>Sepa: | t +0.0m<br>t 1.00V<br>rate Out2 | v 750<br><sub>ps</sub> |
| MODE/TR        | G OUTPUT 1                        | OUTPUT 2                        | PATTERN                |

Configuring Output Screen 2

| NOTE: | When you are testing instruments with 2 output channels it is necessary to:                                                                                                                                                                                                     |  |  |  |  |                                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--------------------------------------------------|
|       | a. Configure <i>both</i> channels.<br>b. Switch OFF the channel that is not being tested                                                                                                                                                                                        |  |  |  |  |                                                  |
|       | If you then test the other channel:                                                                                                                                                                                                                                             |  |  |  |  |                                                  |
|       | c. Switch ON the channel you are testing, and switch OFF the other channel.                                                                                                                                                                                                     |  |  |  |  |                                                  |
|       | 4. Set the Digitizing Oscilloscope Agilent 54121T:                                                                                                                                                                                                                              |  |  |  |  |                                                  |
|       | • Press AUTOSCALE                                                                                                                                                                                                                                                               |  |  |  |  |                                                  |
|       | • Select the Display menu and set the Number of Averages to 32                                                                                                                                                                                                                  |  |  |  |  |                                                  |
|       | <ul> <li>Select the delta V menu and turn the voltage markers On</li> <li>Set the preset levels to 50% -50% and press <u>AUTO LEVEL SET</u></li> <li>Select the delta t menu and turn the time markers ON</li> <li>Set START ON EDGE = POS 1 and STOP ON EDGE = NEG1</li> </ul> |  |  |  |  |                                                  |
|       |                                                                                                                                                                                                                                                                                 |  |  |  |  |                                                  |
|       |                                                                                                                                                                                                                                                                                 |  |  |  |  |                                                  |
|       |                                                                                                                                                                                                                                                                                 |  |  |  |  | 6. Change the Agilent 81130A Ch-1 Width to 750ps |
|       | 7. Center the pulse in the Scope display                                                                                                                                                                                                                                        |  |  |  |  |                                                  |
|       | 8. Press the <u>PRECISE EDGE FIND</u> key for each new Width set-<br>ting                                                                                                                                                                                                       |  |  |  |  |                                                  |
|       | 9. Check the Agilent 81130A pulse width at the following set-<br>tings:                                                                                                                                                                                                         |  |  |  |  |                                                  |
| 18    | Agilent 81130A/'32A Performance Test                                                                                                                                                                                                                                            |  |  |  |  |                                                  |

| Oscilloscope<br>Timebase | Period | Width    | Acceptable Range         | TR Entry |
|--------------------------|--------|----------|--------------------------|----------|
| 1 ns/div                 | 200 ns | 750 ps   | 549.925ps to 950.075ps   | 2 - 1    |
| 2 ns/div                 | 200 ns | 10.00 ns | 9.799 ns to 10.201 ns    | 2 - 2    |
| 10 ns/div                | 200 ns | 50.00 ns | 49.795 ns to 50.205 ns   | 2 - 3    |
| 20 ns/                   | 1 μs   | 100.0 ns | 99.790 ns to 100.210 ns  | 2 - 4    |
| 100 ns                   | 1 μs   | 500.0 ns | 499.750 ns to 500.250 ns | 2 - 5    |

| / 1 | 10. | Connect the | e Agilent | 81130A | to the | Counter a | s shown: |
|-----|-----|-------------|-----------|--------|--------|-----------|----------|
|-----|-----|-------------|-----------|--------|--------|-----------|----------|



Connecting Agilent 81130A to the Counter

11. Set the Counter to:

| FUNCTION | PULSE WIDTH A |
|----------|---------------|
| INPUT A  | 50 Ω          |

| <br>0                |              |                                                  | 0 0            |
|----------------------|--------------|--------------------------------------------------|----------------|
| Period               | Width        | Acceptable Range                                 | TR Entry       |
| 5.882 μs<br>5.882 μs | 1 μs<br>5 μs | 0.9997 μs to 1.0003 μs<br>4.9993 μs to 5.0007 μs | 2 - 6<br>2 - 7 |

| 12. | Check | the | Agilent  | 8113 | 0A | width | at 1 | the | foll | lowing   | settings: |
|-----|-------|-----|----------|------|----|-------|------|-----|------|----------|-----------|
|     |       |     | <u> </u> |      |    |       |      |     |      | <u> </u> | <u> </u>  |

NOTE:

Repeat the entire test for the second channel, if it is installed

20

53ns

54 ns

# **Test 3: Delay**

# **Test Specifications**

| Range | Variable Delay:<br>0 ns to 3.00 µs |      |
|-------|------------------------------------|------|
|       | Fixed typical Delay of             |      |
|       | CLK/REF IN to TRIGGER OUT          | 21ns |
|       | CLK/REF IN to OUTPUT 1/2           | 53ns |

| Resolution |  |
|------------|--|
| Accuracy   |  |

4 digits, best case 2 ps ±0.01% ±100 ps relative to the zero-delay

EXT INPUT to OUTPUT 1/2

EXT INPUT to TRIGGER OUT 22 ns

#### **Equipment Needed**

Digitzing Oscilloscope with Accessories Power Splitter Counter Cable, 50 Ω, coaxial, BNC; SMA/BNC Adaptor

# Procedure

Connect Agilent 81130A to the Scope as shown:



Connecting Agilent 81130A to the Scope

- 1. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 2. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:

| Per            | 1.000µs                    | on <b>1</b>     | CMODIFY                 |
|----------------|----------------------------|-----------------|-------------------------|
| Delay<br>Width | 0ps Offset<br>100ns Amplit | +0.0mV<br>1.00V | $\frac{0}{\mathbf{ps}}$ |
| MODE/T         | RG OUTPUT 1                | OUTPUT 2        | PATTERN                 |

Configuring Output Screen 1

22



Configuring Output Screen 2

NOTE: When you are testing instruments with 2 output channels it is necessary to:
a. Configure *both* channels.
b. Switch OFF the channel that is not being tested
If you then test the other channel:
c. Switch ON the channel you are testing, and switch OFF the other channel.
3. Set the Digitizing Oscilloscope Agilent 54121T:
Press AUTOSCALE
Set timebase to TIME/DIV = 1 ns/div
Select the Display menu and set the screen function to single; set the number of averages to 16

- Set the first positive-going edges of the output signal to the fourth vertical line from left
- Select the Delta V menu and turn the voltage markers ON and assign markers to channel 3
- Set Preset levels to 50% 50% and press AUTO LEVEL SET
- Select the Delta t menu and turn the time markers ON
- Set START ON EDGE= POS1 and STOP ON EDGE= POS 1
- Press the PRECISE EDGE FIND key
- 4. Check the Agilent 81130A delay at the following settings:

| Oscilloscope Timebase | Delay    | Acceptable Range         | TR Entry |
|-----------------------|----------|--------------------------|----------|
| 1 ns/div              | 5.000 ns | 4.35 ns to 5.1005 ns     | 3 - 1    |
| 2 ns/div              | 10.00 ns | 9.899 ns to 10.101 ns    | 3 - 2    |
| 10 ns/div             | 50.00 ns | 49.895 ns to 50.105 ns   | 3 - 3    |
| 20 ns/div             | 100.0 ns | 99.890 ns to 100.110 ns  | 3 - 4    |
| 100 ns/div *          | 500.0 ns | 499.850 ns to 500.150 ns | 3 - 5    |

\* Oscilloscope Delay to min. = 16.0000 ns

NOTE:

With each new Oscilloscope Timebase setting set the Agilent 81130A Delay to 0ps, press START ON EDGE= POS1 and PRECISE EDGE FIND do the next Agilent 81130A Delay setting and

ONLY press STOP ON EDGE= POS 1

5. Connect the Agilent 81130A to the Counter as follows:

24



Connecting Agilent 81130A to the Counter

6. Set the Counter to:

| FUNCTION TI | $A \rightarrow B$ |
|-------------|-------------------|
| INPUT A     | 50 Ω              |
| INPUT B     | 50 Ω              |

7. Check the Agilent 81130A delay at the following setting:

NOTE:

Subtract the fixed delay from the other readings

| Period   | Delay   | Acceptable Range       | TR Entry |
|----------|---------|------------------------|----------|
| 5.882 µs | 3.00 µs | 2.9996 µs to 3.0004 µs | 3 - 7    |

*NOTE:* Repeat the entire test for the second channel, if it is installed.

# **Test 4: Jitter**

The following tests are required:

- 1. Period Jitter
- 2. Width Jitter
- 3. Delay Jitter

# **Test 4.1: Period Jitter**

#### **Test Specifications**

RMS-Jitter 0.001% + 15 ps

#### **Equipment Needed**

Digitizing Oscilloscope with Accessories Delay Line (22 ns) Power Splitter

# Procedure

1. Connect Agilent 81130A to the Scope as shown.



Equipment Set-up for Jitter Test using the Agilent 54750A + 54751A



Equipment Set-up using the Agilent 54121T.

- 2. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 3. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:

| Per            | 20.00ns                      |                 | MODIFY        |
|----------------|------------------------------|-----------------|---------------|
| Delay<br>Width | 0ps Offset<br>10.00ns Amplit | +500mV<br>1.00V | 20.0 <u>0</u> |
| MODE/T         | RG OUTPUT 1                  | OUTPUT 2        | ns<br>PATTERN |

Configuring Output Screen 1

| Per            | 20.00ns                      | OFF 2               | MODIFY  |
|----------------|------------------------------|---------------------|---------|
| Delay<br>Width | 0ps Offset<br>10.00ns Amplit | +500mV<br>1.00V     | 20.00   |
| MODE / T       | Separa                       | te Out2<br>OUTPUT 2 | PATTERN |

Configuring Output Screen 2

NOTE: When you are testing instruments with 2 output channels it is necessary to: a. Configure *both* channels. b. Switch OFF the channel that is not being tested If you then test the other channel: c. Switch ON the channel you are testing, and switch OFF the other channel. 4. Set the Digitizing Oscilloscope Agilent 54121T: Press <u>AUTOSCALE</u> Select the Display menu and set the Number of Averages to 64 Select the Channel menu and set the Attenuation factor of channel 2 to 2 Set the VOLTS/DIV of channel 2 to 10 mV/div Set OFFSET to 500 mV Select the Timebase menu and set the TIME/DIV to 100 ps/div Center the first positive-going edge of the signal Select the Delta V menu and turn the V markers On Set the Marker 1 Position to 490 mV and the Marker 2 Position to 500mV Select the Delta t menu and turn the T Markers On Set START ON EDGE = POS1 and STOP ON EDGE = POS1 • Press the <u>PRECISE EDGE FIND</u> key

- 5. RECORD the delta t reading. This is the rise time of the reference signal within a 1% amplitude window of the signal connected to Input 2. This value is needed later to calculate the correct jitter. (delta.t.up)
- 6. Select the Timebase menu and center the second positivegoing edge of the signal
- 7. Press MORE and HISTOGRAM
- Select the Window submenu and set:
- Source is channel 2
- Choose the Time Histogram
- Press WINDOW MARKER 1 and set it to 490 mV
- Press WINDOW MARKER 2 and set it to 500 mV
- 8. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>
- 9. After the data for the time histogram has been acquired (# Samples = 100%), select the Result submenu.
- 10. Press  $\overline{\text{MEAN}}$  and  $\overline{\text{SIGMA}}$ . RECORD the values of sigma
- 11. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6sigma - delta.t.up}{6}$$

# 12. The RMS-jitter for period of 20 ns is 15.2 ps. Enter the result in the Test Report as TR entry 4.1 - 1

**NOTE:** See the Agilent54750A User's Guide / Service Guide to get the info needed to do the Jitter Test using this scope.

# Test 4.2: Width Jitter

#### **Test Specifications**

RMS-Jitter 0.001% + 15 ps

#### **Equipment Needed**

Digitizing Oscilloscope with Accessories Delay Line (22 ns) Power Splitter

#### Procedure

1. Connect Agilent 81130A to the Scope as shown:



Equipment Set-up for Jitter Test

2. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"

32

3. On the Agilent 81130A set up [**OUTPUT 1**] and [**OUTPUT 2**] pages as shown in the following illustrations:

| Per                                | 1.000µs                    | on 1            | MODIFY      |  |  |  |
|------------------------------------|----------------------------|-----------------|-------------|--|--|--|
| Delay<br>Width                     | Ops Offset<br>750ps Amplit | +500mV<br>1.00V | 75 <u>0</u> |  |  |  |
| MODE/TRG OUTPUT 1 OUTPUT 2 PATTERN |                            |                 |             |  |  |  |

Configuring Output Screen 1

| Per            | 1.000µs                            | off <b>2</b>    | MODIFY               |  |  |  |  |
|----------------|------------------------------------|-----------------|----------------------|--|--|--|--|
| Delay<br>Width | 0ps Offset<br>750ps Amplit         | +500mV<br>1.00V | 750<br><sub>ps</sub> |  |  |  |  |
|                | Separa                             | te Out2         |                      |  |  |  |  |
| MODE/TI        | MODE/TRG OUTPUT 1 OUTPUT 2 PATTERN |                 |                      |  |  |  |  |

Configuring Output Screen 2

| NOTE: | When you are testing instruments with 2 output channels it is necessary to:                                     |
|-------|-----------------------------------------------------------------------------------------------------------------|
|       | <ul><li>a. Configure <i>both</i> channels.</li><li>b. Switch OFF the channel that is not being tested</li></ul> |
|       | If you then test the other channel:                                                                             |
|       | c. Switch ON the channel you are testing, and switch OFF the other channel.                                     |
|       | 4. Set the Digitizing Oscilloscope Agilent 54121T:                                                              |
|       | • Press AUTOSCALE                                                                                               |
|       | • Select the Display menu and set the Number of Averages to 128                                                 |
|       | • Select the Channel menu and set the Attenuation factor of channel 2 to 2                                      |
|       | • Set the VOLTS/DIV of channel 2 to 10 mV/div                                                                   |
|       | • Set OFFSET to 500 mV                                                                                          |
|       | • Select the Timebase menu and set the TIME/DIV to 10 ps/div                                                    |
|       | • Center the first negative-going edge of the signal                                                            |
|       | • Select the Delta V menu and turn the V markers On                                                             |
|       | • Set the Marker 1 Position to 500 mV and the Marker 2 Position to 490 mV                                       |
|       | • Select the Delta t menu and turn the T Markers On                                                             |
|       | • Set START ON EDGE = NEG1 and STOP ON EDGE = NEG1                                                              |
|       | Press the PRECISE EDGE FIND key                                                                                 |

Agilent 81130A/'32A Performance Test

34

- 5. RECORD the delta t reading. This is the fall time of the referencesignal within a 1% amplitude window of the signal connected to Input 2. This value is needed later to calculate the correct jitter. (delta.t.dn)
- 6. Set the Agilent 81130A Pulse Width to 50 ns
- 7. Select the Timebase menu and center the first negative-going edge of the signal (Delay approx. 80 ns)
- 8. Press MORE and HISTOGRAM
- 9. Select the Window submenu and set:
- Source is channel 2
- Choose the Time Histogram
- Press WINDOW MARKER 1 and set it to 500 mV
- Press <u>WINDOW MARKER 2</u> and set it to 490 mV
- 10. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>
- 11. After the data for the time histogram has been acquired (# Samples = 100%), select the Result submenu.
- 12. Press MEAN and SIGMA. RECORD the value of sigma
- 13. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6 \text{ sigma - delta.t.dn}}{6}$$

14. The RMS-jitter for pulse width of 50 ns is 15.5 ps. Enter the result in the Test Report as TR entry 4.2 - 1

15. Set the Agilent 81130A for pulse width of 500ns

16. Repeat steps 7 to 13

*NOTE:* TIME/DIV = 100ps/div. Approximate delay = 530 ns

17. The RMS-jitter for pulse width of 500 ns is 20 ps. Enter the result in the Test Report as TR entry 4.2 - 2

*NOTE:* Repeat the entire test for the second channel, if it is installed.

**Test 4.3: Delay Jitter** 

**Test Specifications** 

RMS-Jitter 0.001% + 15 ps

# **Equipment Needed**

Digitizing Oscilloscope with Accessories

# Procedure

1. Connect Agilent 81130A to the Scope as shown:



Equipment Set-up for Delay Jitter Test

2. For calculating the RMS-jitter, the rise time of the reference signal within a 1% amplitude window is required. If this value

is not already measured in the Period Jitter test, then perform the first 6 steps of the Period Jitter test.

- 3. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 4. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:

| Per            | 1.000µs                          | $_{\rm OFF}^{\rm ON}$ 1 | MODIFY        |
|----------------|----------------------------------|-------------------------|---------------|
| Delay<br>Width | 50.00ns Offset<br>50.00ns Amplit | +500mV<br>1.00V         | 50.0 <u>0</u> |
| MODE/1         | RG OUTPUT 1                      | OUTPUT 2                | PATTERN       |

Configuring Output Screen 1

| Per 1.000µs                          | off<br>off 2           | MODIFY                      |
|--------------------------------------|------------------------|-----------------------------|
| Delay 50.00ns Of<br>Width 50.00ns Am | set +500m<br>lit 1.00% | <sup>av</sup> 50.0 <u>0</u> |
|                                      | arate Out2             |                             |

Configuring Output Screen 2

38

*NOTE:* When you are testing instruments with 2 output channels it is necessary to:

a.Configure *both* channels.b. Switch OFF the channel that is not being tested

If you then test the other channel:

c. Switch ON the channel you are testing, and switch OFF the other channel.

- 5. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 64
- Set the VOLTS/DIV = 10 mV/div
- Set OFFSET to 500 mV
- Select the Timebase menu and set the TIME/DIV to 100 ps/div
- Center the first positive-going edge of the signal (Delay approx. 80 ns)
- 6. Press MORE and HISTOGRAM
- 7. Select the Window submenu and press <u>WINDOW MARKER</u> <u>1</u> and set it to 490 mV
- 8. Press WINDOW MARKER 2 and set it to 500 mV
- 9. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>

- 10. After the delta for the time histogram has been acquired (# Samples = 100%), select the Result submenu.
- 11. Press MEAN and SIGMA. RECORD the values of sigma!
- 12. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6sigma - delta.t.up}{6}$$

- 13. The RMS-jitter for pulse width of 50 ns is 15.5 ps. Enter the result in the Test Report as TR entry 4.3 1
- 14. Set Agilent 81130A for delay of 500 ns
- 15. Repeat steps 9 to 12
- *NOTE:* TIME/DIV = 100 ps/div. Approximate delay = 530 ns
  - 16. The RMS-jitter for pulse width of 500 ns is 20 ps. Enter the result in the Test Report as TR entry 4.3 2
- *NOTE:* Repeat the entire test for the second channel, if it is installed.

40

# **Test 5: High and Low Levels**

The following tests are required:

- 1. High level from  $50\Omega$  into  $50\Omega$
- 2. Low level from  $50\Omega$  into  $50\Omega$

#### **Test Specifications**

|                  | Load Impedance 50 $\Omega$   |  |
|------------------|------------------------------|--|
| Source Impedance | 50 Ω                         |  |
| High Level       | -1.900 V to +2.5 V           |  |
| Low Level        | -2.0 V to +2.4 V             |  |
| Amplitude        | 0.100 Vpp to 2.5 Vpp         |  |
| Level Resolution | 10 mV                        |  |
| Level Accuracy   | $\pm$ 5% of ampl $\pm$ 50 mV |  |

### **Equipment Needed**

- 1. Digitizing Voltmeter (DVM)
- 2. 50  $\Omega$  Feedthrough Termination, 0.1%, 10 W Adaptor.
- 3. BNC to dual banana plug (1251-2277)
- 4. SMA Cable, SMA/BNC Adaptor

#### Procedure

Connect Agilent 81130A to the DVM as shown:



Connecting the DVM for High and Low Levels Tests

# Test 5.1: High Level, 50 Ohms into 50 Ohms

- 1. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 2. On the Agilent 81130A set up [MODE/TRIG] page as shown in the following illustration:

| CONTINUOUS Pattern of                              | MODIFY                         |
|----------------------------------------------------|--------------------------------|
| Pulses Out 1: NRZ Out2: NRZ<br>PRBS Polynom: 2^7-1 | PulseStrm<br>Burst<br>*Pattern |
| Trigger Output at: Each Clock                      |                                |
| MODE/TRG OUTPUT 1 OUTPUT 2                         | PATTERN                        |

Configuring MODE/TRIG Screen

42

3. On the Agilent 81130A set up [Pattern] pages

| Segment | Lenght | Loopcnt     | Update | MODIFY  |
|---------|--------|-------------|--------|---------|
| 1       | 65504  | 2) <b>1</b> |        | 65504   |
| 2       |        |             |        |         |
| 4       |        |             |        |         |
| MODE/TR | GOUTP  | UT 1 OU     | TPUT 2 | PATTERN |

Configuring Pattern Screen

With the curser key *left* highlight the "1" of Segment and press ENTER

| Segment  | 1  |     | Upo | la | te | 9 |    |       | MODIFY    |
|----------|----|-----|-----|----|----|---|----|-------|-----------|
| Address  |    | ]   | Len | g  | th | L | (  | 65504 | Data Seg  |
| CH1 High |    | 1   | 1 1 | L  | 1  | 1 | 1  | 1     | *High Seg |
| CH2 Low  |    | 0   | 0 0 | )  | 0  | 0 | 0  | 0     | Low Seg   |
| Both     |    | 1   | 1 1 | L  | 1  | 1 | 1  | 1     | PRBS Seg  |
| MODE/TRG | OU | TPU | JT  | 1  |    | 0 | UT | PUT 2 | PATTERN   |

Configuring Pattern Screen

4. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:



Configuring Output Screen 1

| Frec           | f 170.0kHz         | $_{\rm off}^{\rm ON}$ 2 | MODIFY        |  |  |  |
|----------------|--------------------|-------------------------|---------------|--|--|--|
| Delay<br>Width | 0.00ps High<br>Low | +2.50V<br>+0.0mV        | +2.5 <u>0</u> |  |  |  |
| Separate Out2  |                    |                         |               |  |  |  |
| MODE/T         | RG   OUTPUT 1      | OUTPUT 2                | PATTERN       |  |  |  |

Configuring Output Screen 2

*NOTE:* When you are testing instruments with 2 output channels it is necessary to:

a. Configure *both* channels.

44

b. Switch OFF the channel that is not being tested

If you then test the other channel:

c. Switch ON the channel you are testing, and switch OFF the other channel.

5. Set the DVM Agilent 3458A to:

| Function: | DCV      |
|-----------|----------|
| Trigger:  | TRIG INT |

6. Check the Agilent 81130A high level at the following high level settings with the low level set to 0.0 V.

| High Level | Acceptable Range   | TR Entry |
|------------|--------------------|----------|
| 2.50 V     | 2.325 V to 2.675 V | 5.1 - 1  |
| 1.0 V      | 0.90 V to 1.10 V   | 5.1 - 2  |
| 0.5 V      | 425 mV to 575 mV   | 5.1 - 3  |
| 0.1 V      | 45 mV to 155 mV    | 5.1 - 4  |

The low level may vary within  $\pm$  5% of amplitude $\pm$  50 mV To check the low level change on the [Pattern] page CH1 to \* Low Seg.

#### Test 5.2: Low Level, 50 Ohms into 50 Ohms

- 1. Set up the Agilent 81130A as described in "Initial Setup of the Agilent 81130A"
- 2. On the Agilent 81130A set up [Pattern] page

| Segment  | 1 |     | U  | pda | ate | 9 |    |       | MODIFY   |
|----------|---|-----|----|-----|-----|---|----|-------|----------|
| Address  |   |     | Le | eng | ŋth | ì | (  | 65504 | Data Seg |
| CH1 High |   | 0   | 0  | 0   | 0   | 0 | 0  | 0     | High Seg |
| CH2 Low  |   | 0   | 0  | 0   | 0   | 0 | 0  | 0     | *Low Seg |
| Both     |   | 0   | 0  | 0   | 0   | 0 | 0  | 0     | PRBS Seg |
| MODE/TRG | O | JTP | UT | ' 1 |     | 0 | UT | PUT 2 | PATTERN  |

Configuring Pattern Screen

3. On the Agilent 81130A set up [OUTPUT 1] and [OUTPUT 2] pages as shown in the following illustrations:

| Freq           | 170.0kHz           | on<br>off <b>1</b> | MODIFY                        |
|----------------|--------------------|--------------------|-------------------------------|
| Delay<br>Width | 0.00ps High<br>Low | +0.0mV<br>-100mV   | -10 <u>0</u><br><sub>mv</sub> |
| MODE/T         | RG OUTPUT 1        | OUTPUT 2           | PATTERN                       |

Configuring Output Screen 1

| Freq           | 170.0kHz           | on off 2         | MODIFY                        |
|----------------|--------------------|------------------|-------------------------------|
| Delay<br>Width | 0.00ps High<br>Low | +0.0mV<br>-100mV | -10 <u>0</u><br><sub>mv</sub> |
|                | Separat            | te Out2          |                               |
| MODE/T         | RG OUTPUT 1        | OUTPUT 2         | PATTERN                       |

Configuring Output Screen 2

*NOTE:* When you are testing instruments with 2 output channels it is necessary to:

- a. Configure *both* channels.
- b. Switch OFF the channel that is not being tested

If you then test the other channel:

c. Switch ON the channel you are testing, and switch OFF the other channel.

4. Check the Agilent 81130A low level at the following low level settings with the high level set to 0.0 V

| Low Level | Acceptable Range     | TR Entry |
|-----------|----------------------|----------|
| -0.1 V    | -45 mV to -155 mV    | 5.2 - 1  |
| -0.5 V    | -425 mV to -575 mV   | 5.2 - 2  |
| -1.0 V    | -0.90 V to -1.10 V   | 5.2 - 3  |
| -2.00 V   | -1.850 V to -2.150 V | 5.2 - 4  |

The high level 0.0 V may vary  $\pm$  5% of amplitude  $\pm$ 50 mV. To check the low level change on the the [Pattern] page CH1 to \* High Seg.

*NOTE:* Repeat the High and Low Level tests for the second channel, if it is installed.

48

# **Agilent 81130A Performance Test Records**

| x                                  | Report No.         Date         Customer         Tested By |         |
|------------------------------------|------------------------------------------------------------|---------|
| Model Agilent 81130A<br>Serial No. | MHz Pulse Generator                                        |         |
| Options                            | _ Ambient temperature<br>Relative humidity                 | °C<br>% |
| Firmware Rev.                      | Line frequency                                             | _Hz     |
| Special Notes:                     |                                                            |         |
|                                    |                                                            |         |
|                                    |                                                            |         |

Agilent 81130A/'32A Performance Test

49

| Test Equipment Used<br>Description<br>Date | Model No.      | Trace No. | Cal. Due |
|--------------------------------------------|----------------|-----------|----------|
| 1. Oscilloscope                            | Agilent 54121T |           |          |
| 2. Counter                                 | Agilent 53132A |           |          |
| 3. Digital Voltmeter                       | Agilent 3458A  |           |          |
| 4. Delay Line                              | Agilent 54008A |           |          |
| 5                                          |                |           |          |
| 6                                          |                |           |          |
| 7                                          |                |           |          |
| 8                                          |                |           |          |
| 9                                          |                |           |          |
| 10                                         |                |           |          |
| 11                                         |                |           |          |
| 12                                         |                |           |          |
| 13                                         |                |           |          |
| 14                                         |                |           |          |



Agilent 81130A/'32A Performance Test

# Test Results for Agilent 81130A Mainframe

| Serial No<br>°C | Ambient temperature |        |
|-----------------|---------------------|--------|
| Customer        | Relative humidity   | <br>%  |
| CSO#            | Line frequency      | <br>Hz |
| Tested by       | Date                | <br>   |
| Comments        |                     |        |
|                 |                     | <br>   |

# Frequency

Counter Uncertainty factor

| TR<br>Entry | Test   | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass  | Fail |
|-------------|--------|--------------|------------------|--------------|-------|------|
| 1-1         | 660MHz | z 659.934    | 0MHz             | 660.0660     | MHz_  |      |
| 1-2         | 100MHz | z 99.990     | OMHz             | 100.010      | MHz _ |      |
| 1-3         | 20MHz  | 19.998       | OMHz             | 20.0020      | MHz _ |      |
| 1-4         | 10MHz  | 9.999        | 00MHz            | 10.0010N     | /Hz _ |      |
|             |        |              |                  |              |       |      |

Agilent 81130A/'32A Performance Test

51

| 1-5 | 2MHz   | 1.9998MHz   | 2.0002MHz   |
|-----|--------|-------------|-------------|
| 1-6 | 1 MHz  | 999.9 kHz   | 1.0001 MHz  |
| 1-7 | 170kHz | 169.983 kHz | 170.017 kHz |

# **Period Jitter**

Scope Uncertainty factor

| TR Entr | y Test | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass F | <br>ail |
|---------|--------|--------------|------------------|--------------|--------|---------|
| 4.1 -1  | 20 ns  |              |                  | 15.2 ps      |        |         |

52

# Test Results for Agilent 81132A Output Channel \_\_\_\_\_ Serial No.

Width

Scope Uncertainty factor

| TR Ent  | ry Tes    | t Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass | Fail |
|---------|-----------|----------------|------------------|--------------|------|------|
| 2-1     | 750ps     | s 549.925p     | s                | _950.075ps   |      |      |
| 2-2     | 10.0 ns   | 9.799ns        |                  | 10.201 ns    |      |      |
| 2-3     | 50.0 ns   | 49.795 ns      |                  | 50.205 ns    |      |      |
| 2-4     | 100 ns    | 99.790 ns      |                  | 100.210 ns   |      |      |
| 2-5     | 500 ns    | 499.750 ns     |                  | 500.250 ns   |      |      |
| 2-6     | 1 μs (    | 0.9997 µs      |                  | 1.0003 μs    |      |      |
| 2-7     | 5 μs 4    | 4.9993 μs      |                  | 5.0007 ms    |      |      |
| Width . | Jitter    |                |                  |              |      |      |
| Scope U | Jncertain | ty factor      |                  |              |      |      |
| TR Ent  | ry Tes    | t Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass | Fail |
| 4.2-1   | 50 1      | ns             |                  | 15.5 ps      |      |      |
| 4.2-2   | 500       | ) ns           |                  | 20 ps        |      |      |

Agilent 81130A/'32A Performance Test

53

# Delay

Scope Uncertainty factor

| TR  | Entry   | Test    | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass | Fail |
|-----|---------|---------|--------------|------------------|--------------|------|------|
| 3-1 | 5.00 ns | s 4.899 | 95 ns _      |                  | 5.1005 ns    |      |      |
| 3-2 | 10.00   | ns 9.8  | 899 ns       |                  | 10.101ns     |      |      |
| 3-3 | 50.00   | ns 49.8 | 395 n _      |                  | 50.105 ns    |      |      |
| 3-4 | 100.0 r | ıs 99.8 | 90 ns        |                  | 100.110 ns   |      |      |
| 3-5 | 500.0 n | s 499.8 | 50 ns _      |                  | _ 500.150 ns |      |      |
| 3-6 | 3μ      | s 2.9   | 996 µs       |                  | _ 3.0004 μs  |      |      |

# **Delay Jitter**

Scope Uncertainty factor

| TR Entry | Test   | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass Fail |
|----------|--------|--------------|------------------|--------------|-----------|
| 4.3-1    | 50 ns  | _            |                  | 15.5 ps      |           |
| 4.3-2    | 500 ns |              |                  | 20 ps        |           |

Agilent 81130A/'32A Performance Test

# High Level $50\Omega$ - $50\Omega$

| TR Entry | Test  | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass | Fail |
|----------|-------|--------------|------------------|--------------|------|------|
| 5.1-1    | 2.50V | 2.325 V      |                  | 2.675 V      |      |      |
| 5.1-2    | 1.0 V | 0.90 V       |                  | _ 1.10 V     |      |      |
| 5.1-3    | 0.5 V | 425 mV       |                  | _ 575 mV     |      |      |
| 5.1-4    | 0.1 V | 45 mV        |                  | _ 155 mV     |      |      |

Low Level  $50\Omega$ - $50\Omega$ 

| TR Entry | Test   | Limit<br>Min | Actual<br>Result | Limit<br>Max | Pass | Fail |
|----------|--------|--------------|------------------|--------------|------|------|
| 5.2-1    | -0.1 V | -45 mV       |                  | 155 mV       |      |      |
| 5.2-2    | -0.5 V | -425 mV      |                  | 575 mV       |      |      |
| 5.2-3    | -1.0 V | -0.90 V      |                  | 1.10 V       |      |      |
| 5.2-4    | -2.00V | -1.850 V     |                  | 2.150 V      |      |      |

# Agilent 81130A/'32A Performance Test

56

Publication Number: 5988-4856EN



Agilent Technologies