Introduction

Use the tests in this chapter if you want to check that the Agilent 81101A 50 MHz Pulse Generator is working correctly. Before starting any testing allow all test equipment to warm up for at least 30 minutes.

Conventions Used

When referring to actions that you perform during the tests, the following conventions are used:

FUNCTION This indicates that a labelled button must be pressed

[MODE/TRG] This shows that a soft-key must be pressed. A soft-key is an unlabelled button whose label is shown on the display, and which can vary according to the job that the button is doing

CONTINUOUS PULSES This is an option shown on the display, and is selected by use of the vernier keys. It is shown in upper or lower case to match the case displayed.

Test Results Tables

Tables for entering the results of the tests are included at the end of this chapter. The tests are numbered and reference numbers for each Test Result (TR) are given in a small table at the end of each test. The reference number shows you where the actual results should be entered in the Test Results Tables.

The Test Results tables at the end of the chapter should be photocopied, and the Test Results entered on the copies. Then, if the tests need to be repeated, the tables can be copied again.

Recommended Test Equipment and Accessories

The following tables list the recommended test equipment you need to perform all the tests in this chapter. You can use alternative instruments if they meet the critical specifications given. The test set-ups and procedures assume you are using the recommended equipment.

Test Equipment	Model	Critical Specifications
Oscilloscope or	Agilent 54121T	20 GHz, 10 bit vertical resolution, Histogram
Oscilloscope	Agilent 54750A + Agilent 54751A	20 GHz, 15 bit vertical resolution, Histogram
Counter or	Agilent 5334B #010, 030	Period and Time Interval measurements Oven Osci, 1.3 GHz C-Channel
Counter	Agilent 53132A #001/010, 030	Frequency measurements > 150 MHz High-Stability Timebase, 3 GHz Channel
Digital Voltmeter	Agilent 3458A	DCV up to 20 V
Pulse Generator	Agilent 8110A	up to 150 MHz
Delay line	Agilent 54008A	22 ns

Accessories	Model	Critical Specifications
Digitizing Oscilloscopes Accessories Attenuators Power Splitter SMA/SMA (m-m) adaptor SMA/BNC Adaptor	8493C#020 33340C#020 8493C#006 33340C#006 11667B 1250-1159 E9632A (1250-1700)	20 dB 6 dB
SMA Cable	8120-4948	
50 Ω Feedthrough Termination	10100C See Figure	2 W,1% 10 W,0.1%
Adapter	1251-2277	BNC to Banana
Cable Assemblies, BNC	E9637A (8120-1839)	
Torque Wrench	8710-1582	5/16 in, 5 lb-in (56 Ncm)

NOTE:

When you connect the test equipment for the first time, and whenever you change the setup during the course of these tests, use the 8710-1582 torque wrench to tighten and loosen SMA connectors. This will ensure that the connectors are at the correct tightness and give the best signal transfer.

4

50 Ohm, 0.1%, 10 W Feedthrough Termination

The following figure provides a schematic and a parts list except for the case. The case must provide shielding and maintain grounding integrity.

50 Ohm, 0.1%, 10 W Feedthrough Termination

The following parts are required:

- 1. $R1 = 53.6\Omega$, 1%, 10 W; Part Number: 0699-0146
- 2. $R2 = 200 \Omega$, 10%, 0.5 W, Variable trimmer; Part Number: 2100-3350
- 3. R3 = 681 Ω;, 1%, 0.5 W; Part Number: 0757-0816
- 4. BNC (M): Part Number: 1250-0045
- 5. BNC (F): Part Number: 1250-0083

Getting Started

The Agilent 81101A is controlled by selecting options in a series of **pages** that are displayed on the instrument's screen. When the Agilent 81101A is being tested, different situations can arise. The following examples illustrate this

Typical Examples of Displayed Screens

Per	1.000µs Normal OFF 1 CMODIFY
Delay	0ps Offset +0.0mV *OFF
Width	100.0ns Amplit 1.00V ON
LeadE	5.00ns 50 Ω into 50.0 Ω
TraiE	=LeadE
MODE/1	TRG OUTPUT LIMITS TRG-LEV

The OUTPUT Screen in a Agilent 81101A

GPIB Address: 10 Perform: Selftest	+ENTER *Selftest
PLL-Ref : Internal	
MODE/TRG TRG-LEV MEMCARD	CONFIG

The CONFIG Screen in an Agilent 81101A

6

Instrument Serial Numbers

You will need to write the serial numbers of the instrument at the top of the Test Reports. These can be found as follows:

Press <u>HELP</u>, [SERIAL #]

The Agilent 81101A display lists the instrument's product and serial number, firmware revision and date.

The display on your instrument should look similar to this:

FRAME	:	81101A	50 MHz
Serial No	:	DE38700132	
FIRMWARE	:	01.00.01	
DATE	:	xx/xx/98	

The serial number given for the **FRAME** applies to the Mainframe, the Power Supply, the Microprocessor Board, and the Timing Board as well as the Output Channel.

Initial Setup of the Agilent 81101A

In the majority of these tests the initial setting up of the instrument is identical. Therefore, it is described once here, and then referredto where appropriate. In cases where the initial setup differs, an illustration of the settings is shown.

Set up the Agilent 81101A as follows:

- 1. Select [MODE/TRG]
- CONTINUOUS PULSES
- Single-Pulses at Out 1
- Pulse-Period:internal Osc

CONTINUOUS PULSES	MODIFY
Single-Pulses at Out1 Pulse-Period: internal Osc	*int. Osc int. PLL CLK-IN
MODE/TRG OUTPUT LIMITS	TRG-LEV

MODE/TRG Screen

Test 1: Period (PLL not active)

Test Specifications

Range20 ns to 999.5 sResolution3.5 digits, best case 5 psAccuracy $\pm 5\%$

Equipment Needed

Counter Cable, 50 Ω , coaxial, BNC

Procedure

1. Connect the Agilent 81101A to the Counter as shown:

Connecting the Agilent 81101A to the Counter

2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"

On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	20.00ns	Normal	°N 1	MODIFY
Delay DtwCwc	0ps	Offset	+0.0mV	20.00
LeadE	5.00%	50 Ω into	1.00V 50.0Ω	ns
TraiE	=LeadE			
MODE/1	RG OUT	PUT L	IMITS	TRG-LEV

Configuring Output

3. Set the Counter to:

FUNCTION	Period A
INPUT A	50 Ω
SENSE	On

4. Check the Agilent 81101A period at the following settings:

Period	Acceptable Range	TR entry
20.00 ns	19.00 ns to 21.00 ns	1 - 1
50.00 ns	47.5 ns to 52.5 ns	1 - 2
99.90 ns	94.905 ns to 104.895 ns	1 - 3

Period	Acceptable Range	TR entry
100 ns 500 ns 1 μs 500 μs 500 ms	95 ns to 105 ns 475 ns to 525 ns 950 ns to 1050 ns 475 μs to 525 μs 475 ms to 525 μs	1 - 4 1 - 5 1 - 6 1 - 7 1 - 8

Test 2: PLL Period

NOTE: This test is only performed if PLL is switched on.

Test Specifications

Range20 ns to 999.5 sResolution4 digits, best case 1 psAccuracy $\pm 0.01\%$

Equipment Needed

Counter Agilent 53132A Cable, 50 Ω , coaxial, BNC

NOTE: The Agilent 53132A counter is used in frequency mode to meet the MIL CAL A uncertainty requirements for TAR (Test Accuracy Ratio) > 4:1.

Procedure

Connect the Agilent 81101A to the counter as follows:

Connecting Agilent 81101A to the Counter

- 5. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 6. Select the [MODE/TRG] screen on the Agilent 81101A and set up as follows:

CONTINUOUS PULSES	MODIFY
Single-Pulses at Out1	int. OSC
Pulse-Period: internal PLL	*int. PLL CLK-IN
MODE/TRG OUTPUT LIMITS	TRG-LEV

The MODE/TRG Screen Setup

7. On the Agilent 81101A set up [OUTPUT] page as shown in the test before!

Agilent 81101A Performance Test

12

- 8. Set the Counter to measure the frequency at the choosen input 1/3
- 9. Check the Agilent 81101A PLL pulse period at the following settings:

Period	Frequency	Acceptable Range	TR Entry
20.00 ns	50 MHz	49.995 MHz to 50.005 MHz	2 - 1
50.00 ns	20 MHz	19.998 MHz to 20.002 MHz	2 - 2
100 ns	10 MHz	9.999 MHz to 10.001 MHz	2 - 3
500 ns	2 MHz	1.9998 MHz to 2.0002 MHz	2 - 4
1 μs	1 MHz	999.9 kHz to 1.0001 MHz	2 - 5
50 μs	20 kHz	9.998 kHz to 20.002 kHz	2 - 6
5 ms	200 Hz	199.980 Hz to 200.020 Hz	2 - 7
500 ms	2 Hz	1.9998 Hz to 2.0002 Hz	2 - 8
5 s	0.2 Hz	0.19998 Hz to 0.20002 Hz	2 - 9

Test 3: Width

Test Specifications

Range	10 ns to (period - 10 ns)
Resolution	3.5 digits, best case 5 ps
Accuracy	<u>+ 5% + 250 ps</u>

Equipment Needed

Digitizing Oscilloscope with Accessories Counter Cable, 50 Ω, coaxial, BNC

Procedure

1. Connect Agilent 81101A to the Scope as shown:

Connecting Agilent 81101A to the Scope

2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"

Agilent 81101A Performance Test

www.valuetronics.com

3. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	200 ns No	rmal	^{on} 1	CMODIFY
Delay Width	0ps Of: 100.0ns Amp	Eset plit	+0.0mV 1.00V	100.0
LeadE TraiE	5.00ns 509 =LeadE	2 into	50.0Ω	ns
MODE/TI	RG OUTPUT	' L	IMITS	TRG-LEV

Configuring Output Screen

- 4. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 32
- Select the delta V menu and turn the voltage markers On
- Set the preset levels to 50% -50% and press AUTO LEVEL SET
- Select the delta t menu and turn the time markers ON
- Set START ON EDGE = POS 1 and STOP ON EDGE = NEG1
- 5. Change the oscilloscope timebase to 1 ns/div
- 6. Change the Agilent 81101A Width to 10 ns
- 7. Center the pulse in the Scope display

- 8. Press the <u>PRECISE EDGE FIND</u> key for each new Width setting
- 9. Check the Agilent 81101A pulse width at the following settings:

Oscilloscope Timebase	Period	Width	Acceptable Range	TR Entry
2 ns/div	200 ns	10.00 ns	9.250 ns to 10.750 ns 47.25 ns to 52.75 ns 94.75 ns to 105.25 ns 474.75 ns to 525.25 ns	3 - 1
10 ns/div	200 ns	50.00 ns		3 - 2
20 ns/	1 μs	100.0 ns		3 - 3
100 ns	1 μs	500.0 ns		3 - 4

10. Connect the Agilent 81101A to the Counter as shown:

Connecting Agilent 81101A to the Counter

11. Set the Counter to:

16

FUNCTION	TI $A \rightarrow B$
SENSE	On
INPUT A	50 Ω
COM A	On
INPUT B	50 Ω , negative slope

12. Check the Agilent 81101A width at the following settings:

Period	Width	Acceptable Range	TR Entry
100 μs	50 μs	47.5 μs to 52.5 μs	3 - 6
10 ms	5 ms	4.75 ms to 5.25ms	3 - 7
999 ms	500ms	475 ms to 525 ms	3 - 8

Test 4: Delay

Test Specifications

Range	Fixed typical Delay of
	EXT INPUT to TRIGGER OUT 12 ns
	TRIGGER OUT to OUTPUT 1/2 17 ns
	Variable Delay:
	0 ns to (period - 20 ns)
Resolution	3.5 digits, best case 5 ps
Accuracy	$\pm 5\%$ ± 1 ns

Equipment Needed

Digitzing Oscilloscope with Accessories Pulse Generator Counter Cable, 50 Ω , coaxial, BNC

Procedure

Connect Agilent 81101A to the Scope as shown:

Agilent 81101A Performance Test

www.valuetronics.com

Connecting Agilent 81101A to the Scope

- 13. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 14. Set the Pulse Generator to:

1 µs
100 ns
1 V
+1.0 V
Enable

15. Select the [MODE/TRG] screen on the Agilent 81101A and set up as follows:

TRIGGERED	PULSES	MODIFY
	Single-Pulses at Out1	Continous
		*Triggered
	F	Gated
Trg'd by:	EXT-IN _	Ext-Width
MODE/TRG	OUTPUT	TRG-LEV

The MODE/TRG Screen Setup

16. On the Agilent 81101A select [TRIG-LEV] page and set up as follows:

EXT-IN: Threshold CLK-IN: Threshold	+1.0V 50Ω +1.0V 50Ω	MODIFY
		Set TTL
		Set ECL
TRIGGER-OUT: TTL		*Voltage
STROBE-OUT : TTL		_
MODE/TRG OUTPUT	LIMITS	TRG-LEV

The TRG-LEV Screen Setup

20

17. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per		Normal	ON	1	CMODIFY
Delay Width LeadE TraiE	0ps 100ns 5.00ns =LeadE	Offset Amplit 50 Ω into	+0. 1.0 50.	0mV 0V 0Ω	0 ps
MODE/1	RG OUT	PUT	IMIT	'S	TRG-LEV

Configuring Output Screen

18. Set the Digitizing Oscilloscope Agilent 54121T:

- Press <u>AUTOSCALE</u>
- Set timebase to TIME/DIV = 10 ns/div
- Center the positive-going edges of the two signals
- Select the Display menu and set the screen function to single; set the number of averages to 32
- Select the Delta V menu and turn the voltage markers ON and assign marker 1 to channel 3 and marker 2 to channel 4
- Set Preset levels to 50% 50% and press AUTO LEVEL SET
- Select the Delta t menu and turn the time markers ON
- Set START ON EDGE= POS1 and STOP ON EDGE= POS 1
- Press the <u>PRECISE EDGE FIND</u> key

19. Check the Agilent 81101A delay at the following settings:

NOTE: Record the value of the fixed delay and subtract it from the other readings.

Oscilloscope Timebase	Delay	Acceptable Range	TR Entry
10 ns/div	0 ps	fixed Delay of TRIG OUT to OUT 1/2: 17 ns typ.	4 - 1
10 ns/div 20 ns/div 20 ns/div 50 ns/div 200 ns/div	5.000 ns 10.00 ns 50.00 ns 100.0 ns 500.0 ns	3.75 ns to 6.25 ns 8.500 ns to 11.50 ns 46.50 ns to 53.50 ns 94.00 ns to 106.00 ns 474.00 ns to 526.00 ns	4 - 2 4 - 3 4 - 4 4 - 5 4 - 6

20. Connect the Agilent 81101A to the Counter as follows:

Connecting Agilent 81101A to the Counter

21. Set Agilent 81101A to Continuous-Pulses on the MODE/TRG screen

22

22. Set the Counter to:

FUNCTION TI	$A \rightarrow B$
SENSE	On
INPUT A	50 Ω
INPUT B	50 Ω

23. Check the Agilent 81101A delay at the following settings:

NOTE:

Subtract the fixed delay from the other readings

Period	Delay	Acceptable Range	TR Entry
100 μs	50 μs	47.5 μs to 52.5 μs	4 - 7
10 ms	5 ms	4.75 ms to 52.5ms	4 - 8
999 ms	500ms	475 ms to 525 ms	4 - 9

Test 5: Double Pulse Delay

Test Specifications

Range	20 ns to (period - width - 10 ns)		
Resolution Accuracy	3.5 digits, best case 5 ps $\pm 5\% \pm 500$ ps		

Equipment Needed

Digitizing Oscilloscope with Accessories Counter Cable, 50 Ω , coaxial, BNC

Procedure

1. Connect Agilent 81101A to the Scope as shown:

Connecting Agilent 81101A to the Scope

24

Agilent 81101A Performance Test

www.valuetronics.com

- 2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 3. Select the [MODE/TRG] screen on the Agilent 81101A and set up Output 1 and Output 2 as follows:

CONTINUOUS PULSES	MODIFY
Double-Pulses at Out1 Pulse-Period: internal Osc	Single * Double
MODE/TRG OUTPUT LIMITS	TRG-LEV

The MODE/TRG Screen Setup

4. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Configuring Output Screen

- 5. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Center the double pulse signal
- Select the Display menu and set the Number of Averages to 32
- Select the Delta V menu and turn the Voltage markers On
- Set Preset Levels = 50% 50% and press <u>AUTO LEVEL SET</u>
- Select the Delta t menu and turn the Time markers On
- Set START ON EDGE = POS1 and STOP ON EDGE = POS2
- 6. Press the <u>PRECISE EDGE FIND</u> key for each new Double Delay setting
- 7. Check the Agilent 81101A double delay at the following settings:

Oscilloscope Timebase	Double Delay	Acceptable Range	TR Entry
2 ns/div	20.00 ns	18.5 ns to 21.5 ns 47.00 ns to 53.00 ns 94.5 ns to 105.5 ns	5 - 1
10 ns/div	50.00 ns		5 - 2
20 ns/div	100.0 ns		5 - 3

8. Connect the Agilent 81101A to the Counter as shown:

Connecting Agilent 81101A to the Counter

9. Set the Counter to:

FUNCTION	Period A
INPUT A	50 Ω
SENSE	On
(EXT ARM	
SELECT	a. Start (ST): leading edge
	b. Stop (SP): trailing edge)

10. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"

11. Select the[MODE/TRG]screen on the Agilent 81101A and set up as follows;

TRIGGERED	PULSES	MODIFY
	Double-Pulses at Out1	*MAN Key
		EXT INPUT
Trg'd by:	MANKey	PLL
MODE/TRG	OUTPUT LIMITS	TRG-LEV

The MODE/TRG Screen Setup

12. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

^	Per		Normal	^{on} 1	MODIFY
	DblDel	500.0ms	Offset	+0.0mV	
	Width	20.00ns	Amplit	1.00V	500.0
	LeadE	5.00ns	${\bf 50}\Omega$ into	50.0 Ω	ms
	TraiE	=LeadE			
	MODE/1	RG OUT	PUT L	IMITS	TRG-LEV

Configuring Output Screen

28

13. Check the Agilent 81101A double pulse delay at the following settings:

Press \overline{MAN} to check each new setting!

Double Delay	Acceptable Range	TR Entry
500 ms	475 ms to 525 ms	5 - 4
1 s	950.00 ms to 1050.00 ms	5 - 5

Test 6: Jitter

The following tests are required:

- 1. Period Jitter
 - a. Internal Oscillator
 - b. Internal PLL
- 2. Width Jitter
- 3. Delay Jitter

Test 6.1a: Period Jitter, Internal Oscillator

Test Specifications

RMS-Jitter 0.01% + 15 ps

Equipment Needed

Digitizing Oscilloscope with Accessories Delay Line (22 ns) Power Splitter Cable, 50 Ω , coaxial, BNC Cable, SMA

Procedure

1. Connect Agilent 81101A to the Scope as shown:

Equipment Set-up for Jitter Test

- 2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 3. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	50.00ns	Normal	^{on} 1	C MODIFY
Delay	0ps	Offset	+500mV	
Width	25.00ns	Amplit	1.00V	50.00
LeadE	5.00ns	50 Ω into	50.0 Ω	ns
TraiE	=LeadE			
MODE/1	IRG OUT	PUT	IMITS	TRG-LEV

Configuring Output Screen

- 4. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 64
- Select the Channel menu and set the Attenuation factor of channel 2 to 2
- Set the VOLTS/DIV of channel 2 to 10 mV/div
- Set OFFSET to 500 mV
- Select the Timebase menu and set the TIME/DIV to 100 ps/div
- Center the first positive-going edge of the signal (approximate Delay = 28ns)
- Select the Delta V menu and turn the V markers On
- Set the Marker 1 Position to 490 mV and the Marker 2 Position to 500 mV
- Select the Delta t menu and turn the T Markers On
- Set START ON EDGE = POS1 and STOP ON EDGE = POS1
- Press the PRECISE EDGE FIND key
- 5. RECORD the delta t reading. This is the rise time of the reference signal within a 1% amplitude window of the signal connected to Input 2. This value is needed later to calculate the correct jitter.(delta.t.up)
- 6. Select the Timebase menu and center the second positivegoing edge of the signal (approximate Delay = 78 ns)
- 7. Press MORE and HISTOGRAM

Agilent 81101A Performance Test

32

- Select the Window submenu and set:
- Source is channel 2
- Choose the Time Histogram
- Press WINDOW MARKER 1 and set it to 490 mV
- Press WINDOW MARKER 2 and set it to 500 mV
- 8. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>
- 9. After the data for the time histogram has been acquired (# Samples = 100%), select the Result submenu.
- 10. Press $\overline{\text{MEAN}}$ and $\overline{\text{SIGMA}}$. RECORD the values of sigma
- 11. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6sigma - delta.t.up}{6}$$

- 12. The RMS-jitter for period of 50 ns is 20 ps. Enter the result in the Test Report as TR entry 6.1a 1
- 13. Set the Agilent 81101A period to 500 ns
- 14. Repeat steps 6 to 11

NOTE:	TIME/DIV = 200 ps/div; approximate Delay = 527 ns
-------	---

15. The RMS-jitter for period of 500 ns is 65 ps. Enter the result in the Test Report as TR entry 6.1a - 2

Test 6.1b: Period Jitter, Internal PLL

Test Specifications

RMS-Jitter 0.001% + 15 ps

Equipment Needed

Digitizing Oscilloscope with Accessories Delay Line (22 ns) Power Splitter Cable, 50 Ω , coaxial, BNC Cable, SMA

Procedure

1. Connect Agilent 81101A to the Scope as shown.

Equipment Set-up for Jitter Test using the Agilent 54750A + 54751A Using the Agilent 54121T the Set-up is the same as before.

34

- 2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 3. Select the [MODE/TRG] screen on the Agilent 81101A and set up as follows:

CONTINUOUS PULSES	MODIFY
Single-Pulses at Out1 Pulse-Period: internal PLL	int. OSC *int. PLL CLK-IN
MODE/TRG OUTPUT LIMITS	TRG-LEV

The MODE/TRG Screen Setup

4. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	20.00ns	Normal	^{on} 1	MODIFY
Delay Width LeadE	0ps 10.00ns 5.00ps	Offset Amplit	+500mV 1.00V 50.00	20.0 <u>0</u>
TraiE MODE/1	=LeadE	PUT	IMITS	TRG-LEV

Configuring Output Screen

- 5. Set the Digitizing Oscilloscope Agilent 54121T:
- Press AUTOSCALE
- Select the Display menu and set the Number of Averages to 64
- Select the Channel menu and set the Attenuation factor of channel 2 to 2
- Set the VOLTS/DIV of channel 2 to 10 mV/div
- Set OFFSET to 500mV
- Select the Timebase menu and set the TIME/DIV to 100 ps/div
- Center the first positive-going edge of the signal (approximate Delay = 28 ns)
- Select the Delta V menu and turn the V markers On
- Set the Marker 1 Position to 490 mV and the Marker 2 Position to 500mV
- Select the Delta t menu and turn the T Markers On
- Set START ON EDGE = POS1 and STOP ON EDGE = POS1
- Press the PRECISE EDGE FIND key
- 6. RECORD the delta t reading. This is the rise time of the reference signal within a 1% amplitude window of the signal connected to Input 2. This value is needed later to calculate the correct jitter. (delta.t.up)
- 7. Select the Timebase menu and center the second positivegoing edge of the signal (approximate Delay = 78 ns)
- 8. Press MORE and HISTOGRAM
- Select the Window submenu and set:
- Source is channel 2
- Choose the Time Histogram
- Press WINDOW MARKER 1 and set it to 490 mV
- Press WINDOW MARKER 2 and set it to 500 mV
- 9. Select the Acquire submenu, set the Number of Samples to 1000 and press START ACQUIRING
- 10. After the data for the time histogram has been acquired (# Samples = 100%), select the Result submenu.

11. Press MEAN and SIGMA. RECORD the values of sigma

12. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6sigma - delta.t.up}{6}$$

13. The RMS-jitter for period of 20 ns is 15.2 ps. Enter the result in the Test Report as TR entry 6.1b - 1

NOTE: See the Agilent54750A User's Guide / Service Guide to get the info needed to do the Jitter Test using this scope.

Test 6.2: Width Jitter (PLL not active)

Test Specifications

RMS-Jitter 0.01% + 15 ps

Equipment Needed

Digitizing Oscilloscope with Accessories Delay Line (22 ns) Power Splitter Cable, 50 Ω , coaxial, BNC Cable, SMA

Procedure

1. Connect Agilent 81101A to the Scope as shown:

Equipment Set-up for Jitter Test

2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"

38

3. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	1.000 μ s Normal	^{on} 1	MODIFY
Delay Width LeadE TraiE	0ps Offset 10.00ns Amplit 5.00ns 50Ω into =LeadE	+500mV 1.00V 50.0Ω	10.00
MODE/T	RG OUTPUT L	IMITS	TRG-LEV

Configuring Output Screen

- 4. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 128
- Select the Channel menu and set the Attenuation factor of channel 2 to 2
- Set the VOLTS/DIV 500 mV
- Select the Timebase menu and set the TIME/DIV to 10 ps/div
- Center the first negative-going edge of the signal (approximate Delay = 36 ns)
- Select the Delta V menu and turn the V markers On

- Set the Marker 1 Position to 500 mV and the Marker 2 Position to 490 mV
- Select the Delta t menu and turn the T Markers On
- Set START ON EDGE = NEG1 and STOP ON EDGE = NEG1
- Press the <u>PRECISE EDGE FIND</u> key
- 5. RECORD the delta t reading. This is the fall time of the referencesignal within a 1% amplitude window of the signal connected to Input 2. This value isneeded later to calculate the correct jitter. (delta.t.dn)
- 6. Set the Agilent 81101A Pulse Width to 50 ns
- 7. Select the Timebase menu and center the first negative-going edge of the signal (approximate Delay = 77 ns)
- 8. Press MORE and HISTOGRAM
- 9. Select the Window submenu and set:
- Source is channel 2
- Choose the Time Histogram
- Press WINDOW MARKER 1 and set it to 500 mV
- Press <u>WINDOW MARKER 2</u> and set it to 490 mV
- 10. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>
- 11. After the data for the time histogram has been acquired (# Samples = 100%), select the Result submenu.

12. Press $\overline{\text{MEAN}}$ and $\overline{\text{SIGMA}}$. RECORD the value of sigma

13. The RMS-jitter is calculated as follows:

RMS - jitter = $\frac{6 \text{ sigma - delta.t.dn}}{6}$

- 14. The RMS-jitter for pulse width of 50 ns is 20 ps. Enter the result in the Test Report as TR entry 6.2 1
- 15. Set the Agilent 81101A for pulse width of 500ns

16. Repeat steps 7 to 13

NOTE:

TIME/DIV = 100ps/div. Approximate delay = 527 ns

17. The RMS-jitter for pulse width of 500 ns is 65 ps. Enter the result in the Test Report as TR entry 6.2 - 2

Test 6.3: Delay Jitter (PLL not active)

Test Specifications

RMS-Jitter 0.01% + 15 ps

Equipment Needed

Digitizing Oscilloscope with Accessories

Procedure

1. Connect Agilent 81101A to the Scope as shown:

Equipment Set-up for Delay Jitter Test

2. For calculating the RMS-jitter, the rise time of the reference signal within a 1% amplitude window is required. If this value

42

Agilent 81101A Performance Test

is not already measured in the Period Jitter test, then perform the first 6 steps of the Period Jitter test.

- 3. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 4. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	1.000µs Normal	^{on} 1	CMODIFY
Delay Width LeadE	50.00ns Offset 50.00ns Amplit 5.00ns 50Ω into	+500mV 1.00V 50.0Ω	50.0 <u>0</u>
TraiE MODE/I	=LeadE RG OUTPUT L	IMITS	TRG-LEV

Configuring Output Screen

- 5. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 64
- Set the VOLTS/DIV = 10 mV/div
- Set OFFSET to 500 mV
- Select the Timebase menu and set the TIME/DIV to 100 ps/div
- Center the first positive-going edge of the signal (approximate Delay = 65 ns)

- 6. Press MORE and HISTOGRAM
- 7. Select the Window submenu and press <u>WINDOW MARKER</u> <u>1</u> and set it to 490 mV
- 8. Press WINDOW MARKER 2 and set it to 500 mV
- 9. Select the Acquire submenu, set the Number of Samples to 1000 and press <u>START ACQUIRING</u>
- 10. After the delta for the time histogram has been acquired (# Samples = 100%), select the Result submenu.
- 11. Press MEAN and SIGMA. RECORD the values of sigma!
- 12. The RMS-jitter is calculated as follows:

$$RMS - jitter = \frac{6sigma - delta.t.up}{6}$$

- 13. The RMS-jitter for delay of 50 ns is 20 ps. Enter the result in the Test Report as TR entry 6.3 1
- 14. Set Agilent 81101A for delay of 500 ns
- 15. Repeat steps 9 to 12

NOTE:

- TIME/DIV = 100 ps/div. Approximate delay = 515 ns
- 16. The RMS jitter for delay of 500 ns is 65 ps. Enter the result in the Test Report as TR entry 6.3 2

44

Test 7: High and Low Levels

The following tests are required:

- 1. High level from 50Ω into 50Ω
- 2. Low level from 50Ω into 50Ω
- 3. High level from $1K\Omega$ into 50Ω
- 4. Low level from $1K\Omega$ into 50Ω

Test Specifications

	Load Impedance 50 Ω		
Source Impedance	50 Ω	1 ΚΩ	
High Level	-9.90 V to +10.0 V	-19.8 V to +20.0 V	
Low Level	-10.0 V to +9.9 V	-20.0 V to +19.8 V	
Amplitude	0.10 Vpp to 10.0 Vpp	0.20 Vpp to 20.0 Vpp	
Level Resolution	10 mV	20 mV	
Level Accuracy	\pm 3% of ampl \pm 75 mV	$\pm 5\%$ of ampl ± 150 mV for amplitude ≤ 19 V	

Equipment Needed

- 1. Digitizing Voltmeter (DVM)
- 2. 50 Ω Feedthrough Termination, 0.1%, 10 W Adapter.
- 3. BNC to dual banana plug (1251-2277)
- 4. Cable, 50 Ω , coaxial, BNC

Procedure

Connect Agilent 81101A to the DVM as shown:

46

Agilent 81101A Performance Test

Connecting the DVM for High and Low Levels Tests

Test 7.1: High Level, 50 Ohms into 50 Ohms

- 1. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 2. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	100.0ms Normal	^{on} 1	MODIFY
Delay Width LeadE TraiE	25.00ms High 50.00ms Low 5.00ns 50Ω int =LeadE	+10.0V +0.0mV to 50.0Ω	+10. <u>0</u> v
MODE/1	RG OUTPUT	LIMITS	TRG-LEV

Configuring Output Screen

3. Set the DVM Agilent 3458A to:

Function:DCVTrigger:TRIG EXTAD-Converter integration time NPLC:0.1(Number of Power Line Cycles)

4. Check the Agilent 81101A high level at the following high level settings with the low level set to 0.0 V.

High Level	Acceptable Range	TR Entry
10.0 V	9.625 V to 10.375 V	7.1 - 1
5.0 V	4.775 V to 5.225 V	7.1 - 2
3.0 V	2.845 V to 3.165 V	7.1 - 3
1.0 V	0.895 V to 1.105 V	7.1 - 4
0.5 V	410 mV to 590 mV	7.1 - 5
0.1 V	22 mV to 178 mV	7.1 - 6

The low level may vary within \pm 3% of amplitude \pm 75 mV

Test 7.2: Low Level, 50 Ohms into 50 Ohms

- 1. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 2. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	100.0ms Normal	^{on} 1	MODIFY
Delay Width LeadE TraiE	75.00ms High 50.00ms Low 5.00ns 50 Ω int =LeadE	+0.0mV -100mV :0 50.0Ω	-100 mv
MODE/1	TRG OUTPUT	LIMITS	TRG-LEV

Configuring Output Screen

3. Check the Agilent 81101A low level at the following low level settings with the high level set to 0.0 V

Low Level	Acceptable Range	TR Entry
-0.1 V	-22 mV to -178 mV	7.2 - 1
-0.5 V	-410 mV to -590 mV	7.2 - 2
-1.0 V	-0895 V to -1.105 V	7.2 - 3
-3.0 V	-2.845 V to -3.165 V	7.2 - 4
-5.0 V	-4.775 V to -5.225 V	7.2 - 5
-10.0 V	-9.625 V to -10.375 V	7.2 - 6

The high level 0.0 V may vary \pm 3% of amplitude \pm 75 mV.

Test 7.3: High Level, 1K Ohms into 50 Ohms

- 1. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A
- 2. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Configuring Output Screen

3. Check the Agilent 81101A high level at the following high level settings with the low level set to 0.0 V.

High Level	Acceptable Range	TR Entry
19.0 V	17.9 V to 20.1 V	7.3 - 1
10.0 V	9.35 V to 10.65 V	7.3 - 2
5.0 V	4.60 V to 5.40 V	7.3 - 3
1.0 V	0.80 V to 1.20 V	7.3 - 4
0.2 V	40 mV to 360 mV	7.3 - 5

The low level 0.0 V may vary \pm 5% of amplitude \pm 150 mV.

Test 7.4: Low Level, 1K Ohms into 50 Ohms

- 1. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 2. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Per	100.0ms Normal ON 1	MODIFY
Delay Width LeadE	75.00ms High +0.0mV 50.00ms Low -200mV 5.00ns 1kΩ into 50.0Ω	-20 <u>0</u> ^{mv}
MODE/I	_ =LeadE_ RG OUTPUT LIMITS	TRG-LEV

Configuring Output Screen

3. Check the Agilent 81101A low level at the following low level settings with the high level set to 0.0 V.

Low Level	Acceptable Range	TR Entry
-0.2 V	-40 mV to -360 mV	7.4 - 1
-1.0 V	-0.80 V to -1.20 V	7.4 - 2
-5.0 V	-4.60 V to -5.40 V	7.4 - 3
-10.0 V	-9.350 V to -10.650 V	7.4 - 4
-19.0 V	-17.90 V to -20.10 V	7.4 - 5

The high level 0.0 V may vary \pm 5% of amplitude \pm 150 mV

Test 8: Transition Time

Test Specifications

Range	5.0 ns to 200 ms (measured between 10% and 90% of amplitude)
Accuracy Linearity	\pm 10% \pm 200 ps typical \pm 3% for transitions > 100 ns
Equipment Needed	

Digitizing Oscilloscope with Accessories Cable, SMA

Procedure

Perform the tests as shown in the following sections:

52

Agilent 81101A Performance Test

Test 8.1a: Leading Edge Test

Minimum Leading Edge and Leading Edge ranges .

1. Connect Agilent 81101A to the Scope as shown:

Connecting Agilent 81101A to the Scope

NOTE:

When you connect the test equipment the first time, and whenever you change the setup during the following tests, use the torque wrench (8170-1582) to tighten and loosen the SMA connectors. This will ensure that the connectors are at the correct tightness and give the best signal transfer!

- 2. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 3. On the Agilent 81101A set up [OUTPUT] page as shown in the following illustration:

Configuring Output Screen

- 4. Set the Digitizing Oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Center one pulse on screen, e.g.:
- TIME/DIV = $50 \mu s/div$, DELAY = $380 \mu s$,
- Select the Display menu and set the Number of Averages to 32
- Select the Channel menu and set the Attenuation factor to 10
- Select the Delta V menu and turn the voltage markers On
- Set the Preset Levels = 10-90% and press <u>AUTO LEVEL SET</u>
- Select the Timebase menu and set TIME/DIV = 1 ns/div, DELAY = 20 ns
- Select the Delta t menu and turn the markers On
- Set START ON EDGE = POS1 and STOP ON EDGE = POS1
- 5. Set period of Agilent 81101A to: Period = $1 \mu s$ and change the Agilent 81101A Delay to center the leading edge of the first pulse on the screen

54

6. After the averaging, while the oscilloscope is in the Delta t menu, Press the <u>PRECISE EDGE FIND</u> key

Oscilloscope TIME/ DIV	Period	Leading Edge	Trailing Edge	Acceptable Range	TR Entry
2 ns/div	1.05	5 0 ns	5.0 ns	≤ 5 ns to 5.7 ns	8 1a - 1
2 ns/ arv	1 μο	5.0 115	5.0 115	<u></u>	0.14 1
5 ns/div	I μs	10 ns	10 ns	8.8 ns to 11.2 ns	8.1a - 2
10 ns/div	1 µs	50 ns	50 ns	44.8 ns to 55.2ns	8.1a - 3
100 ns/div	5 µs	500 ns	500 ns	449.8 ns to 550.2 ns	8.1a - 4
1µs/div	50 µs	5 µs	5 μs	4.4998 μs to 5.5002 μs	8.1a - 5
10 µs/div	500 µs	50 µs	50 µs	45 μs to 55 μs	8.1a - 6
100 µs	5 ms	500 µs	500 µs	450 μs to 550 μs	8.1a - 7
10 ms/div	500 ms	50 ms	50 ms	45 ms to 55 ms	8.1a - 8

7. Check the Agilent 81101A rise times at the following leading edge settings:

Test 8.1b: Trailing Edge Test

Minimum Trailing Edge and Trailing Edge range.

- 1. Connect Agilent 81101A to the Scope as shown in Test 8.1a Leading Edge Test.
- 2. Set up the Agilent 81101A as described in Test 8.1a Leading Edge Test.
- 3. Set the digitizing oscilloscope Agilent 54121T:
- Select the oscilloscopes Timebase menu and set TIME/DIV to 1 ns/ div

and DELAY to approximately 520ns

- Select the oscilloscopes Delta t menu and set START ON EDGE = NEG1 and STOP ON EDGE = NEG1
- 4. While the oscilloscope is in the Delta t menu, press the \underline{PRE} -<u>CISE EDGE FIND</u> key
- 5. Check the Agilent 81101A output signal falls at the following trailing edge settings:

Oscilloscope TIME/DIV	Delay	Period	Trailing Edge	Leading Edge	Acceptable Range	TR Entry
2 ns/div 5 ns/div 10 ns/div 100 ns/div 1 µs/div 10 µs/div 100 µs/div	529 ns 529 ns 529 ns 25 μs 25 μs 250 μs 2.5 ms	1 μs 1 μs 1 μs 5 μs 50 μs 500 μs 5 ms	5.0 ns 10 ns 50 ns 500 ns 5 μs 50 μs 500 μs	5.0 ns 5 ns 50 ns 500 ns 5 μs 50 μs 500 μs 500 μs	≤5 ns to 5.7 ns 8.8 ns to 11.2 ns 44.8 ns to 55.2 ns 449.8 ns to 550.2 ns 4.4998 µs to 550.2 µs 4.4998 µs to 5.5002 µs 45 µs to 55 µs 450 µs to 550 µs 45 ms to 55 µs	8.1b - 1 8.1b - 2 8.1b - 3 8.1b - 4 8.1b - 5 8.1b - 5 8.1b - 6 8.1b - 7 8.1b - 8

Test 9: Pulse Aberration Test

The following tests are required:

Overshoot and Ringing Preshoot

Test Specifications

Overshoot/Preshoot/Ringing \pm 5% of amplitude \pm 20 mV

Equipment Needed

Digitizing Oscilloscope with Accessories

Procedure

- 6. Set up the Agilent 81101A as described in "Initial Setup of the Agilent 81101A"
- 1. Connect Agilent 81101A to the Scope as shown:

Connecting Agilent 81101A to the Scope

Per	500.0 μ s Normal	^{on} 1	MODIFY
Delay DtyCyc LeadE	0ps High 50.00% Low 5.00ns 50Ω into	+5.0V +0.0mV 50.0Ω	+5.0 <u>0</u>
TraiE MODE/I	=LeadE RG OUTPUT L	IMITS	TRG-LEV

Configuring Output Screen

Overshoot and Ringing

- 2. Set the digitizing oscilloscope Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 32
- Select the Channel menu and set the Attenuation factor to 10
- Center one pulse horizontally and vertically on screen
- (e.g. TIME/DIV = 50μ s/div, DELAY = 250μ s)
- Select the delta V menu and turn the voltage markers On
- Set the VARIABLE LEVELS = 95% 105% and press AUTO LEVEL SET
- Select the channel menu and center vertically the top pulse (offset = 5 V)
- Set the VOLTS/DIV = 200 mV/div

58

- Select the Timebase menu and set TIME/DIV = 5 ns/div, DELAY = 16 ns (>> 500 ns)
- 3. Set the Agilent 81101A to period = 500 ns
- 4. Check that Overshoot and Ringing are within the $\pm 5\%$ of amplitude ± 20 mV window
- 5. Enter the result in the Test Report as TR entry 9 1

NOTE: Take the oscilloscope's trace flatness error (GaAs input circuit) into account.

Preshoot

- 6. Set Agilent 81101A to:
- Period = $500 \,\mu s$
- High Level = 5 V
- Low Level = 0 V
- Delay = 10 ns
- 7. Set the digitizing oscilloscope, Agilent 54121T:
- Press <u>AUTOSCALE</u>
- Select the Display menu and set the Number of Averages to 32
- Select the Channel menu and set the Attenuation factor to 10
- Center one pulse horizontally and vertically on screen
- (e.g. TIME/DIV = $50\mu s/div$, DELAY = $265 \mu s$)
- Select the delta V menu and turn the voltage markers On
- Set the VARIABLE LEVELS = -5% to +5% and press AUTO LEVEL SET

- Select the channel menu and center vertically the bottom of the pulse (offset = 0 V)
- Set the VOLTS/DIV = 200 mV/div
- Select the Timebase menu and set TIME/DIV = 5 ns/div, DELAY = 16 ns
- 8. Set Agilent 81101A to period = 500 ns
- 9. Check that Preshoot is within the $\pm 5\%$ of amplitude $\pm 20 \text{ mV}$ window.
- 10. Enter the result in the Test Report as TR entry 9 3

Agilent 81101A Performance Test Records

Test Facility:		
	Report No	
	Date	
	Customer	
	Tested By	
X		
Model Agilent 8110	1A 50 MHz Pulse Generator	
6		
Serial No.		
Options	Ambient temperature	°C
	Relative humidity	%
Einnaurana Dav	Line frequency	Ца
	Line frequency	пz
Special Notes:		
Special Protest		

Agilent 81101A Performance Test

Test Equipment Used Description Date	Model No.	Trace No.	Cal. Due
1. Oscilloscope	Agilent 54121T		
2. Counter	Agilent 5334B		
3. Digital Voltmeter	Agilent 3458A		
4. Pulse Generator	Agilent 8110A		
5. Delay Line	Agilent 54008A		
6			
7			
8			
9			
10			
11			
12			
13			
14			

Agilent 81101A Performance Test

Test Results for Agilent 81101A Mainframe

Serial No °C	0	Am	bient tem	perature		_
Custome	er	Re	lative hum	idity		_ %
CSO#		Lir	ne frequen	су		Hz
Tested b	у	Da	te			
Commer	nts					
Internal	Oscillato	or Period				
Scope U	ncertainty	factor				
TR Entr	ry Test	Limit Min	Actual Result	Limit Max	Pass	Fail
1-1	20.0ns	19.000 ns		21.000 ns		
1-2	50.0ns	47.5 ns		_ 52.5 ns		

1-3 99.9ns 94.905 ns _____ 104.895 ns _____

Agilent 81101A Performance Test

63

Counter Uncertainty factor

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
1-6	100 ns	95.0ns		105.0 ns		
1-7	500 ns	475.0 ns		525.0 ns		
1-8	1 µs	950.0 ns		1050.0 ns		
1-9	5 00µs	475 µs		5 25 µs		
1-10	500 ms	475 ms		525 ms		

64

Agilent 81101A Performance Test

PLL Period (Results measured as frequency by counter)

Counter Uncertainty factor

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
2-1	20.00 ns	49.995MF	Iz	_ 50.005 M	Hz	
2-2	50.00 ns	19.9980MI	Hz	_ 20.0020N	IHz	
2-3	100 ns	9.9990MI	Hz	_ 10.0010M	Hz	
2-4	500 ns	1.9998MI	Hz	_ 2.0002M	Hz	
2-5	1 µs	999.9 kH	[z	1.0001 M	Hz	
2-6	50 µs	19.998 kH	[z	20.002 k	Hz	
2-7	5 ms	199.98 H	Z	200.02 1	Hz _	
2-8	500 ms	1.9998 H	Iz	2.0002 H	Iz _	
2-9	5 s	0.19998 Hz	<u></u>	_ 0.20002 H	Iz	

Agilent 81101A Performance Test

Period Jitter

Scope Uncertainty factor

TR Entr	ry Test	Limit Min	Actual Result	Limit Max	Pass Fail
6.1a-1	50 ns			20 ps	
6.1a-2	500 ns			65 ps	
6.1b-1	20 ns			15.2 ps	

66

Agilent 81101A Performance Test

Test Results for Agilent 81101A Output Channel

Width

Scope Uncertainty factor

TR En	try Test	Limit Min	Actual Result	Limit Max	Pass	Fail
3-1	10.0 ns	9.250ns		_ 10.750 ns		
3-2	50.0 ns	47.25 ns	<u> </u>	52.75 ns		
3-3	100 ns	94.75 ns		_ 105.25 ns		
3-4	500 ns	474.75 ns		525.25 ns		
3-5	50 µs	47.5 μs		52.5 μs		
3-6	5 ms	4.75 ms		5.25 ms		
3-7	500 ms	475 ms		_ 525 ms		

Width Jitter

Scope Uncertainty factor

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
6.2-1	50 ns			20 ps		
6.2-2	500 ns	-		65 ps		

68

Agilent 81101A Performance Test

Delay

Scope Uncertainty factor

TR E	ntry Test	Limit Min	Actual Result	Limit Max	Pass	Fail
4-1	0.00 ns			Fixed Delay		
4-2	5.00 ns	3.75 ns		6.25 ns		
4-3	10 ns 8	3.50 ns		11.50 ns		
4-4	50.0 ns	46.5 ns		53.5 ns		
4-5	100 ns 94	.0 ns		106.0 ns		
4-6	500 ns 474	4.0 ns _		_ 526.0 ns		
4-7	50 µs 🛛	47.5 μs		52.5 μs		
4-8	5 ms 4	.75 ms		_ 5.25 ms		
4-9	500 ms 4	75 ms		525 ms		

Agilent 81101A Performance Test

Delay Jitter

Scope Uncertainty factor

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass Fai
6.3-1	50 ns			20 ps	
6.3-2	500 ns	-		65 ps	

70

Agilent 81101A Performance Test

Double Pulse Delay

Scope Uncertainty factor							
TR Entry	7 Test	Limit Min	Actual Result	Limit Max	Pass	Fail	
5-1	20.0 ns	18.50 ns		_ 21.50 ns			
5-2	50.0ns	47.00 ns		_ 53.00 ns			
5-3	100ns	94.50 ns		105.50 ns			
Counter Uncertainty factor							
TR Entry	7 Test	Limit Min	Actual Result	Limit Max	Pass	Fail	
5-4	500 ms	475 ms		525 ms			

5-5 1 s 950.0 ms _____ 1050.0 ms _____

TR Entry	Test	Limit Min	Actual Result

High Level 50 Ω -50 Ω

7.1-1	10.0 V 9.625 V	10.375 V	
7.1-2	5.0 V 4.775 V	5.225 V	
7.1-3	3.0V 2.845 V	3.165 V	
7.1-4	1.0 V 0.895 V	1.105 V	
7.1-5	0.5 V 410 mV	590 mV	
7.1-6	0.1 V 22 mV	178 mV	

Pass Fail

Limit Max

High Level 1K Ω -50 Ω

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
7.3-1	19.0 V	17.90V		20.10 V		
7.3-2	10.0 V	9.35 V		10.65 V		
7.3-3	5.0 V	4.60 V		5.40 V		
7.3-4	1.0 V	0.80 V		1.20V		
7.3-5	0.2 V	40 mV		360mV		
Low Level 50 Ω -50 Ω

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
7.2-1	-0.1 V	-22 mV		178 mV		
7.2-2	-0.5 V	-410 mV		590 mV		
7.2-3	-1.0 V	-0.895 V		1.105 V		
7.2-4	-3.0V	-2.845 V		3.165 V		
7.2-5	-5.0V	-4.775 V		5.225 V		
7.2-6	-10.0V	-9.625 V		10.375 V		

Low Level $1K\Omega$ -50 Ω

TR Entry	7 Test	Limit A Min R	ctual cesult	Limit Max	Pass	Fail
7.4-1	-0.2V	-40 mV		360 mV		
7.4-2	-1.0V	-0.80 V		-1.20 V		
7.4-3	-5.0V	-4.60V		-5.40 V		
7.4-4	-10.0V	-9.350 V		-10.650 V		
7.4-5	-19.0V	-17.90 V		20.10 V		

Agilent 81101A Performance Test

73

Leading Edge

Scope Uncertainty factor

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
8.1a-1	5.0 ns	<u><</u> 5 ns _		_ 5.7 ns		
8.1a-2	10 ns	8.8 ns _		_11.2 ns		
8.1a-3	50 ns	44.8 ns _		55.2 ns		
8.1a-4	500 ns	449.8 ns _		_ 550.2 ns		
8.1a-5	5 µs	4.4998 μs <u>-</u>		_5.5002 µs		
8.1a-6	50 µs	45 μs _		_ 55 μs		
8.1a-7	500 µs	450 μs _		_ 550 µs		
8.1a-8	50 ms	45 ms _		_ 55 ms		

Trailing Edge

TR Entry	7 Test	Limit Min	Actual Result	Limit Max	Pass	Fail
8.1b-1	5.0 ns	<u><</u> 5 ns _		_ 5.7 ns		
8.1b-2	10 ns	8.8 ns		11.2 ns		
8.1b-3	50 ns	44.8 ns		55.2ns		
8.1b-4	500 ns	449.8 n _		550.2 ns		
8.1b-5	5 µs	4.4998 µs		5.5002 µs		
8.1b-6	50 µs	45 µs		55 μs		
8.1b-7	500 µs	450 μs		550 μs		
8.1b-8	50 ms	45 ms		55 ms		

Agilent 81101A Performance Test

Overshoot and Ringing

Scope Uncertainty factor

TR En	try Test	Limit Min	Actual Result	Limit Max	Pass	Fail
9-1	5V			<u>+</u> 5% of ampl. <u>+</u> 20mV		
9-2	500 mV	-		_ <u>+</u> 5% of ampl. <u>+</u> 20mV		

Preshoot

TR Entry	Test	Limit Min	Actual Result	Limit Max	Pass	Fail
9-3	0 V			_ <u>+</u> 5% of ampl. <u>+</u> 20mV		

Publication Number: 5988-4851EN

Agilent Technologies