

Agilent 75000 SERIES C

Agilent E1411A/E1411B 5 ¹/2-Digit Multimeters

Service Manual

Serial Numbers

The Information in this Service Manual applies to E1411A 5 1/2-Digit Multimeters with serial number prefix 3002A and to E1411B 5 1/2-Digit Multimeters with serial number prefix 3050A.

Copyright© Agilent Technologies, Inc. 1996-2005

Manual Part Number: E1411-90011

Printed: November 2005 Edition 2 Printed in U.S.A. E1105

Table of Contents

Chapter 1 - General Information	
Introduction	. 9
Safety Considerations	. 9
Multimeter Description	. 11
Recommended Test Equipment	. 12
Chapter 2 - Installation	
Introduction	. 13
Initial Inspection	. 13
Preparation for Use	
Shipping the Multimeter	
Chapter 3 - Operating Instructions	
Introduction	. 15
Multimeter Operation	
Operator's Check	
Chapter 4 - Verification Tests	
Introduction	. 17
Test Conditions/Procedures	
Performance Test Record	
Verification Test Examples	
Functional Verification Test	
Self-Test Procedure	
Example: Self-Test	
Operation Verification Tests	
Performance Verification Tests	
Test 4-1: DC Voltage Test (Zero Volt Input)	
Test 4-2: DC VOltage Test (DCV Input)	
Test 4-3: AC Voltage Test	
Test 4-4: Resistance Test (4-Wire Ohms)	
Performance Test Record	
Chapter 5 - Adjustments	
Introduction	35
DC Voltage Adjustments	
AC Voltage Adjustments	
Resistance Adjustments	
Calibration Errors	

Chapter 6 - R	eplaceable Parts
---------------	------------------

Introduction
Exchange Assemblies
Ordering Information
Replaceable Parts List
Chapter 7 - Manual Changes
Introduction
Chapter 8 - Service
Introduction
Equipment Required
Service Aids
Troubleshooting Techniques
Identifying the Problem
Testing Assemblies
Repair Guidelines
ESD Precautions
Removing Top Shield
Removing Front Panel
Removing Binding Posts
Soldering Printed Circuit Boards
Post-Repair Safety Checks
Annual Pro A. Calandadi a Maltina Annual an
Appendix A - Calculating Multimeter Accuracy
Introduction
Multimeter Accuracy Calculations
Measurement Uncertainty Calculations
Test Accuracy Ratio (TAR) Calculations
Appendix B - Verification Tests - C Programs
Functional Verification Test
Example:Self Test
Performance Verification Tests
Example: Zero Volt DCV Test
Example: DC Voltage Test
Example: AC Voltage Test
Example: Resistance Test
Adjustments
DC Voltage Adjustments
AC Voltage Adjustments
Resistance Adjustments
5

Certification

Agilent Technologies, Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of one year from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other Agilent products. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. Agilent does not warrant the Buyer's circuitry or malfunctions of Agilent products that result from the Buyer's circuitry. In addition, Agilent does not warrant any damage that occurs as a result of the Buyer's circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IM-PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

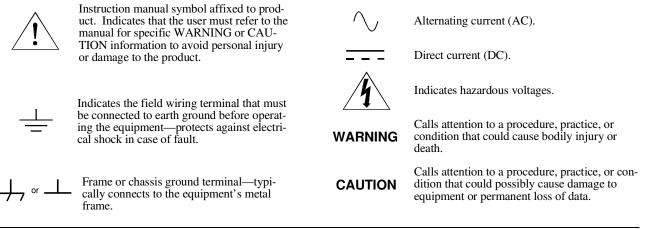
THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. AGILENT TECHNOLOGIES MAKES NO WAR-RANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987) (or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.


E1411A/B 5 1/2 Digit Multimeter Service Manual Edition 2 Copyright © 1996-2005 Agilent Technologies, Inc. All Rights Reserved.

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.

Edition 1 (Part Number E1411-90000)	October 1996
Edition 2 (Part Number E1411-90011)	November 2005

Safety Symbols

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer's Name:	Agilent Technologies, Incorporated
Manufacturer's Address:	Measurement Product Generation Unit
	815 14 th ST. S.W.
	Loveland, CO 80537 USA

Declares, that the product

Product Name:	5 1/2 Digit Multimeter
Model Number:	E1411B
Product Options:	This declaration covers all options of the above product(s).

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carries the CE Marking accordingly

Conforms with the following product standards:

EMC Standard

IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998 CISPR 11:1997 +A1:1997 / EN 55011:1998 IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995 IEC 61000-4-3:1995 / EN 61000-4-3:1995 IEC 61000-4-4:1995 / EN 61000-4-4:1995 IEC 61000-4-5:1995 / EN 61000-4-5:1995 IEC 61000-4-6:1996 / EN 61000-4-6:1996 IEC 61000-4-11:1994 / EN 61000-4-11:1994

Canada: ICES-001:1998 Australia/New Zealand: AS/NZS 2064.1 Limit

Group 1 Class A ⁽¹⁾ 4kV CD, 8kV AD 3 V/m, 80-1000 MHz 0.5kV signal lines, 1kV power lines 0.5 kV line-line, 1 kV line-ground 3V, 0.15-80 MHz I cycle, 100%

Safety

IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995 Canada: CSA C22.2 No. 1010.1:1992 UL 3111-1:1994

Supplemental Information:

^[1] The product was tested in a typical configuration with Agilent Technologies test systems.

September 5, 2000

Date

Quality Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor. Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Straβe 130, D 71034 Böblingen, Germany

Title

Chapter 1 General Information

Introduction

This manual contains information required to test, adjust, troubleshoot, and repair the Agilent E1411A and E1411B C-Size VXI 5 1/2-Digit Multimeters (E1411 multimeter). See the *Agilent E1326A/E1411A User's Manual* or the *Agilent E1326B/E1411B User's Manual* for additional information on the E1411 multimeter. Figure 1-1 shows the E1411A and E1411B multimeters.

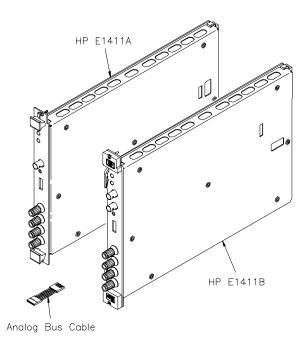


Figure 1-1. Agilent E1411A/B Multimeters

Safety Considerations

This product is a Safety Class I instrument that is provided with a protective earth terminal when installed in the mainframe. The mainframe, multimeter, and all related documentation should be reviewed for familiarization with safety markings and instructions before operation or service.

Refer to the WARNINGS page (page 4) in this manual for a summary of safety information. Safety information for testing, adjusting, and service follows and is also found throughout this manual.

Warnings and Cautions	This section contains WARNINGS which must be followed for your protection and CAUTIONS which must be followed to avoid damage to the equipment when performing instrument maintenance or repair.
WARNING	SERVICE-TRAINED PERSONNEL ONLY. The information in this manual is for service-trained personnel who are familiar with electronic circuitry and are aware of the hazards involved. To avoid personal injury or damage to the instrument, do not perform procedures in this manual or do any servicing unless you are qualified to do so.
	CHECK MAINFRAME POWER SETTINGS. Before applying power, verify that the mainframe setting matches the line voltage and the correct fuse is installed. An uninterruptible safety earth ground must be provided from the main power source to the supplied power cord set.
	GROUNDING REQUIREMENTS. Interruption of the protective (grounding) conductor (inside or outside the mainframe) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two-conductor outlet is not sufficient protection.)
	IMPAIRED PROTECTION. Whenever it is likely that instrument protection has been impaired, the mainframe must be made inoperative and be secured against any unintended operation.
	REMOVE POWER IF POSSIBLE. Some procedures in this manual may be performed with power supplied to the mainframe while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. (If maintenance can be performed without power applied, the power should be removed.)
	USING AUTOTRANSFORMERS. If the mainframe is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the main's supply).
	CAPACITOR VOLTAGES. Capacitors inside the mainframe may remain charged even when the mainframe has been disconnected from its source of supply.

WARNING	USE PROPER FUSES. For continued protection against fire hazard, replace the line fuse(s) only with fuses of the same current rating and type (such as normal blow, time delay, etc.). Do not use repaired fuses or short-circuited fuseholders.	
CAUTION	Static electricity is a major cause of component failure. To prevent damage to the electrical components in the multimeter, observe anti-static techniques whenever working on the multimeter.	
Multimeter Description	The E1411 multimeter is an "instrument" in the slots of a VXIbus mainframe. As such, it is assigned an error queue, input and output buffers, status registers, and is allocated a portion of mainframe memory for reading storage.	
NOTE	Instruments are based on the logical addresses of the plug-in modules. See the Agilent 75000 Series C Installation and Getting Started Guide to set the addresses to create an instrument.	
	The instrument may consist of a multimeter only (stand-alone operation), or can include relay or FET multiplexers (scanning multimeter operation). The instrument is operated from a computer using Standard Commands for Programmable Instruments (SCPI) language.	
	In stand-alone operation, input signals are connected to the multimeter's external (faceplate) terminals. In scanning multimeter operation, input signals are connected to the multiplexer channels. The multimeter is linked to relay multiplexers via an analog bus cable. The multimeter is linked to FET multiplexers via an analog bus cable and a digital bus cable.	
Multimeter Specifications	Multimeter specifications are listed in <i>Appendix A</i> of the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> . These specifications are the performance standards or limits against which the instrument may be tested.	

Multimeter Serial Numbers	Multimeters covered by this manual are identified by a serial number prefix listed on the title page. Agilent Technologies uses a two part serial number in the form 0000A00000, where 0000 is the serial prefix, A is the country of origin (A=USA) and 00000 is the serial suffix. The serial number prefix identifies a series of identical instruments. The serial number suffix is assigned sequentially to each instrument.
	If the serial number prefix of your instrument is greater than the one listed on the title page, a Manual Update (as required) will explain how to adapt this manual to your instrument. If the serial number prefix of your instrument is lower than the one listed on the title page, information contained in <i>Chapter 7- Manual Changes</i> will explain how to adapt this manual to your instrument.
Multimeter Options	There are no electrical or mechanical options available for the E1411 multimeters. However, for the E1411B, you can order Option 1BN that provides a MIL-STD-45662A Calibration Certificate. Contact your nearest Agilent Technologies Sales and Support Office for information on Option 1BN.

Recommended Test Equipment

Table 1-1 lists the test equipment recommended for testing, adjusting and servicing the multimeter. Essential requirements for each piece of test equipment are described in the Requirements column.

Instrument	Requirements	Recommended Model	Use*
Controller, GP-IB	GP-IB compatibility as defined by IEEE Standard 488-1987 and the identical ANSI Standard MC1.1: SH1, AH1, T2, TE0, L2, LE0, SR0, RL0, PP0, DC0, DT0, and C1, 2, 3, 4, 5	HP 9000 Series 300 or IBM Compatible PC with HP BASIC	A,F, P,T
Mainframe	Compatible with multimeter	E1400B/T or E1421A/B	A,F, P,T
AC Standard	Voltage Range 0.1 V to 300 V	Datron 4708 with Option 20	A,P
DC Standard	Voltage Range 0.07 V to 300 V	Datron 4708 with Option 10	A,P
Resistance Standard	Values 1 k Ω to 1 M Ω	Datron 4708 with Option 30	A,P
Digital Multimeter	General Purpose Voltage and Resistance	3458A	Т

Table 1-1. Recommended Test Equipment

*A = Adjustments, F = Functional Verification, P = Performance Verification Tests, T = Troubleshooting

Chapter 2 Installation

Introduction	This chapter provides information to install the E1411 multimeter, including initial inspection, preparation for use, environment, storage and shipment.
Initial Inspection	Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, keep the container until the shipment contents have been checked and the instrument has been checked mechanically and electrically. See Figure 1-1 in <i>Chapter 1 - General Information</i> for shipment contents. See <i>Chapter 4 - Verification Tests</i> for procedures to check electrical performance.
WARNING	To avoid possible hazardous electrical shock, do not perform electrical tests if there are signs of shipping damage to any portion of the outer enclosure (covers, panels, etc.).
	If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance tests, notify your nearest Agilent Technologies Sales and Support Office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as Agilent Technologies, and keep the shipping materials for the carrier's inspection.
Preparation for Use	See Chapter 2 of the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> to prepare an E1411 multimeter for use. See the appropriate mainframe user's manual(s) to prepare your mainframe. If your mainframe is not manufactured by Agilent Technologies, consult the manufacturer for a list of available manual(s).
	Recommended operating environment for the E1411 multimeters is 0° C to +55°C with relative humidity <65% (0 °C to +40°C). The instrument should be stored in a clean, dry environment. For storage and shipment, the temperature range is -40°C to +75°C with relative humidity <65% (0°C to +40°C).

Shipping the Multimeter

If you need to return an E1411 multimeter to Agilent, first remove any adapters or connectors before packaging the instrument for shipment. When you return the instrument to Agilent, attach a tag to the instrument identifying the owner and indicating service or repair required. In any correspondence, refer to the instrument by model number and full serial number.

When shipping the instrument, we recommend using containers and materials identical to those used in factory packaging, which are available through Agilent Technologies Sales and Support Offices. Mark the shipping container "FRAGILE" to assure careful handling.

If you use other (commercially available) shipping materials, wrap the instrument in heavy paper or plastic. Use a strong shipping container. A double-wall carton of 2.4 MPa (350 psi) test material is adequate.

Use enough shock-absorbing material (75 to 100 mm layer; 3 to 4 inches) around all sides of the instrument to provide firm cushion and prevent movement in the container. Protect the front panel with cardboard. Seal the shipping container securely and mark the container "FRAGILE" to assure careful handling.

Introduction	 This chapter lists operating information for the Agilent E1411 multimeter, including: Multimeter operation Operator's check (self-test)
Multimeter Operation	 See the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> for multimeter operation, including: Getting started Configuring the multimeter Using the multimeter Understanding the multimeter Multimeter command reference Multimeter specifications Multimeter error messages Register-based programming
Operator's Check	The Operator's Check for the E1411 multimeter consists of sending the self-test (*TST?) command and checking the return. The operator's check can be used to verify the multimeter is connected properly and is responding to the self-test command.
	As required, see the mainframe user's manual for information on address selection. See the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> for information on multimeter SCPI commands.
Self-Test Procedure	1. Verify the multimeter is properly installed in the mainframe and the mainframe has passed its power-on sequence test.
	2. Execute the multimeter functional test using the *TST? command (see example following).
	3. A "0" returned means no self-test failure, while "1", "2", "3", or "4" returned means a failure was detected. See <i>Chapter 8 - Service</i> for troubleshooting information (see NOTE following).

NOTE

Test failures can be caused by improper cabling, improper selection of the interface select code, primary, and/or secondary address setting. Verify proper connection and address selection before troubleshooting.

Example: Multimeter Self-Test

An example follows which uses an HP 9000 Series 300 computer with BASIC and a multimeter address of 70903.

OUTPUT 70903;"*TST?"
 ENTER 70903;A
 PRINT A
 END

Send the self-test command Enter self-test result

Chapter 4 Verification Tests

Introduction	 The three levels of test procedures described in this chapter are used to verify that the E1411 multimeter: is functional (Functional Verification) meets selected testable specifications (Operation Verification) meets all testable specifications (Performance Verification)
WARNING	Do not perform any of the following verification tests unless you are a qualified, service-trained person and have read the WARNINGS and CAUTIONS in <i>Chapter 1 - General Information</i> .
Test Conditions/ Procedures	For valid tests, all test equipment and the multimeter must have a one hour warmup, the line voltage must be $115/230$ Vac $\pm 10\%$, and multimeter Auto Zero must be set to ON. See Table 1-1, <i>Recommended Test Equipment</i> , for test equipment requirements.
	For best test accuracy, the ambient temperature of the test area should be between 18° C and 28° C and stable to within $\pm 1^{\circ}$ C. You should perform the Performance Verification tests at least once a year. For heavy use or severe operating environments, perform the tests more often.
	The verification tests assume the person performing the tests understands how to operate the mainframe, multimeter and specified test equipment. The test procedures do not specify equipment settings for test equipment, except in general terms. It is assumed a qualified, service-trained person will select and connect the cables, adapters, and probes required for the test.
Performance Test Record	Table 4-1, <i>Performance Test Record for the E1411 Multimeter</i> , at the end of this chapter, provides space to enter the results of each Performance Verification test and to compare the results with the upper and lower limits for the test. You can make a copy of this form, if desired.

	The value in the "Measurement Uncertainty" column of Table 4-1 is derived from the specifications for the source used for the test, and represents the expected accuracy of the source. The value in the "Test Accuracy Ratio (TAR)" column of Table 4-1 is the ratio of multimeter accuracy to measurement uncertainty.
Verification Test Examples	Each Performance Verification Test includes an example program to perform the test. Each example uses address 70903 for the multimeter, and an HP 9000 Series 200/300 computer running BASIC and Standard Commands for Programmable Instruments (SCPI) commands. You may need to change the multimeter address and/or command syntax to perform the examples for your setup.
	As required, see the mainframe or command module user's manual for information on address selection and cabling guidelines. See the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> for information on multimeter SCPI commands.
Functional Verification Test	The functional verification test for the E1411 multimeter consists of the multimeter self-test. You can perform this test to verify the multimeter is functional and is communicating with the mainframe, external computer and/or external terminal.
Self-Test Procedure	This test verifies the multimeter is communicating with the mainframe, external controller, and/or external terminal by performing a multimeter self-test. Do the following steps to perform the self-test:
	1. Verify the multimeter is correctly installed in the mainframe.
	2. Connect a power cable to the mainframe and set mainframe power ON. Verify proper mainframe power-up sequence. (See the mainframe user's manual for additional information.) If correct, proceed with step 3. If incorrect, troubleshoot the problem before proceeding.
	3. Execute the multimeter functional verification test using the *TST? command. See the following example which uses an HP 9000 Series 300 computer with BASIC and a multimeter address of 70903.
	4. A "0" returned means no failure, while "1", "2", "3", or "4" returned means a failure was detected. See <i>Chapter 8 - Service</i> for trouble-shooting information.

NOTE

Test failures can be caused by improper selection of the interface select code, primary address setting, and/or secondary address setting. Verify proper address selection before troubleshooting.

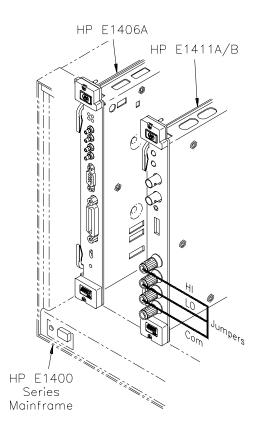
Example: Self-Test

10 OUTPUT 70903;"*TST?" 20 ENTER 70903;A 30 PRINT A 40 END !Send the self-test command !Enter the test result !Display the result

Operation Verification Tests

There are no separate operation verification tests for the E1411 multimeter. Use the Performance Verification tests for post-repair checkout.

Performance Verification Tests


Performance verification tests are used to check the multimeter's electrical performance against the specifications in *Appendix A - Specifications* of the *E1326A/E1411A User's Manual* or the *E1326B/E1411B User's Manual* as the performance standards. These tests are suitable for incoming inspection and troubleshooting. The performance verification tests for the E1411 multimeter are:

- Test 4-1: DC Voltage Test (Zero Volt Input)
- Test 4-2: DC Voltage Test (DCV Input)
- Test 4-3: AC Voltage Test
- Test 4-4: Resistance Test (4-Wire Ohms)

Test 4-1: DC Voltage Test (Zero Volt Input)

This test verifies DC Voltage accuracy on all five ranges using a zero volt input.

Equipment Setup 1. Connect the equipment as shown in Figure 4-1.

Figure 4-1. DC Voltage (Zero Volt Input) Setup

2. Set the E1411 multimeter as follows:

- Reset Multimeter*RST
- Auto ZeroON
- Power Line Cycles (PLC)1
- Line Freq Reference (CAL:LFR) 50Hz or 60Hz

NOTE

*RST sets Auto Zero to ON and Power Line Cycles to 1.

Test Procedure 1. Set the E1411 range to 0.113 V (0.125 V with 10% over- range) and measure the input voltage with MEAS:VOLT:DC? 0.1

2. Observe the input, record the results on the Performance Test Record, and verify the results are within specified limits (at the range selected for 1 PLC).

3. Repeat steps 1 and 2 for the following ranges:

E1411 Range	10% Overrange	Input
0.91 V	1 V	0 V
7.27 V	8 V	0 V
58.10 V	64 V	0 V
300.00 V	None	0 V

^{4.} Remove power and disconnect test equipment.

Example: Zero Volt TI DCV Test re

This example performs a DCV test for zero volts input and a power line reference frequency of 60 Hz. Change line 20 to OUTPUT 70903;"CAL:LFR 50" for 50 Hz operation.

1	Zero Volts Performance Verification	
10	OUTPUT 70903;"*RST"	<i>!Resets and sets autozero ON and PLC to 1</i>
20	OUTPUT 70903;"CAL:LFR 60"	Sets line reference to 60 Hz!
30	OUTPUT 70903;"MEAS:VOLT:DC? .1"	!Measure 0.113 V range
40	ENTER 70903;A	
50	PRINT A	
60	OUTPUT 70903;"MEAS:VOLT:DC? .9"	!Measure 0.91 V range
70	ENTER 70903;B	
80	PRINT B	
90	OUTPUT 70903;"MEAS:VOLT:DC? 7"	!Measure 7.27 V range
100	ENTER 70903;C	
110	PRINT C	
120	OUTPUT 70903;"MEAS:VOLT:DC? 58"	!Measure 58.1 V range
130	ENTER 70903;D	
140	PRINT D	
150	OUTPUT 70903;"MEAS:VOLT:DC? 300"	!Measure 300 V range
160	ENTER 70903;E	
170	PRINT E	

180 END

Test 4-2: DC Voltage Test (DCV Input)

This test verifies DC Voltage accuracy on all five ranges with DC voltage inputs.

Equipment Setup 1. Connect the equipment as shown in Figure 4-2.

WARNING The DC Standard (Datron 4708, Option 10) can produce dangerous voltages which are present on the terminals. Do not touch the front (or rear) panel terminals unless you are sure no dangerous voltage is present.

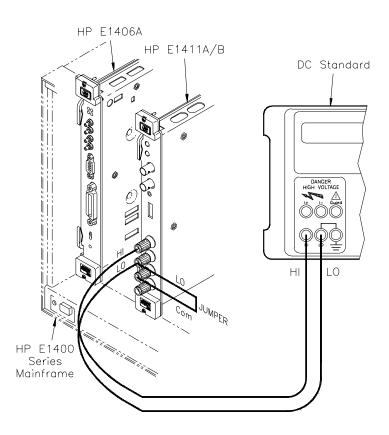


Figure 4-2. DC Voltage (DCV Input) Setup

- 2. Set the E1411 multimeter as follows:
 - Reset Multimeter*RST
 - Auto ZeroON
 - Power Line Cycles (PLC)1
 - Line Freq Reference (CAL:LFR) 50Hz or 60Hz

22 Verification Tests www.valuetronics.com **Test Procedure** 1. Set the DC Standard Output to 0.1 DCV.

2. Set the E1411 range to 0.113 V (0.125 V with 10% over range) with CONF:VOLT:DC .1

3. Measure the input with READ? and verify the results are within specified limits (at the range selected for 1 PLC). Record results on Performance Test Record.

4. Repeat steps 1 through 3 for the following DC Standard voltage settings and E1411 ranges:

E1411 Range	10% overrange	DC Std Output
0.91 V	1 V	0.9 V
7.27 V	8 V	7.0 V
58.10 V	64 V	58.0 V
300.00 V	None	300.0 V

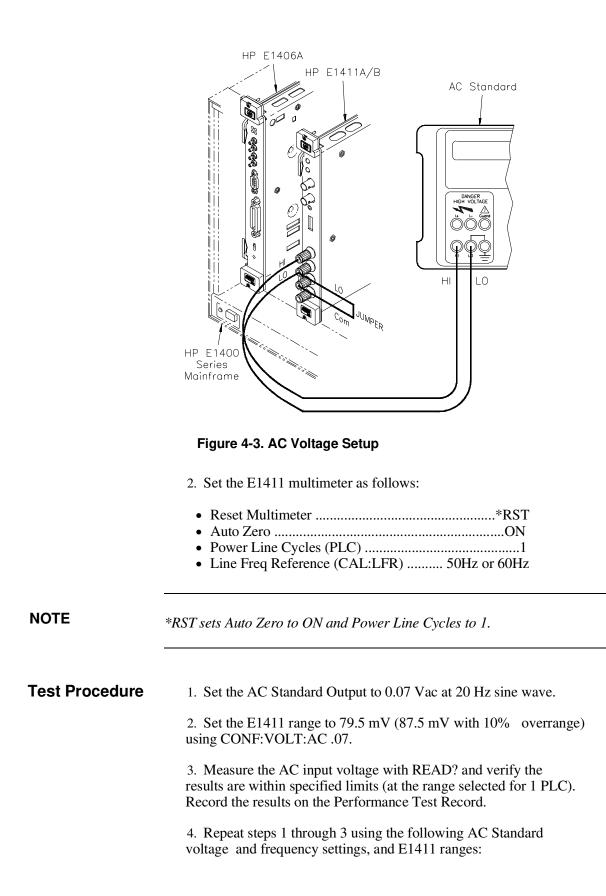
5. Remove power and disconnect test equipment.

Example: DC Voltage
Test (DCV Input)This example performs a DCV test for DC volts input and a power line
reference frequency of 60 Hz. Change line 80 to OUTPUT
70903;"CAL:LFR 50" for 50 Hz operation.

NOTE

When connected to the E1411 multimeter, some DC Standards may exhibit voltage variations at the start of a measurement. The WAIT 1 statement (line 150) provides a one second wait before measurement to allow settling of the DC Standard output.

- 1 IDC Voltage Performance Verification
- 10 OPTION BASE 1
- 20 DIM Range(5), Volts(5), Read_meas(5)
- 30 DATA 0.113, 0.91, 7.27, 58.1, 300.0
- 40 READ Range(*)
- 50 DATA 0.1, 0.9, 7.0, 58.0, 300.0
- 60 READ Volts(*)
- 70 OUTPUT 70903;"*RST"
- 80 OUTPUT 70903;"CAL:LFR 60"


!Set autozero on and PLC 1

!Set 60 Hz line frequency

~~		
90	FOR I=1 TO 5	
100	0 PRINT "Set DC Standard to ";Volts(I);"	'VDC"
110	0 PRINT "Press Continue when ready"	
120	0 PAUSE	
130	0 CLEAR SCREEN	
140	0 OUTPUT 70903;"CONF:VOLT:DC";Ra	ange(I) !Set DCV, range
150	0 WAIT 1	!Wait for settling
160	0 OUTPUT 70903;"READ?"	
170	0 ENTER 70903;Read_meas(I)	!Enter DC voltage
180	0 NEXTI	
190	0 FOR I=1 TO 5	
200	0 PRINT "Voltage on";Range(I);"V range	=";Read_meas(I);"VDC"
210	0 NEXT I	
220	0 END	

Test 4-3: AC Voltage Test

	This test verifies AC voltage accuracy on the 87.5 mV and 300 V ranges using sine wave inputs at \geq 50% of full scale. The input frequency varies from 20 Hz to 10 kHz. The DC component must be <10% of the AC component.
NOTE	The DC Voltage Performance test must be performed prior to the AC Voltage test to check the A/D accuracy on all ranges. If the DC Voltage test has not been performed, the AC voltage must be checked on all ranges.
Equipment Setup	1. Connect the equipment as shown in Figure 4-3.
WARNING	The AC Standard (Datron 4708, Option 20) can produce dangerous voltages which are present on the terminals. Do not touch the front (or rear) panel terminals unless you are sure no dangerous voltage is present.

E1411 Range	10% overrange	AC Stand	dard Output
nunge	ovenunge	Voltage (Vac)	Frequency (Hz)
79.5 mV 79.5 mV 79.5 mV 300.0 V	87.5 mV 87.5 mV 87.5 mV None	0.07 V 0.07 V 0.07 V 300.00 V	60 Hz 5 kHz 10 kHz 5 kHz

5. Remove power and disconnect test equipment.

Example: **AC Voltage** Test

This example performs an ACV test for a power line reference frequency of 60 Hz. Change line 80 to OUTPUT 70903;"CAL:LFR 50" for 50 Hz operation.

NOTE

When connected to the E1411 multimeter, some AC Standards may exhibit voltage variations at the start of a measurement. The WAIT 1 statement (line 160) allows settling for the AC Standard output.

- ! AC Voltage Performance Verification 1
- 10 OPTION BASE 1
- 20 DIM Read_meas(5),Source_volts(5),Source_freq(5)
- 30 DATA 0.07, 0.07, 0.07, 0.07, 300.0
- 40 READ Source_volts(*)
- 50 DATA 20, 60, 5000, 10000, 5000
- 60 READ Source_freq(*)
- 70 OUTPUT 70903;"*RST"
- 80 OUTPUT 70903:"CAL:LFR 60"
- 90 FOR I=1 TO 5
- 100 PRINT "1. Set AC Standard output to";Source_volts(I);"Vac"
- 110 PRINT "2. Set AC Standard frequency to";Source_freq(I);"Hz"
- 120 PRINT "3. Press Continue when ready"
- 130 PAUSE
- 140 CLEAR SCREEN
- 150 OUTPUT 70903;"CONF:VOLT:AC";Source_volts(I)
- 160 WAIT 1 !One second settling time
- 170 OUTPUT 70903;"READ?"
- 180 ENTER 70903;Read_meas(I)
- 190 NEXT I
- 200 FOR I=1 TO 5
- 210 PRINT "Voltage for";Source_volts(I);"Vac range @";Source_freq(I); "Hz=";Read_meas(I);"Vac"
- 220 NEXT I

!Set autozero ON, PLC 1

!Set 60 Hz line ref frequency

230 END

Test 4-4: Resistance Test (4-Wire Ohms)

This test verifies the 4-wire resistance accuracy of the $2k\Omega$, $100k\Omega$, and $1M\Omega$ ranges.

NOTE

The DC Voltage performance test must be performed prior to the Resistance Test to check the A/D accuracy on all ranges. If the DC Voltage test has not been performed, resistance must be checked on all ranges at 0 and at 50% of full scale.

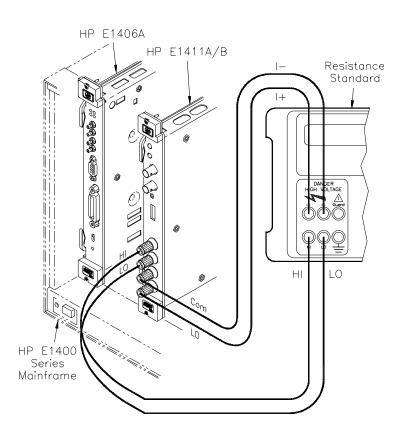


Figure 4-4. Resistance Test Setup

Equipment Setup

1. Connect the equipment as shown in Figure 4-4

	2. Set the E1411 mul	timeter as follows:		
	Auto ZeroPower Line	neter Cycles (PLC) eference (CAL:LFR)		DN 1
NOTE	*RST sets Auto Zero to	ON and Power Line	Cycles to 1.	
Test Procedure	1. Set the Resistance	Standard to $1 \ k\Omega$ se	etting	
	2. Set the E1411 rang with CONF:FRES 18		with 10% overrang	ge)
	3. Measure the input are within specified lit the results on the Perr	imits (at the range se	lected for 1 PLC).	
NOTE	For best measurement ac Resistance Standard valu display of the resistance multimeter or equivalent.	ue. You can do this by value, or measuring	y recording the fron	t panel
	For example, suppose the 1001.3 Ω . Then, the Lowe Limit = 1001.57 Ω . Thes 999.730 Ω and 1000.2709 within the revised limits,	er Limit for this value e limits would replac Ω shown in Table 4-	$e = 1001.03 \ \Omega$ and the existing limits	he Upper of
	4. Repeat steps 1 throsettings:	ough 3 using the follo	owing Resistance St	andard
	E1411 Range	10% overrange	Resistance Std Setting	
	119,156 Ω 1 048 576 Ω	131,052 Ω N/A	100 kΩ 1 MΩ	

5. Remove power and disconnect test equipment.

Ń/A

1,048,576 Ω

1 MΩ

 The program also calculates the Upper Limit and Lower Limit values for ACTUAL Resistance Standard resistance value (lines 170-190). If the actual Resistance Standard value is different than 1kΩ, 100kΩ, or 1MΩ, replace the Lower Limit and Upper Limit values shown in Table 4-1, <i>Performance Test Record for the Agilent E1411 Multimeter</i>, with the value computed by the program. 1 I4-Wire Ohms Performance Verification 10 OPTION BASE 1 20 DIM Range(3),Source(3),Read_meas(3),Limit(3),Ohms(3) 30 DATA 1861, 119156, 1048576 40 READ Range(*) 50 DATA 1000, 100000, 1000000 60 READ Source(*) 70 OUTPUT 70903;"RST" //Set autozero on and PLC 1 80 OUTPUT 70903;"CAL:LFR 60" //Set 60 Hz line ref frequency 90 FOR I=1 TO 3 100 PRINT "1. Set Resistance Standard to";Source(1);"Ohms" 110 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms) 120 PINT "Enter ACTUAL Resistance Standard value (in Ohms)", "Ohms(1) 130 CLEAR SCREEN 140 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(1) 170 IF I=1 THEN Limit(1)=.00025*Ohms(1)+1 // 31 kOhm limits 180 IF I=2 THEN Limit(1)=.00025*Ohms(1)+1 // MOhm limits 	
10 OPTION BASE 1 20 DIM Range(3),Source(3),Read_meas(3),Limit(3),Ohms(3) 30 DATA 1861, 119156, 1048576 40 READ Range(*) 50 DATA 1000, 100000, 1000000 60 READ Source(*) 70 OUTPUT 70903;"RST" 80 OUTPUT 70903;"CAL:LFR 60" 90 FOR I=1 TO 3 100 PRINT "1. Set Resistance Standard to";Source(I);"Ohms" 110 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms) 120 PRINT "Enter ACTUAL Resistance Standard value (in Ohms)", Ohms(I) 130 CLEAR SCREEN 140 OUTPUT 70903;"CONF;FRES";Range(I):Set 4-wire ohms, range 150 OUTPUT 70903;"READ?" 160 ENTER 70903;READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 /2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 /131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 <th>es</th>	es
 80 OUTPUT 70903;"CAL:LFR 60" !Set 60 Hz line ref frequency 90 FOR I=1 TO 3 100 PRINT "1. Set Resistance Standard to";Source(I);"Ohms" 110 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms) 120 PRINT "Enter ACTUAL Resistance Standard value (in Ohms)",Ohms(I) 130 CLEAR SCREEN 140 OUTPUT 70903;"CONF;FRES";Range(I)!Set 4-wire ohms, range 150 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits 	
 90 FOR I=1 TO 3 100 PRINT "1. Set Resistance Standard to";Source(I);"Ohms" 110 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms) 120 PRINT "Enter ACTUAL Resistance Standard value (in Ohms)",Ohms(I) 130 CLEAR SCREEN 140 OUTPUT 70903;"CONF;FRES";Range(I)<i>!Set 4-wire ohms, range</i> 150 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 <i>!2 kOhm limits</i> 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 <i>!131 kOhm limits</i> 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 <i>!1 MOhm limits</i> 	
 PRINT "1. Set Resistance Standard to";Source(I);"Ohms" PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms)" PRINT "Enter ACTUAL Resistance Standard value (in Ohms)",Ohms(I) CLEAR SCREEN OUTPUT 70903;"CONF;FRES";Range(I)<i>!Set 4-wire ohms, range</i> OUTPUT 70903;"READ?" ENTER 70903;Read_meas(I) IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 <i>!2 kOhm limits</i> IF I=3 THEN Limit(I)=.00025*Ohms(I)+1 <i>!131 kOhm limits</i> 	
 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms)" PRINT "Enter ACTUAL Resistance Standard value (in Ohms)", Ohms(I) CLEAR SCREEN OUTPUT 70903;"CONF;FRES";Range(I)!Set 4-wire ohms, range OUTPUT 70903;"READ?" ENTER 70903;Read_meas(I) IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits 	
 120 PRINT "Enter ACTUAL Resistance Standard value (in Ohms)", Ohms(I) 130 CLEAR SCREEN 140 OUTPUT 70903; "CONF; FRES"; Range(I) ! Set 4-wire ohms, range 150 OUTPUT 70903; "READ?" 160 ENTER 70903; Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits 	
Ohms)",Ohms(I) 130 CLEAR SCREEN 140 OUTPUT 70903;"CONF;FRES";Range(I)!Set 4-wire ohms, range 150 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits)"
 140 OUTPUT 70903;"CONF;FRES";Range(I)!Set 4-wire ohms, range 150 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits 	
150 OUTPUT 70903;"READ?" 160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits	
160 ENTER 70903;Read_meas(I) 170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits	
170 IF I=1 THEN Limit(I)=.00025*Ohms(I)+2.0E-2 !2 kOhm limits 180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits	
180 IF I=2 THEN Limit(I)=.00025*Ohms(I)+1 !131 kOhm limits 190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits	
190 IF I=3 THEN Limit(I)=.00025*Ohms(I)+10 !1 MOhm limits	
200 NEXT I	
210 PRINT "Measured Source Low Limit High Limit"	
220 PRINT "Resistance Resistance (Ohms) (Ohms)" 230 PRINT	
240 Format:IMAGE 7D.3D,6X,7D.3D,6X,7D.3D,6X,7D.3D 250 FOR I=1 TO 3	
260 PRINT USING Format;Read_meas(I),Ohms(I),Ohms(I)-Limit(I), Ohms(I)+Limit(I) 270 NEXT I	

280 END

Performance Test Record	Table 4-1, <i>Performance Test Record for the E1411 Multimeter</i> , is a form you can copy and use to record performance verification test results for the multimeter. Page 3 of Table 4-1 shows multimeter accuracy, measurement uncertainty and test accuracy ratio (TAR) values. See <i>Appendix A</i> - <i>Calculating Multimeter Accuracy</i> for example calculations of Table 4-1 entries.
NOTE	The accuracy, measurement uncertainty, and TAR values shown in Table 4-1 are valid ONLY for the specific test conditions, test equipment, and assumptions described. If you use different test equipment and/or change the test conditions, you will need to compute the specific values for your test setup.
Multimeter Accuracy	Accuracy is defined for DC Voltage, AC Voltage, and 4-Wire Resistance measurements using the 90-day specifications in <i>Appendix A</i> - <i>Specifications</i> in the <i>E1326A/E1411A User's Manual</i> or the <i>E1326B/E1411B User's Manual</i> . In Table 4-1, the "High Limit" and "Low Limit" columns represent the multimeter accuracy for the specified test conditions.
Measurement Uncertainty	For the performance verification tests in this manual, measurement uncertainties are calculated assuming a Datron 4708 source for inputs to the multimeter. Measurement uncertainties in Table 4-1 are calculated for the 90-day accuracy specifications in the <i>Datron 4708 User's Handbook</i> .
Test Accuracy Ratio (TAR)	In Table 4-1, the "Test Accuracy Ratio (TAR)" is calculated from (high limit - expected measurement)/measurement uncertainty. "N/A" means measurement uncertainty and TAR do not apply to the measurement. If the TAR value is <10:1, the TAR value is listed. If the TAR value is >10:1, the entry is >10:1.

Name	Report No	
Address	Date	
City/State	Customer	
Phone	Tested by	
Model	Ambient temperature	°C
Serial No	Relative humidity	%
Options	Line frequency	Hz (nominal)
Special Notes:		

Table 4-1. Performance Test Record for the E1411 Multimeter (Page 1 of 3)

Table 4-1. Performance Test Record for the E1411 Multimeter (Page 2 of 3)

Model _

___ Report No. _____

Date

Test Equipment Used: Description	Model No.	Trace No.	Cal Due Date
1. DATRON 4708			
2			
3	<u> </u>		
4 5.			
5 6			
7			
8			
9			
10			
11. 12.			
13			
14			
15			
16			
17			
19			
20			

32 Verification Tests
www.valuetronics.com

Table 4-1. Performance Test Record for the E1411 Multimeter (Page 3 of 3)

Model _	del Report No			Date					
90 day Specifications									
Test No.	Test Input	DMM Range	Low Limit	Measured Reading	High Limit	Meas Uncert*	Test Acc Ratio (TAR)**		
DC Voltage (Zero Volts Input) (Values in V)									
4-1	0.0 0.0 0.0 0.0 0.0	0.113 0.910 7.270 58.100 300.000	000005 000015 000050 001000 005000		+.000005 +.000015 +.000050 +.001000 +.005000	N/A N/A N/A N/A	N/A N/A N/A N/A		
DC Voltage (DCV Input) (Values in VDC)									
4-2	0.1 0.9 7.0 58.0 300.0	0.113 0.910 7.270 58.100 300.000	.099972 .899868 6.999250 57.990300 299.950000		.100028 .900132 7.000750 58.009799 300.050000	.0000012 .0000044 .0000210 .0002820 .0017750	>10:1 >10:1 >10:1 >10:1 >10:1		
AC Voltage (20 Hz, 60 Hz, 10 kHz, 5 kHz) (Values in VAC)									
4-3	0.07 0.07 0.07 0.07 300.00	0.0875 0.0875 0.0875 0.0875 300.00	.067480 .069327 .069327 .067578 296.125000		.072523 .070673 .070673 .072423 303.875000	.000020 .000016 .000016 .000016 .047000	>10:1 >10:1 >10:1 >10:1 >10:1		
4-Wire Resistance (Values in Ohms)									
4-4	1000 100000 1000000	2000 131000 1000000	999.730 99974.000 999740.000		1000.270 100026.000 1000260.000	0.008 0.900 22.000	>10:1 >10:1 >10:1		

* Measurement Uncertainty of Datron 4708 source for 90 days since calibration and $23^{\circ}C \pm 1^{\circ}C$. ** TAR = multimeter accuracy/measurement uncertainty, rounded to nearest integer for <10:1 and >10:1 otherwise.

34 Verification Tests www.valuetronics.com

Chapter 5 Adjustments

Introduction	This chapter contains procedures to adjust the Agilent E1411 multimeter for peak performance. For best performance, the instrument should be adjusted after repair. All adjustments are performed electrically, so manual adjustment of the multimeter is not necessary.			
WARNING	Do not perform any of the following adjustments unless you are a qualified, service-trained person, and have read the WARNINGS and CAUTIONS in <i>Chapter 1 - General Information.</i>			
NOTE	ALL adjustment procedures MUST be performed in the order shown in this manual (DC Voltage, then AC Voltage, and then Resistance).			
Adjustment Conditions/ Procedures	For valid adjustments, the E1411 multimeter and test equipment used must have at least a 60 minute warm-up, and the line voltage must be 115/230 Vac $\pm 10\%$. For best accuracy, the temperature of the area where adjustments are made should be between 18°C and 28°C and stable to within $\pm 1^{\circ}$ C. See Table 1-1, <i>Recommended Test Equipment</i> , for test equipment requirements.			
	The adjustment procedures assume the person performing the adjustments understands how to operate the mainframe, multimeter and specified test equipment. The adjustment procedures do not specify test equipment settings, except in general terms. It is assumed a qualified, service-trained person will select and connect the cables and jumpers required for the adjustments.			

DC Voltage Adjustments

This procedure adjusts E1411 multimeter DC voltage measurement accuracy.

Equipment Setup

1. Connect the equipment as shown in Figure 5-1.

WARNING

The DC Standard (Datron 4708, Option 10) can produce dangerous voltages which are present on the terminals. Do not touch the front (or rear) panel terminals unless you are sure no dangerous voltage is present.

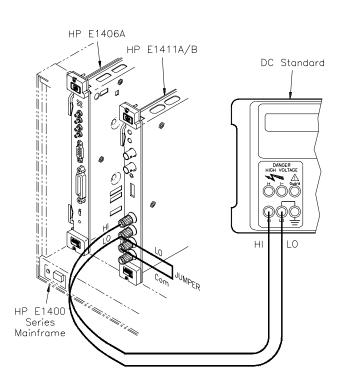


Figure 5-1. DC Voltage Adjustment Setup

- 2. Set the E1411 as follows:
 - Reset Multimeter*RST
 - Auto ZeroON
 - Power Line Cycles (PLC)1
 - Line Freq Reference (CAL:LFR) 50 Hz or 60 Hz

Adjustment Procedure

1. Set the DC Standard output to 7.7 V

2. Set the E1411 range to 8 V, and adjust the multimeter at 7.7 V using:

```
FUNC:VOLT:DC
VOLT:DC:RANG 8
CAL:VAL 7.7
TRIG:DEL .05
CAL?
```

3. Verify that the returned calibration error code is 0 (no error). If not 0, see Table 5-1 for a list of calibration errors and codes. The calibration error can be returned to an external computer using an ENTER type statement.

4. Repeat steps 1 through 3 using the following E1411 voltage ranges and DC Standard settings:

E1411 range	DC Standard Output
8 V	-7.7 V
0.125 V	+0.121 V
0.125 V	- 0.121 V
1 V	+0.97 V
1 V	- 0.97 V
64 V	+62 V
64 V	-62 V
300 V	+300 V
300 V	-300 V

5. Remove power and disconnect test equipment.

Example: DC Voltage Adjustments

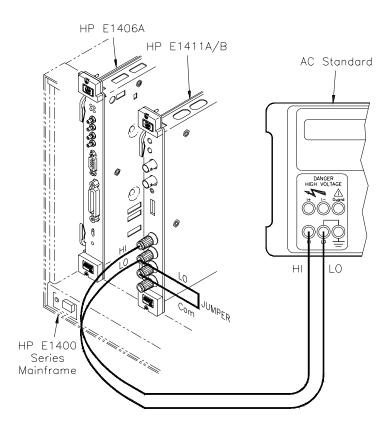
This example performs DC voltage adjustments for a power line reference frequency of 60 Hz. Change line 80 to OUTPUT 70903;"CAL:LFR 50" for 50 Hz operation.

If no calibration error occurs (Cal_code = 0 in line 210), the program displays an "adjustment complete" message. If a calibration error occurs, the program displays the calibration error and prompts you to repeat the adjustment (see Table 5-1 for a list of calibration errors).

When connected to the E1411 multimeter, some DC Standards may exhibit voltage variations at the start of a measurement. TRIG:DEL .05 (line 190) adds a 0.8 sec wait before calibration begins to allow settling time for the DC Standard output. TRIG:DEL .05 is used since the input is sampled 16 times before the calibration is performed. Thus, total delay added = 0.05 seconds x 16 = 0.8 seconds.

- 1 ! DC Voltage Adjustments
- 10 OPTION BASE 1
- 20 DIM Range(10), Volts(10)
- 30 DATA 8.0, 8.0, 0.125, 0.125, 1.0, 1.0, 64.0, 64.0, 300.0, 300.0
- 40 READ Range(*)
- 50 DATA 7.7, -7.7, .121, -.121, .97, -.97, 62.0, -62.0, 300.0, -300.0
- 60 READ Volts(*)
- 70 OUTPUT 70903;"*RST" !Set autozero on and PLC 1
- 80 OUTPUT 70903;"CAL:LFR 60" !Set 60 Hz line ref frequency
- 90 FOR I=1 TO 10
- 100 Re_try: !
- 110 CLEAR SCREEN
- 120 PRINT "Set DC Standard to";Volts(I);"VDC"
- 130 PRINT "Press Continue when ready"
- 140 PAUSE
- 150 CLEAR SCREEN
- 160 OUTPUT 70903;"FUNC:VOLT:DC" !Set DCV function
- 170 OUTPUT 70903;"VOLT:RANG ";Range(I) !Set E1411 range
- 180 OUTPUT 70903;"CAL:VAL";Volts(I) *!Set CAL:VAL value*
- 190 OUTPUT 70903;"TRIG:DEL .05" !Wait for settling
- 200 OUTPUT 70903;"CAL?" !Perform calibration
- 210 ENTER 70903 USING "K";Cal_code !*Return cal error code*
- 220 IF Cal_code <>0 THEN
- 230 PRINT "Calibration Error";Cal_code;"for ";Volts(I);"VDC input."
- 240 PRINT "Check source value/connections, then"
- 250 PRINT "press Continue to retry this adjustment"
- 260 PAUSE
- 270 GOTO Re_try
- 280 ELSE
- 290 PRINT "Adjustment complete for";Volts(I);"VDC input"
- 300 END IF
- 310 PRINT "Press Continue for the next adjustment"
- 320 PAUSE
- 330 CLEAR SCREEN
- 340 NEXT I
- 350 END

AC Voltage Adjustments


This procedure adjusts the E1411 AC voltage measurement accuracy.

NOTE

The DC Voltage adjustment MUST be performed before the AC Voltage adjustment.

Equipment Setup

1. Connect the equipment as shown in Figure 5-2

Figure 5-2. AC Voltage Adjustment Setup

- 2. Set the E1411 as follows:
 - Reset Multimeter*RST
 - Auto Zero ON
 - Power Line Cycles (PLC) 1
 - Line Freq Reference (CAL:LFR) 50 Hz or 60 Hz

Adjustment Procedure	1. Set the AC Standard output to 5.6 Vac at 1 kHz			
i i oodulio				
	2. Set the E1411 range to 5.6 V, and adjust the multimeter at 5.6 V using:			
	FUNC:VOLT:AC VOLT:AC:RANG 5.6 CAL:VAL 5.6 TRIG:DEL .05 CAL?			
	3. Verify that the returned calibration error code is 0 (no error). If not 0, see Table 5-1 for a list of calibration errors and codes.			
	4. Remove power and disconnect test equipment			
Example: AC Voltage Adjustments				
	If no calibration error occurs (Cal_code = 0 in line 130), the program displays an "adjustment complete" message. If a calibration error occurs, the program displays the calibration error (see Table 5-1 for a list of calibration errors).			
	When connected to the E1411 multimeter, some AC Standards may exhibit voltage variations at the start of a measurement. TRIG:DEL .05 (line 110) adds a 0.8 sec wait before calibration begins to allow settling time for the AC Standard output. TRIG:DEL .05 is used since the input is sampled 16 times before the calibration is performed. Thus, total delay added = 0.05 seconds x $16 = 0.8$ seconds.			

- 1 ! AC Voltage Adjustments
- 10 OUTPUT 70903;"*RST"
- 20 OUTPUT 70903;"CAL:LFR 60"

30 Re_try: !

- 40 PRINT "Set AC Standard to 5.6 Vac at 1.0 kHz"
- 50 PRINT "Press Continue when ready"
- 60 PAUSE
- 70 CLEAR SCREEN
- 80 OUTPUT 70903;"FUNC:VOLT:AC"
- 90 OUTPUT 70903;"VOLT:RANG 5.6"
- 100 OUTPUT 70903;"CAL:VAL 5.6"
- 110 OUTPUT 70903;"TRIG:DEL .05"
- 120 OUTPUT 70903;"CAL?"
- 130 ENTER 70903 USING "K";Cal_code
- 140 IF Cal_code <> 0 THEN
- 150 PRINT "Calibration Error";Cal_code;"on 5.6 Vac range"
- 160 PRINT "Check source value/connections, then"
- 170 PRINT "press Continue to retry this adjustment"
- 180 PAUSE
- 190 CLEAR SCREEN
- 200 GOTO Re_try
- 210 ELSE
- 220 PRINT "AC Voltage adjustment complete"
- 230 END IF
- 240 END

!Set autozero on and PLC 1
!Set 60 Hz line ref frequency

!Set ACV function

!Set 5.6 Vac range

!Wait for settling

!Set 5.6 Vac cal value

!Perform calibration

www.valuetronics.com

Resistance Adjustments

This procedure adjusts the E1411 multimeter 4-wire resistance measurement accuracy.

NOTE

The DC Voltage adjustment and the AC Voltage adjustment MUST be performed before the Resistance adjustment.

Equipment Setup

1. Connect the equipment as shown in Figure 5-3

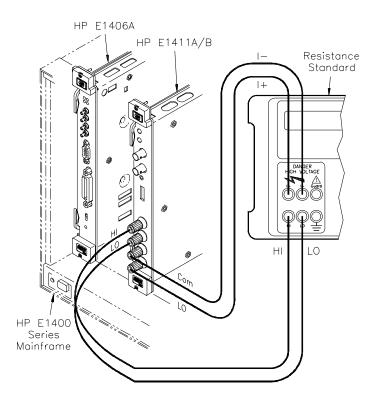


Figure 5-3. Resistance Adjustments Setup

- 2. Set the E1411 as follows:
 - Reset Multimeter *RST
 - Auto Zero ON
 - Power Line Cycles (PLC) 1
 - Line Freq Reference (CAL:LFR) 50 Hz or 60 Hz

Adjustment Procedure

1. Set the Resistance Standard to 1 k Ω .

2. Set the E1411 range to 2 k Ω , and adjust the multimeter at 1 k Ω using:

FUNC:FRES FRES:RANG 2000 CAL:VAL 1000 CAL?

NOTE

For best adjustment accuracy, you may want to measure the ACTUAL resistance value of the Resistance Standard and use the value in the CAL:VAL command. You can read the actual resistance value from the Datron front panel or you can measure the value with an 3458A multimeter or equivalent.

3. Verify that the returned calibration error code is 0 (no error). If not 0, see Table 5-1 for a list of calibration errors and codes. The calibration error can be returned to the external computer using an ENTER type statement.

4. Repeat steps 1 through 3 using the following E1411 (and FRES:RANG) ranges, and Resistance Standard (and CAL:VAL) values:

E1411 Range	Resistance Standard
16000 Ω	10000 Ω*
1000000 Ω	1000000 Ω*

* Or, use actual measured source resistance value

5. Remove power and disconnect test equipment.

Example: 4-Wire Resistance Adjustments

This example performs a 4-wire ohms resistance adjustment for a power line reference frequency of 60 Hz. Change line 80 to OUTPUT 70903;"CAL:LFR 50" for 50 Hz operation. If a calibration error occurs, the program displays the calibration error and prompts you to repeat the adjustment (see Table 5-1 for a list of calibration errors).

- 1 ! 4-Wire Resistance Adjustments
- 10 OPTION BASE 1
- 20 DIM Range(3),Source(3)
- 30 DATA 2000, 16000, 1048576
- 40 READ Range(*)
- 50 DATA 1000, 10000, 1000000
- 60 READ Source(*)
- 70 OUTPUT 70903;"*RST"
- 80 OUTPUT 70903;"CAL:LFR 60"
- 90 FOR I=1 TO 3
- 100 Re try: !
- 110 PRINT "1. Set Resistance Standard to";Source(I);"Ohms"
- 120 PRINT "2. Measure ACTUAL Resistance Standard value (in Ohms)"

!Set autozero on and PLC 1

!Set 60 Hz line ref frequency

- 130 PRINT "Enter ACTUAL Resistance Standard value (in Ohms)",Ohms_actual
- 140 CLEAR SCREEN
- 150 OUTPUT 70903;"FUNC:FRES" !Set 4-wire ohms
- 160 OUTPUT 70903;"FRES:RANG ";Range(I)!Set resistance range
- 170 OUTPUT 70903;"CAL:VAL";Ohms_actual(I)!Set cal value
- 180 OUTPUT 70903;"CAL?" !Perform calibration
- 190 ENTER 70903;Cal_code
- 200 IF Cal_code <> 0 THEN
- 210 PRINT "Calibration Error";Cal_code;"with";Source(I);"Ohms input."
- 220 PRINT "Check source value/connections, then"
- 230 PRINT "Press Continue to repeat this adjustment"
- 240 PAUSE
- 250 CLEAR SCREEN
- 260 GOTO Re_try
- 270 ELSE
- 280 PRINT "Adjustment complete with";Source(I);"Ohms source"
- 290 PRINT "Press Continue for the next adjustment"
- 300 PAUSE
- 310 CLEAR SCREEN
- 320 END IF
- 330 NEXT I
- 340 PRINT "Resistance adjustments completed"
- 350 END

Calibration Errors

Table 5-1 summarizes calibration error numbers, titles and descriptions for the E1411 multimeter. Note that an error is returned if the adjustment (calibration) standard used is outside the calibration range of the multimeter (between \pm [0.5 full scale and full scale]).

Error	Title	Description	Code*
0	No Error	No error has occurred since last time the error code was read.	
4	Reading Overrun	The FIFO memory was still full at the time the new reading was ready, or a new command was received while in the middle of outputting a reading. TRIGGER ARM is disabled and the multimeter waits for a new command.	U
6	Calibration Error	An error occurred when computing a calibration constant, probably due to an improper input or a defective Unit Under Test (UUT). Calibration cycle aborted.	U/H
7	Checksum Error	The non-volatile RAM contains a checksum error. The data is assumed to be corrupted.	Н
8	Invalid CAL Request	Calibration requested for an invalid combination of multimeter range and function.	U
9	Bad CAL Target	The target value for the calibration was outside the range of \pm (0.5 full scale to full scale).	U
11	No Inguard Response	No response from inguard (expected data and got nothing). Timed out instead.	Н
13	Linearity CAL Error	An error has occurred during a linearity calibration sequence. Probably a hardware failure of the A/D inguard section.	Н
14	Pacer Overrun Error	The pacer is in use and the pacer rate is faster than the maximum A/D conversion rate based on integration time, autorange setting, autozero setting, and interrupts enabled.	U
15	Input Overload	A potentially damaging overload has been applied to the multimeter terminals and the multimeter has disconnected from the input. A new SET RANGE command is necessary to restore normal operation. A damaging overload is defined as: 1. Applying >±40 volts HI to LO or HI to COMMON while in manual	U
		 Applying >±40 volts in to EO of this COMMON while in manual range with RANGE ≤ 8 volts. Applying >±40 volts between LO and COMMON under any circumstances. 	

Table 5-1. E1411 Multimeter Calibration Errors

* U = improper operation, H = hardware failure

46 Adjustments www.valuetronics.com

Chapter 6 Replaceable Parts

Introduction	This chapter contains information to order replaceable parts for the Agilent E1411A and E1411B multimeters.
Exchange Assemblies	Tables 6-1 and 6-2 list assemblies that may be replaced on an exchange basis (EXCHANGE ASSEMBLIES). Exchange, factory-repaired, and tested assemblies are available only on a trade-in basis. Defective assemblies must be returned for credit. Assemblies required for spare parts stock must be ordered by the new assembly part number. Contact your nearest Agilent Technologies Sales and Support Office for details.
Ordering Information	To order a part listed in Table 6-1 or 6-2, specify the Agilent part number and the quantity required. Send the order to your nearest Agilent Technologies Sales and Support Office.
Replaceable Parts List	Table 6-1, <i>Agilent E1411A Replaceable Parts</i> , lists replaceable parts for the E1411A multimeter. See Figure 6-1 (page 6-3) for locations of parts listed in Table 6-1. Table 6-2, <i>E1411B Replaceable Parts</i> , lists replaceable parts for the E1411B multimeter. See Figure 6-2 (page 6-5) for locations of parts listed in Table 6-2.

Table 6-1. E1411A Replaceable Parts

Reference* Designator	Part Number	Qty	Description	Mfr** Code	Mfr Part Number
	E1411-66201 E1411-69201	1	EXCHANGE ASSEMBLIES E1411A Multimeter Module (New) E1411A Multimeter Module (Exchange)	28480 28480	E1411-66201 E1411-69201
A1 A1F1 A1F2 A1J2 A1J102 A1J103 A1JM1 A1JM3 A1K104 A1K105 A1K106 A1P1 A1P2 A1P3 A1SP1 A1SP1 A1XU23 A1XU104 A1XU124	E1411-66501 2110-0712 2110-0712 1250-1846 1251-3712 1252-3416 1251-4927 1251-4927 0490-1556 0490-1556 0490-1555 1252-1596 1251-7892 1258-0247 3101-3066 1200-0817 1200-0817 1200-0853	1 1 1 1 2 2 1 1 1 1 2 1	MULTIMETER PCA [a] Fuse - Sub Miniature - 4A Fuse - Sub Miniature - 4A Connector - Right Angle BNC Connector - Post 2 x 6 Connector - Header 16 Pin Connector - Header 16 Pin Connector - Header 16 Pin Relay - Reed Relay - Reed Relay - Reed Connector - Right Angle - 96 Pin Connector - Right Angle - 96 Pin Connector - Right Angle - 64 Pin 4-Position Jumper Switch - Rocker 8 Position 5 V 0.1 A Socket - 40 Pin Integrated Circuit Socket - 16 Pin Integrated Circuit	28480 75915 75915 24931 18873 27264 18873 18873 71707 71707 71707 71707 66776 18873 18873 81073 00779 00779	E1411-66501 R251004T1 R251004T1 28JR342-1 68668-004 705-53-0108 67997-616 3500-0050 3500-0050 3500-0051 DIN96CPCSRITR 75882-364 69146-204 76YY22968S 2-640379-1 2-640379-1 2-640358-1
CBL1 CBL2	E1326-61601 E1326-61605	1	CABLE ASSEMBLIES Cable Assembly - 6 Conductor Cable Assembly - 4 Conductor	28480 28480	E1326-61601 E1326-61605
MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 PNL1 SHD1 SHD2	E1400-84105 E1400-84106 1510-0091 1510-0091 1510-0091 1510-0091 8160-0686 1400-0249 E1411-00201 E1411-00602 E1411-00601	2 4 1 1 1 1 1	MECHANICAL PARTS Handle Kit-Bottom Handle Kit-Top Binding Post - Red Binding Post - Red Binding Post - Red Clip-RFI Strip Cable Tie - 0.062-0.625 IN DIA Panel - Faceplate Shield - Bottom Shield - Top	28480 28480 28480 28480 28480 28480 30817 59730 28480 28480 28480 28480	E1400-84105 E1400-84106 1510-0091 1510-0091 1510-0091 00786-185 TY-23M-8 E1411-00201 E1411-00602 E1411-00601
SCW1, SCW2 SCW3-SCW8, SCW15 SCW 9-SCW11 SCW12-SCW13 HDW1-HDW4 HDW5-HDW8	0515-0368 0515-1135 0515-1375 0515-1968 2950-0001 3050-0593	2 7 3 2 4 4	COMMON HARDWARE Screw Pan-Head M2.5 X 12 Torx T8 Screw Pan-Head M3 X 25 Torx T8 Screw Flat-Head M2.5 X 6 Torx T8 Screw Pan-Head M2.5 X 11 Pozidriv Nut-Hex-DBL Chamfer 3/8 - 32 THD Washer-Spring NO. 3/8	00000 00000 00000 00000 00000 00000	Order by Description Order by Description Order by Description Order by Description Order by Description Order by Description

* See Table 6-3 for Reference Designator definitions
 ** See Table 6-4 for Code List of Manufacturers
 [a] Repair limited to replacement of parts listed - see Introduction for ordering information

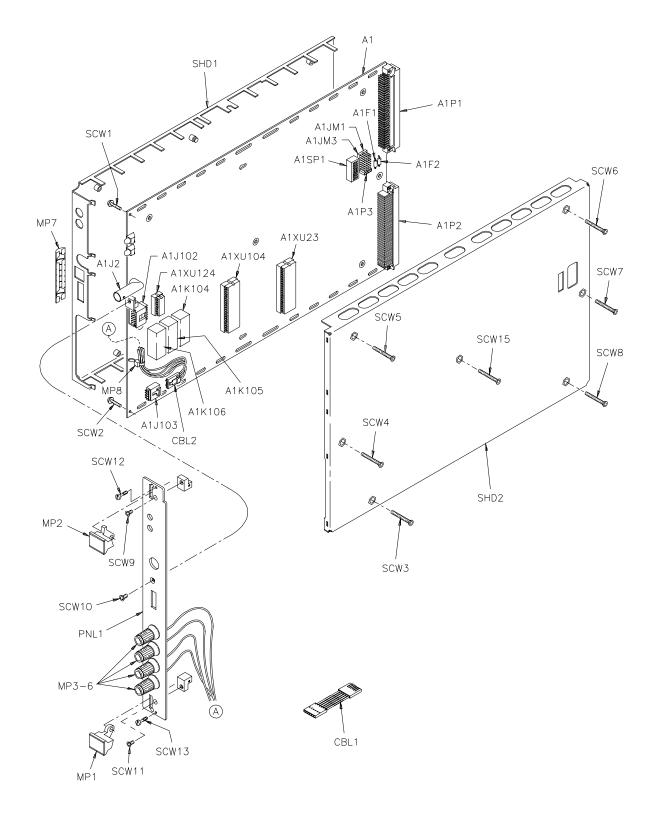


Figure 6-1. Agilent E1411A Replaceable Parts

Reference* Designator	Part Number	Qty	Description	Mfr** Code	Mfr Part Number
	E1411-66511*** E1411-69511***	1 1	EXCHANGE ASSEMBLIES E1411B Multimeter Module (New) E1411B Multimeter Module (Exchange)	28480 28480	E1411-66511 E1411-69511
A1 A1F1 A1F2 A1J2 A1J102 A1J103 A1J301 A1JM1 A1JM3 A1K104 A1K105 A1K106 A1P1 A1P2 A1P3 A1SP1 A1SP1 A1XU23 A1XU104 A1XU124	E1411-66511 2110-0712 2110-0712 1250-1846 1251-3712 1252-3416 1250-1846 1251-4927 1251-4927 0490-1556 0490-1555 1252-1596 1251-7892 1258-0247 3101-3066 1200-0817 1200-0817 1200-0853	1 2 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	MULTIMETER PCA [a] Fuse - Sub Miniature - 4A Fuse - Sub Miniature - 4A Connector - Right Angle BNC Connector - Post 2 x 6 Connector - 4 Pin Right Angle Connector - Header 16 Pin Connector - Header 16 Pin Relay - Reed Relay - Reed Relay - Reed Relay - Reed Connector - Right Angle - 96 Pin Connector - Right Angle - 96 Pin Connector - Right Angle - 64 Pin 4-Position Jumper Switch - Rocker 8 Position 5 V 0.1 A Socket - 40 Pin Integrated Circuit Socket - 16 Pin Integrated Circuit	28480 75915 75915 24931 18873 27264 24931 18873 18873 71707 71707 71707 71707 06776 18873 18873 81073 00779 00779	E1411-66511 R251004T1 R251004T1 28JR342-1 68668-004 705-53-0108 28JR342-1 67997-616 67997-616 3500-0050 3500-0050 3500-0051 DIN96CPCSRITR 75882-364 69146-204 76YY22968S 2-640379-1 2-640379-1 2-640358-1
CBL1 CBL2	E1326-61601 E1326-61605	1	CABLE ASSEMBLIES Cable Assembly - 6 Conductor Cable Assembly - 4 Conductor	28480 28480	E1326-61601 E1326-61605
MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 PNL1 SHD1 SHD2	E1400-45102† E1400-45101† 1510-0091 1510-0091 1510-0091 8160-0686 1400-0249 E1411-00202† E1411-00612 E1411-00611	1 1 4 1 1 1 1 1	MECHANICAL PARTS Handle Bottom Metal Injection Handle Top Metal Injection Binding Post - Red Binding Post - Red Binding Post - Red Clip-RFI Strip Cable Tie - 0.062-0.625 IN DIA Panel - Faceplate Shield - Bottom Shield - Top	28480 28480 28480 28480 28480 28480 30817 59730 28480 28480 28480 28480	E1400-45102 E1400-45101 1510-0091 1510-0091 1510-0091 1510-0091 00786-185 TY-23M-8 E1411-00202 E1411-00602 E1411-00601
SCW1-SCW2 SCW3-SCW8, SCW15 SCW11 HDW1-HDW4 HDW5-HDW8	E1400-00610† 0515-1135 0515-1375 2950-0001 3050-0593	2 7 1 4 4	COMMON HARDWARE Shoulder Screw Assembly Screw Pan-Head M3 X 25 Torx T8 Screw Flat-Head M2.5 X 6 Torx T8 Nut-Hex-DBL Chamfer 3/8 - 32 THD Washer-Spring NO. 3/8	28480 00000 00000 00000 00000	E1400-00610 Order by Description Order by Description Order by Description Order by Description

* See Table 6-3 for Reference Designator definitions
** See Table 6-4 for Code List of Manufacturers
*** PC Board Replacement only
[a] Repair limited to replacement of parts listed - see Introduction for ordering information
† These parts are not compatible with older versions of the E1411B that have plastic handles. To replace one of these parts on an older E1411B, you must order all four of the parts marked with a † and a new top shield.

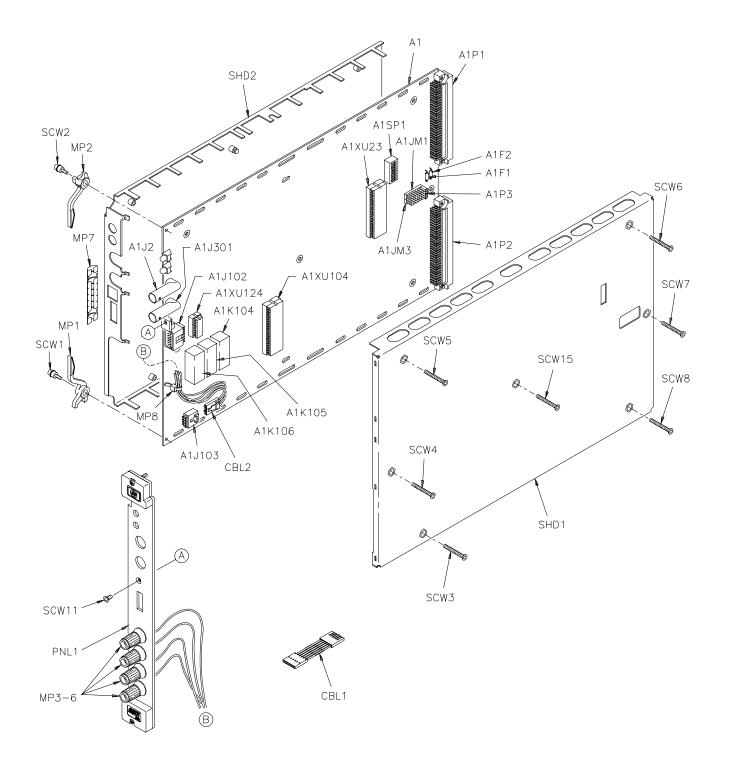


Figure 6-2. Agilent E1411B Replaceable Parts

Table 6-3. E1411 Reference Designators

E1411 Reference Designators			
A assembly	MP misc. mechanical part		
CBL cable	P electrical connector (plug)		
F fuse	PNL panel		
J electrical connector (jack)	SHD shield		
JM electrical connector (header)	SP switch		
K relay	XU socket, integrated circuit		

Table 6-4. E1411 Code List of Manufacturers

Mfr Code	Manufacturer Name	Address
00000 00779 06776 18873 24931 27264 28480 30817 59730 71707 75915 81073	Any satisfactory supplier AMP INC Robinson Nugent Inc Dupont E I DE Nemours & Co Specialty Connector Co Molex Inc Agilent Technologies Instrument Specialties Co Inc Thomas & Betts Corp Coto Wabash Littelfuse Inc Grayhill Inc	Harrisburg, PA 17111 New Albany, IN 47150 Wilmington, DE 19801 Franklin, IN 46131 Lisle, IL 60532 Del Water Gap, PA 07424 Raritan, NJ 08869 Providence, RI 02907 Des Plaines, IL 60016 La Grange, IL 60525

Chapter 7 Manual Changes

Introduction

This chapter contains information to adapt this manual to instruments for which the content does not directly apply. Since this manual applies directly to instruments with serial numbers listed on the title page, change information is not required. See *Multimeter Serial Numbers* in *Chapter 1* -*General Information* for E1411 multimeter serial number information.

54 Manual Changes www.valuetronics.com

Introduction

This chapter contains information to service the E1411 multimeter including troubleshooting guidelines and repair/maintenance guidelines.

WARNING

Do not perform any of the service procedures shown unless you are a qualified, service-trained person, and have read the WARNINGS and CAUTIONS in *Chapter 1 - General Information*.

Equipment Required

Equipment required for multimeter troubleshooting and repair is listed in Table 1-1, *Recommended Test Equipment*. Any equipment that satisfies the Requirements in the table may be substituted. To avoid damage to the screw head slots, use Pozidriv or Torx drivers as specified in the instructions. Pozidriv and Torx drivers used are listed in Table 8-1.

Description	Part Number
No. 1 Pozidriv	8710-0899
No. 2 Pozidriv	8710-0900
Size T-8 Torx	8710-1673
Size T-10 Torx	8710-1284
Size T-15 Torx	8710-1816

Table 8-1. Pozidriv/Torx Drivers

Service Aids There are no test points or manual adjustment locations for the E1411 multimeter. Service aids on printed circuit boards include pin numbers, some reference designations, and assembly part numbers. See *Chapter 6 - Replaceable Parts* for descriptions and location of E1411 replaceable parts.

Service notes, manual updates, and service literature for the E1411 multimeter may be available through Agilent Technologies. For information, contact your nearest Agilent Technologies Sales and Support Office.

Troubleshooting Techniques

There are two main steps to troubleshoot an E1411 multimeter problem: (1) identify the problem, and (2) test assemblies to isolate the cause to a user-replaceable component.

Identifying the Problem

Multimeter problems can be divided into four general categories:

- Self-test errors
- Operator errors
- Catastrophic failures
- Performance out of specification

Self-Test Errors

An error number (1, 2, 3, or 4) is returned when the multimeter self-test fails. If a self-test error occurs, recycle power and repeat the self-test. If the error repeats, see "Testing Assemblies" to troubleshoot the multimeter. Table 8-2 shows some typical causes of self-test errors.

Table 8-2. Self-Test Errors	Table	8-2.	Self-Test	Errors
-----------------------------	-------	------	-----------	--------

Error	Description	Typical Causes
1	Multimeter does not respond to self-test	. Bad connections/settings . Incorrect operation . Hardware failure (exchange)
2	Invalid communication between A1 and A2 processors	. Bad A1/A2 communication . Hardware failure (exchange)
3	Data line between multimeter and mainframe failed	. Bad connections/settings . Incorrect operation . Hardware failure (exchange)
4	Invalid communication between multimeter and mainframe	. Bad connections/settings . Incorrect operation . Hardware failure (exchange)

Operator Errors

Apparent failures may result from operator errors. See *Appendix B - Error Messages* in the *E1326A/E1411A User's Manual* or the *E1326B/E1411B User's Manual* for information on operator errors.

Catastrophic Failure

If a catastrophic failure occurs, see "Testing Assemblies" to troubleshoot the multimeter.

Performance Out of Specification

If the multimeter performance is out of specification limits, use the adjustment procedures in *Chapter 5 - Adjustments* to correct the problem. If the condition repeats, see "Testing Assemblies" to troubleshoot the multimeter.

Testing Assemblies

You can use the tests and checks in Table 8-3 to isolate the problem to a user-replaceable part on the multimeter frame or PCA. See Figure 6-1 (E1411A) or Figure 6-2 (E1411B) in *Chapter 6 - Replaceable Parts* for locations of user-replaceable parts.

NOTE

If the problem cannot be traced to a user-replaceable part listed in Table 6-1 or Table 6-2, return the multimeter to Agilent Technologies for exchange. See Chapter 6 - Replaceable Parts for procedures.

Test/Check	Reference Designator	Check:
Heat Damage		Discolored PC boards Damaged insulation Evidence of arcing
Switch/Jumper Settings	JM1, JM3, P3 SP1	IRQ Level setting LADDR setting
Frame	CBL1, CBL2 MP3, MP4, MP5, MP6	Cable contact damage Panel binding posts
A1 Printed Circuit Assembly	F1, F2 J2, J102, J103, J301 K104, K105, K106 P1,P2 XU23, XU104, XU124	Fuse continuity Mating connector contacts Relay opening/closure Connector contacts IC contact/connections

Table 8-3. E1411 Tests/Checks

Checking Heat Damage

Inspect the multimeter for signs of abnormal internally generated heat such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. If there is damage, do not operate the multimeter until you correct the problem.

Checking Switches/Jumpers

Verify the logical address setting is set correctly (factory set at 24). Verify the interrupt priority jumpers are set correctly (factory set at level 1). See the *E1326A/E1411A User's Manual* or the *E1326B/E1411B User's Manual* for information.

Testing Multimeter Frame

To test the multimeter frame, see Table 8-3 for guidelines to check binding posts MP3, MP4, MP5, and MP6, and cables CBL1 and CBL2. If you need to remove and/or replace the binding posts, see "Removing Binding Posts" in this chapter.

Testing Printed Circuit Assembly

To test the PCA, remove mainframe power and remove the multimeter from the mainframe. Next, remove the Top Shield (see "Removing Top Shield" for instructions). Then, see Table 8-3 for guidelines to isolate the problem to a user-replaceable part.

Repair This section gives guidelines to repair the E1411 multimeter, including: Guidelines

- ESD precautionsRemoving top shield
- Removing front panel/bottom shield
- Removing binding posts
- Soldering printed circuit boards
- Post-repair safety checks

ESD Precautions

Electrostatic discharge (ESD) may damage MOS, CMOS and other static-sensitive devices in the E1411 multimeter. This damage can range from slight parameter degradation to catastrophic failure. When handling multimeter assemblies, follow these guidelines to avoid damaging multimeter components:

- Always use a static-free work station with a pad of conductive rubber or similar material when handling multimeter components.
- After you remove an assembly from the multimeter, place the assembly on a conductive surface to guard against ESD damage. Do not stack assemblies.

- Do not use pliers to remove a MOS or CMOS device from a high-grip socket. Instead, use a small screwdriver to pry the device up from one end. Slowly lift the device up, one pair of pins at a time.
- After you remove a MOS or CMOS device from an assembly, place the device onto a pad of conductive foam or other suitable holding material.
- If a device requires soldering, be sure the assembly is placed on a pad of conductive material. Also, be sure you, the pad, and the soldering iron tip are grounded to the assembly. Apply as little heat as possible when soldering.

Removing Top Shield

Oving Use the following steps to remove the top shield from the printed circuit assembly (PCA). See Figure 8-1 for component locations.

- 1. Remove seven Torx T8 screws
- 2. Lift top shield from the back until front slots can be disengaged from tabs.
- 3. Remove the top shield.
- 4. Reverse steps 1 through 3 to replace top shield.

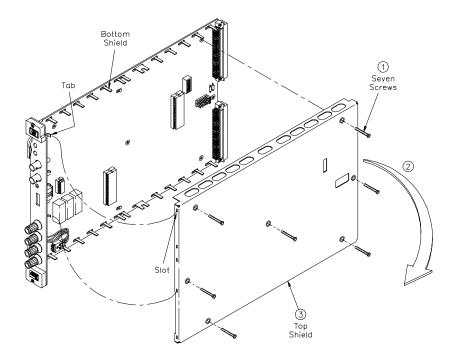
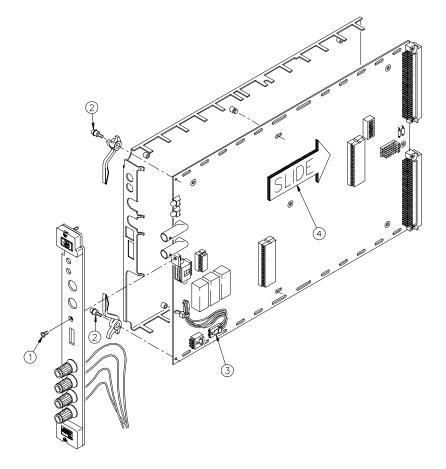


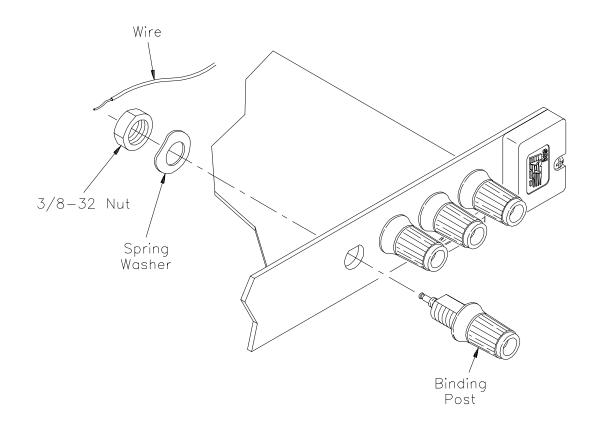
Figure 8-1. Removing Top Shield


NOTE

When reinstalling the top shield, verify that the slots are aligned with the tabs, then set the top shield into place.

Removing Front Panel

Use the following steps to remove the front panel and bottom shield from the printed circuit assembly (PCA). See Figure 8-2 for component locations.


- 1. Remove Torx T8 screw from front panel
- 2. Remove two Torx T8 screws from PCA
- 3. Remove cable assembly from clip
- 4. Slide PCA off bottom shield
- 5. Reverse steps 1 through 4 to replace front panel and bottom shield

RemovingUse the following steps to remove the E1411 front panel binding posts**Binding Posts**(MP3, MP4, MP5, and MP6) (see Figure 8-3).

- 1. Unsolder wire
- 2. Remove the 3/8-32 nut and spring washer
- 3. Remove the binding post
- 4. Reverse the order to reinstall the binding posts

Figure 8-3. Removing Binding Posts

Soldering Printed Circuit Boards

The etched circuit boards in the multimeter have plated-through holes that allow a solder path to both sides of the insulating material. Soldering can be done from either side of the board with equally good results. When soldering to any circuit board, keep in mind the following guidelines:

CAUTION

Do not use a sharp metal object such as an awl or twist drill, since sharp objects may damage the plated-through conductor.

	• Avoid unnecessary component unsoldering and soldering. Excessive replacement can result in damage to the circuit board and/or adjacent components.
	• Do not use a high power soldering iron on etched circuit boards as excessive heat may lift a conductor or damage the board.
	• Use a suction device or wooden toothpick to remove solder from component mounting holes. When using a suction device, be sure the equipment is properly grounded to prevent electrostatic discharge from damaging CMOS devices.
Post-Repair Safety Checks	After making repairs to the E1411 multimeter, inspect the multimeter for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and correct the cause of the condition. Then run the self-test (*TST? command) to verify that the multimeter is functional.

Appendix A Calculating Multimeter Accuracy

Introduction	This appendix shows how multimeter accuracy, measurement uncertainty, and test accuracy ratio (TAR) values are defined and calculated for the performance verification tests for the Agilent E1411 multimeter.
	See Table 4-1, " <i>Performance Test Record for the Agilent E1411 Multimeter</i> " for 90-day specification values of multimeter accuracy, measurement uncertainty, and test accuracy ratios (TARs).
NOTE	Multimeter accuracy, measurement uncertainty, and test accuracy ratios in Table 4-1 are valid ONLY for the specified test conditions and assumptions described in this manual. For the test conditions described, all TARs exceed the 4:1 requirement of MIL-STD-45662A.
Multimeter Accuracy Definition	Multimeter accuracy is the expected accuracy of the measurement due ONLY to the multimeter. The "Low Limit" entry in Table 4-1 is the lower (-) value of multimeter accuracy, while the "High Limit" entry is the upper (+) value of multimeter accuracy.
Measurement Uncertainty Definition	Measurement Uncertainty is the expected accuracy of the source used to input signals to the multimeter. Since the Datron 4708 Autocal Multifunction Standard is the source used for measurements in this manual, the measurement uncertainty of the source is that of the Datron 4708.
	This value is shown in the "Measurement Uncertainty" column of Table 4-1. See the <i>Datron 4708 User's Handbook</i> for additional information on calculating measurement uncertainty for the Datron 4708 source.
NOTE	Measurement Uncertainty does not apply to the DC Voltage (Zero Volts Input) test, since no input is applied.

Test Accuracy Ratio (TAR) Definition	Test Accuracy Ratio (TAR) is the ratio of multimeter accuracy to measurement uncertainty. For the E1411 multimeter performance tests, test accuracy ratio = (High Limit value - Test Input value)/Measurement Uncertainty value. This value is shown in the "Test Accuracy Ratio (TAR)" column of Table 4-1.		
NOTE	Test accuracy ratio does not apply to the DC Voltage (Zero Volts Input) test, since no measurement uncertainty value applies.		
Multimeter Accuracy Calculations	accurac measure <i>Specific</i>	E1411 multimeter performance verification tests, multimeter y is defined for DC Voltage, AC Voltage, and 4-Wire Resistance ements using the 90-day specifications in <i>Appendix A</i> - <i>ations</i> of the <i>E1326A/E1411A User's Manual</i> or the <i>PE1411B User's Manual</i> . The assumed test conditions are:	
	• • •	90 days since calibration Temperature within $\pm 5^{\circ}$ C of calibration temperature Module calibration temperature 18° C to 28° C One hour warmup 4-wire ohms resistance measurements Aperture = 16.7 msec (60 Hz) or 20 msec (50 Hz) Autozero ON	
Accuracy th		<i>opendix A - Specifications</i> of the <i>E1326A/E1411A User's Manual</i> or <i>B26B/E1411B User's Manual</i> , DC voltage 90-day accuracy = \pm (% of + volts). The accuracy equations for the ranges and apertures used erformance verification tests are:	
F	lange	Accuracy [±(% of reading + Volts)]	
	125 mV 1 V 8 V 64 V 300 V	0.023 + 5.0 μV 0.013 + 15.0 μV 0.010 + 50.0 μV 0.015 + 1.0 mV 0.015 + 5.0 mV	
L	Examp	le: Calculate DC Voltage Accuracy	

For a 7.0 DCV input to the multimeter, using the 8 V range and 16.7/20 msec aperture, multimeter accuracy (90-days) = \pm (.010% reading + 50.0 μ V) = \pm (.0001 x 7.0 + 50 x 10⁻⁶) = \pm 0.00075 Volts. Thus, for a 7.0 DCV input the High Limit in Table 4-1 = 7.00075 Volts and the Low Limit = 6.99925 Volts.

AC Voltage Accuracy Equations

From *Appendix A- Specifications* of the *E1326A*/*E1411A* or *E1326B*/*E1411B* User's Manual, AC voltage 90-day accuracy = \pm (% of reading + volts). The accuracy equations for the ranges, frequencies and apertures used in the performance verification tests are:

Range	Frequency	Accuracy [±(% of reading + Volts)]
87.5 mV	20 Hz	2.175 + 1 mV
87.5 mV	60 Hz	0.675 + 200 μV
87.5 mV	5 kHz	0.675 + 200 μV
87.5 mV	10 kHz	3.175 + 200 μV
300 V	5 kHz	1.125 + 500 mV

Example: Calculate AC Voltage Accuracy

For a 0.07 ACV input to the multimeter, using the 87.5 mV range, 60 Hz frequency, and 16.7/20 msec aperture, multimeter accuracy (90-days) = \pm (0.675% reading + 200 µV) = \pm (.00675 x 0.07 + 200 x 10⁻⁶) = \pm 0.000673 Volts. Thus, for a 0.07 ACV input the High Limit in Table 4-1 = 0.070673 Volts and the Low Limit = 0.069327 Volts.

4-Wire Ohms Accuracy Equations

From Appendix A- Specifications of the E1326A /E1411A or E1326B /E1411B User's Manual, 4-Wire resistance 90-day accuracy = \pm (% of reading + Ohms). The accuracy equations for the ranges and apertures used in the performance verification tests are:

Range	Accuracy [±(% of reading + Ohms)]
2 kΩ	$0.025 + 20 \text{ m}\Omega$
131 kΩ	$0.025 + 1 \Omega$
1 MΩ	$0.025 + 10 \Omega$

Example: Calculate 4-Wire Resistance Accuracy

For a 1 k Ω input to the multimeter, using the 2 k Ω range and 16.7/20 msec aperture, multimeter accuracy (90-days) = ±(.025% reading + 20 m Ω) = ±(.00025 x 1000 + 20 x 10⁻³) = ±0.270 Ω . Thus, for a 1 k Ω input the High Limit in Table 4-1 = 1000.27 Ω and the Low Limit = 999.73 Ω .

Measurement Uncertainty Calculations

Measurement uncertainties for the Datron 4708 source are calculated using the 90-day accuracy specifications in the *Datron* 4708 User's Handbook:

Measurement Uncertainty = Datron Accuracy + Calibration Uncertainty, where Datron Accuracy (ppm) = Accuracy Relative to Calibration Standards = ±(ppm OUTPUT + ppm FS)

and FS = 2 x range for all ranges except 1000V FS = 1100 for the 1000V range

The **assumed** test conditions are:

- Temperature of 23°C±1°C
- 90 days since calibration
- 4-wire sense function for ohms measurements

Calculate DCV Measurement Uncertainty

From Section 6 - Specifications of the Datron 4708 User's Handbook, DC Voltage (Option 10) Accuracy (90 days since calibration and $23^{\circ}C \pm 1^{\circ}C$) follows, where Datron Accuracy = ±(ppm OUTPUT + ppm FS).

Datron	Datron	Datron	Calibration
OUTPUT	Range	Accuracy	Uncertainty
(DCV)	(Volts)	(ppm)	(ppm)
0.1	1.0000000V	2 + 0.4	2
0.9	1.0000000V	2 + 0.4	
7.0	10.000000V	1 + 0.15	1.5
58.0	100.00000V	2 + 0.25	2
300.0	1000.0000V	3 + 0.25	2

Example: Calculate DC Voltage Measurement Uncertainty

Since Measurement Uncertainty = Datron Accuracy + Calibration Uncertainty, for a 7.0 DCV OUTPUT and the Datron 4708 range set to 10.000000 V, Measurement Uncertainty (μ V)=±[(1.0 x 7.0) + (2 x 0.15 x 10)] + (1.5 x 7.0)] = ±20.5 μ V = ±0.000021 V.

Or, with a 300 DCV OUTPUT and the 1000.0000V range, Measurement Uncertainty $(\mu V) = \pm [(3.0 \times 300) + (0.25 \times 1100) + (2.0 \times 300)] = \pm 1775 \ \mu V = \pm 0.001775 \ V.$

Calculate ACV Measurement Uncertainty

From Section 6 - Specifications of the Datron 4708 User's Handbook, AC Voltage (Option 20) Accuracy (90 days since calibration and $23^{\circ}C \pm 1^{\circ}C$) where Datron Accuracy = ±(ppm OUTPUT + ppm FS).

Datron Output (ACV)	Datron Range	Datron Freq	Datron Accuracy (ppm)	Calibration Uncertainty (ppm)
0.07	100 mV	20 Hz	110 + 20 + 5 μV	$\begin{array}{cccc} 30 & + 1 & \mu V \\ 30 & \end{array}$
0.07	100 mV	60 Hz	60 + 20 + 5 μV	
0.07	100 mV	5 kHz	50 + 20 + 5 μV	
0.07	100 mV	10 kHz	50 + 20 + 5 μV	
300.0	100 V	5 kHz	90 + 10	

Example: Calculate AC Voltage Measurement Uncertainty

Since Measurement Uncertainty = Datron Accuracy + Calibration Uncertainty, for a 0.07 ACV OUTPUT to the multimeter and the Datron 4708 range set to 100 mV at 60 Hz, Measurement Uncertainty (μ V)=±[(60.0 x 0.07) + (2 x 20 x .1) + 5 + (30 x .07 +1)] = ±16.3 μ V = ±0.000016 V.

Or, for a 300 ACV OUTPUT to the multimeter and the Datron 4708 range set to 1000 V at 5 kHz, Measurement Uncertainty (μ V) = ±[(90.0 x 300.0) + (10 x 1100) + (30 x 300)] = ± 47000 μ V = ±0.047 V.

Calculate Resistance Measurement Uncertainty

From Section 6 - Specifications of the Datron 4708 User's Handbook, 4-Wire Resistance (Option 30) Accuracy (90 days since calibration and $23^{\circ}C \pm 1^{\circ}C$) follows, where Datron Accuracy =±(ppm OUTPUT + ppm FS).

Datron Output	Datron Range (Ohms)	Datron Accuracy (ppm)	Calibration Uncertainty (ppm)
1 k Ω	1.0000000k	3	5
100 k Ω	100.00000k	3	6
1 M Ω	1.0000000M	10	12

Example: Calculate 4-Wire Ohms Measurement Uncertainty

For the 100 k Ω range, measurement uncertainty = [(3 x 10⁻⁶ x 10⁵) + (6 x 10^{-6 x} 10⁵)] Ω = (0.3 + 0.6) Ω = 0.900 Ω .

Test Accuracy Ratio (TAR) Calculations

For the E1411 multimeter, Test Accuracy Ratio (TAR) = [High Limit - Input Value]/Measurement Uncertainty where the source input value is in DCV, ACV, or Ohms.

Example: Calculate DCV Test Accuracy Ratio

For a 7.0 DCV measurement if the High Limit value = 7.000750 DCV and the Measurement Uncertainty = .0000115 DCV, Test Accuracy Ratio (TAR) = (7.000750 V - 7.0000000 V)/.0000115 V = 65:1 (rounded to the nearest integer value). Since this value is >10:1, the entry in Table 4-1 is ">10:1".

Appendix B Verification Tests - C Programs

Functional This program is designed to do the Functional Verification Test found in Chapter 4 - Verification Tests. Verification Test Example:Self Test This example performs a multimeter self-test to ensure that the multimeter is communicating with the mainframe, external controller, and/or external terminal. #include <stdio.h> #include <sicl.h> #define ADDR "hpib7,9,03" /* Address of device */ void main () ł INST id: /* Define id as an instrument */ char $a[256] = \{0\};$ /* Result variable */ id = iopen (ADDR); /* Open instrument session */ ipromptf(id, "*TST?\n", "%t", a); /* Self test command */ printf("n %s", a); /* Print result */ getchar(); /* Pause */ /* Close instrument session */ iclose (id); }

Performance Verification Tests	These programs are designed to do the Performance Verification Tests found in <i>Chapter 4 - Verification Tests</i> .		
Example: Zero Volt DCV Test	This example performs a DCV test for zero volts input and a power line reference frequency of 60 Hz.		
(/* Zero Volt DCV Test E1411A/B */		
	#include <stdio.h> #include <sicl.h></sicl.h></stdio.h>		
	#define ADDR "hpib7,9,03"	/* Address of E1326B */	
	void main (void)		
	¹ INST id; char volt[256] = {0};	/* Define id as an instrument */ /* Result variable */	
	#if defined(BORLANDC) && InitEasyWin(); #endif	!defined(WIN32)	
	ionerror(I_ERROR_EXIT);		
	id = iopen (ADDR);	/* Open instrument session */	
	iprintf (id, "*RST\n");	/* Resets and set autozero ON and PLC to 1 */	
	iprintf (id, "CAL:LFR 60\n");	/* Sets line reference to 60 Hz */	
	ipromptf (id, "MEAS:VOLT:DC? .1 printf ("Voltage for 0.113 V range	/* Measure 0.113 V range */	
	ipromptf (id, "MEAS:VOLT:DC? .		
	printf ("Voltage for 0.91 V range =	/* Measure 0.91 V range */	
	ipromptf (id, "MEAS:VOLT:DC? 7	\n", "%t", volt);	
	/* Measure 7.27 V range */ printf ("Voltage for 7.27 V range = %s\n", volt);		
	ipromptf (id, "MEAS:VOLT:DC? 5 printf ("Voltage for 58.1 V range =	/* Measure 58.1 V range */	
	ipromptf (id, "MEAS:VOLT:DC? 300\n", "%t", volt);		
	/* Measure 300 V range */ printf ("Voltage for 300 V range = %s\n", volt);		
	iclose (id); }	/* Close instrument session */	

Example: DC Voltage Test

This test performs a DC Voltage test for positive input DC volts and a power line reference frequency of 60 Hz.

```
/* DC Voltage Test (DCV Input)
                                        E1411A/B */
#include <stdio.h>
#include <sicl.h>
#define ADDR "hpib7,9,03"
                                    /* Address of E1326B */
void main ()
{
  INST id;
                                    /* Define id as an instrument */
  float range[5] = {0.113, 0.910, 7.270, 58.10, 300.0};
  float volts[5] = {0.1, 0.9, 7.0, 58.0, 300.0};
  char measurement[5][256], complete[256]; /* Result variable */
  int i;
  #if defined(__BORLANDC__) && !defined(__WIN32__)
     InitEasyWin();
  #endif
  ionerror(I_ERROR_EXIT);
                                    /* Exit on error */
  id = iopen (ADDR);
                                    /* Open instrument session */
  iprintf (id, "*RST\n");
                                    /* Resets and set autozero
                                      ON and PLC to 1 */
                                     /* Sets line reference to 60 Hz */
  iprintf (id, "CAL:LFR 60\n");
  for(i = 0; i < 5; i++)
                                    /* Take voltage measurements */
  ł
    printf("\n Set DC Standard to %.1f VDC", volts[i]);
    printf("\n press ENTER when ready\n");
    getchar ();
iprintf(id, "CONF:VOLT:DC %f\n", range[i]); /* Voltage range */
ipromptf(id, "*OPC?\n", "%s", complete); /* Wait for settling */
ipromptf(id, "READ?\n", "%t", measurement[i]); /* Read voltage */
  }
  for (i=0; i < 5; i++)
                                     /* Print voltage measurements */
   printf("\n Voltage on %4f V range = %s ", range[i], measurement[i]);
  iclose (id);
                                    /* Close instrument session */
```

Example: AC Voltage Test

This example performs an AC voltage test for a power line reference frequency of 60 Hz.

```
/* AC Voltage Test
                            E1411A/B */
#include <stdio.h>
#include <sicl.h>
#define ADDR "hpib7,9,03"
                                        /* Address of E1326B */
void main ()
  INST id;
                                /* Define id as an instrument */
  float source_volts[5] = {0.07, 0.07, 0.07, 0.07, 300.0};
  float source_freq[5] = {20, 60, 5000, 10000, 5000};
  char measurement[5][256], complete[256]; /* Result variable */
  int i;
  #if defined(__BORLANDC__) && !defined(__WIN32__)
    InitEasyWin();
  #endif
  ionerror(I_ERROR_EXIT); /* Exit on error */
  id = iopen (ADDR);
                                 /* Open instrument session */
  iprintf (id, "*RST\n");
                                 /* Resets and set autozero
                                   ON and PLC to 1 */
  iprintf (id, "CAL:LFR 60\n"); /* Sets line reference to 60 Hz */
  for(i = 0; i < 5; i++)
                                 /* Take voltage measurements */
  ł
    printf("\n 1. Set AC Standard output to %.2f VAC",
   source_volts[i]);
printf("\n 2. Set AC Standard frequency to %.1f
    Hz",source_freq[i]);
printf("\n 3. Press ENTER when ready\n");
   getchar ();
    iprintf(id, "CONF:VOLT:AC %f\n", source_volts[i]);
                                  /* Set voltage range */
   ipromptf(id, "*OPC?\n", "%s", complete);
ipromptf(id, "READ?\n", "%t", measurement[i]);
                                  /* Read voltage *
  }
  for (i=0; i < 5; i++)
                                  /* Print voltage measurements */
  printf("\n Voltage for %4f V range at %.1f Hz = %s ", source_volts[i],
         source freq[i], measurement[i]);
                                  /* Close instrument session */
  iclose (id);
```

Example: Resistance Test

This example performs a 4-wire ohms resistance test. The program also calculates the Upper and Lower Limit values for the ACTUAL resistance values. Use these values in Table 4-1 if they differ from the given values.

```
/* Resistance Test (4-wire Ohms)
                                          E1411A/B */
#include <sdtio.h>
#include <sicl.h>
#define ADDR "hpib7,9,03"
                                    /* Address of E1326B */
void main ()
{
  INST id:
                                     /* Define id as an instrument */
 float range[3] = {1861, 119156, 1048576};
float source[3] = {1000, 100000, 1000000};
  char measurement[3][256], complete[256];
  float limit[3], actual[3];
  int i;
  #if defined(__BORLANDC__) && !defined(__WIN32__)
     InitEasyWin();
  #endif
  ionerror(I ERROR EXIT);
                                     /* Exit on error */
  id = iopen (ADDR);
                                     /* Open instrument session */
  iprintf (id, "*RST\n");
                                     /* Resets and set autozero
                                       ON and PLC to 1 */
  iprintf (id, "CAL:LFR 60\n");
                                     /* Sets line reference to 60 Hz */
  for(i = 0; i < 3; i++)
                                     /* Take measurements */
  ł
    printf("\n 1. Set Resistance Standard to %.1f Ohms", source[i]);
printf("\n 2. Measure ACTUAL resistance standard value (in
           Ohms)");
    printf("\n 3. Enter ACTUAL resistance standard (in Ohms): ");
scanf("%f", &actual[i]);
    iprintf(id, "CONF:FRES %f\n", range[i]);
/* Set resistance range */
    ipromptf(id, "*OPC?\n", "%s", complete); /* Wait for settling */
ipromptf(id, "READ?\n", "%t", measurement[i]);
                                     /* Read resistance */
    if (i == 0)
       limit[i] = .00025*actual[i] + 0.02;
                                               /* 2kOhm limits */
    if (i = 1)
       limit[i] = .00025*actual[i] + 1.0;
                                               /* 131 kOhm limits */
    if (i = 2)
       limit[i] = .00025*actual[i] + 10;
                                               /* 1 MOhm limits */
  }
  printf("\nMeasured
                           Source Low Limit
                                                     High Limit");
  printf("\nResistance
                          Resistance (Ohms)
                                                        (Ohms)\n");
  for (i=0; i < 3; i++)
                                     /* Print measurements and limits */
    printf("\n%s %10.2f
                                     %10.2f
                                                    %10.2f",
          measurement[i],actual[i], actual[i]-limit[i], actual[i]+limit[i]);
                                     /* Close instrument session */
  iclose (id);
```

Adjustments	These programs are designed to do the adjustments found in <i>Chapter 5 - Adjustments</i> .	
DC Voltage Adjustments	This example performs DC Voltage adjustments for a power line reference frequency of 60 Hz. If no calibration error occurs, the program displays an "adjustment complete" message. If a calibration error occurs, the program displays the calibration error and prompts you to repeat the adjustment (see Table 5-1 for a list of calibration errors).	
	/* DC Voltage Adjustments E1411A/B */	
	#include <stdio.h> #include <sicl.h></sicl.h></stdio.h>	
	#define ADDR "hpib7,9,03"	/* Address of device */
	void main ()	
	¹ INST id; float range[10] = {8.0, 8.0, 0.12{ 300.0, 300.01	/* Define id as an instrument */ 5, 0.125, 1.0, 1.0, 64.0, 64.0,
	300.0, 300.0}; float volts[10] = {7.7, -7.7, .121,121, .97,97, 62.0, -62.0, 300.0, -300.0}; char cal_code[5][256]; int i; #if defined(BORLANDC) && !defined(WIN32) InitEasyWin(); #endif	
	iprintf (id, "*RST\n");	/* Open instrument session */ /* Resets and set autozero ON and PLC to 1 */
	iprintf (id, "CAL:LFR 60\n"); for(i = 0; i 10; i++) {	/* Sets line reference to 60 Hz */ /* Take voltage measurements */
	<pre>iretry: printf("\n Set DC Standard to %.1f VDC", volts[i]); printf("\n press ENTER when ready\n"); getchar (); iprintf(id, "FUNC:VOLT:DC\n");</pre>	
	else printf ("\nAdjustment complete for %f Vdc input", volts[i]);	
	} iclose (id); }	/* Close instrument session */

74 Example C Programs
www.valuetronics.com

AC Voltage Adjustments

This example performs an AC Voltage adjustment for a power line reference frequency of 60 Hz and an input of 5.6 Vac at 1 kHz. If no calibration error occurs, the program displays an "adjustment complete" message. If a calibration error occurs, the program displays the calibration error and prompts you to repeat the adjustment (see Table 5-1 for a list of calibration errors).

· · ·		
/* AC Voltage Adjustments E	E1411A/B */	
#include <sdtio.h> #include <sicl.h></sicl.h></sdtio.h>		
#define ADDR "hpib7,9,03"	/* Address of device */	
void main ()		
{ INST id; char cal_code[256];	/* Define id as an instrument */	
#if defined(BORLANDC) && !defined(WIN32) InitEasyWin(); #endif		
ionerror(I_ERROR_EXIT);	/* Exit on error */	
id = iopen (ADDR);	/* Open instrument session */	
iprintf (id, "*RST\n");	htf (id, "*RST\n");/* Resets and set autozero ON and PLC to 1 */ /* Sets line reference to 60 Hz */htf (id, "CAL:LFR 60\n");/* Sets line reference to 60 Hz */	
printf (id, "CAL:LFR 60\n");		
retry: printf("\n Set AC Standard to 5.6 Vac at 1.0 kHz"); printf("\n press ENTER when ready\n"); getchar (); iprintf(id, "FUNC:VOLT:AC\n"); /* Set DCV function */ iprintf(id, "VOLT:RANG 5.6\n"); /* Set E1326B range */ iprintf(id, "CAL:VAL 5.6\n"); /* Set CAL:VAL value */ iprintf(id, "TRIG:DEL .05\n"); /* Wait for settling */ ipromptf(id, "CAL?\n", "%t", cal_code[i]); /* Read voltage */		
if (cal_code != 0)		
<pre>{ printf ("\nCalibration Error %s on 5.6 Vac range", cal_code); printf ("\nCheck source value/connections, then"); printf ("\npress ENTER to retry this adjustment"); getchar (); goto retry; }</pre>		
else printf ("\nAdjustment complete for %f Vdc input", volts[i]);		
iclose (id); }	/* Close instrument session */	

Resistance Adjustments

This example performs a 4-wire ohms resistance adjustment for a power line reference frequency of 60 Hz. If a calibration error occurs, the program displays the calibration error and prompts you to repeat the adjustment (see Table 5-1 for a list of calibration errors).

/* 4-wire Resistance Adjustments E1411A/B */ #include <stdio.h> #include <sicl.h> #define ADDR "hpib7,9,03" /* Address of device */ void main () ł INST id; /* Define id as an instrument */ float range[3] = $\{2000, 16000, 1048576\}$; float source[3] = $\{1000, 10000, 1000000\}$; char cal_code[5][256]; float actual[3]; int i; #if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); #endif ionerror(I_ERROR_EXIT); /* Exit on error */ id = iopen (ADDR);/* Open instrument session */ iprintf (id, "*RST\n"); /* Resets and set autozero ON and PLC to 1 */ /* Sets line reference to 60 Hz */ iprintf (id, "CAL:LFR 60\n"); for(i = 0; i 3; i++) /* Take voltage measurements */ ł retry: printf("\n Set Resistance Standard to %.1f Ohms", source[i]); printf("\n Measure ACTUAL Resistance Standard value (in Ohms):"); scanf ("%f", &actual[i]); iprintf(id, "FUNC:FRES\n"); /* Set DCV function */ iprintf(id, "FRES:RANG %f\n", range[i]); /* Set E1326B range */ iprintf(id, "CAL:VAL %f\n", actual[i]); /* Set CAL:VAL value */ ipromptf(id, "CAL?\n", "%t", cal_code[i]); /* Read voltage */ /* Set CAL:VAL value */ if (cal code != 0) printf ("\nCalibration Error %s for %f Ohms", cal_code, source[i]); printf ("\nCheck source value/connections, then"); printf ("\npress ENTER to retry this adjustment"); getchar (); goto retry; else printf ("\nAdjustment complete with %f Ohms source\n", source[i]); } /* Close instrument session */ iclose (id);

www.valuetronics.com

Copyright © Agilent Technologies, Inc. 1996-2005

www.valuetronics.com