
Remote Programming Interface

(RPI) for the Agilent Technologies

16700 Logic Analysis System

Programmer’s Guide

© Copyright Agilent Technologies 2001

All Rights Reserved

Version 11-1-01

www.valuetronics.com

https://www.valuetronics.com/

2

In This Book

This book is a programmer’s guide for the Remote Programming Interface

(RPI) for the 16700 logic analysis system. Its purpose is to give you the

neccessary information to remotely control the logic analysis system through

the execution of remote programs.

In addition to this book, you should have a general knowledge of

programming in the Basic or C programming language. You should also

have a basic understanding of making measurement with a logic analyzer.

The RPI is available in two forms. While only the ASCII RPI is explained in

this book, information is available on the ActiveX/COM RPI when you

upload the BenchLink XL 16700 software components and access the

Excel Add-in Toolbar help system.

In Chapter 1, you will find information on the setup of the logic analysis

system and your remote compute.

Chapter 2 is a command reference for the sytem level commands.

Chapter 3 is a command reference for all the hardware modules.

Chapter 4 is a command reference for all the software tools.

www.valuetronics.com

Contents

 3

1 Setup and Configuration

Remote Programming Interface RPI Overview 6

RPI Architecture 7

RPI for Unix 7

Use Model 7

Create a Configuration File 7

Load-Run-Store 8

System Setup 8

Learning and Debugging RPI Programs 8

Exercise: 9

For More Information 9

Data Transfers 9

Sample Programs 9

Remote Programming Interface RPI General Characteristics 10

Agilent IntuiLink ActiveX Automation Server 10

Procedural (ASCII) User Application 10

Programming Conventions 11

2 System Commands

clear 14

config 15

ctl_port 16

lock, unlock 17

modules 18

session_mgr 20

start 21

status 23

www.valuetronics.com

4

Contents

stop 25

tools 26

version 27

wait 28

3 Hardware Module Commands

analyzer 32

scope 43

pattgen 49

emulator 51

4 Software Tool Commands

listing 54

compare 56

fileout 60

www.valuetronics.com

5

1

Setup and Configuration

In the following chapter you will find information on setting up your remote

computer and using the RPI procedural commands to remotely control the

logic analysis system.

www.valuetronics.com

6

Setup and Configuration

Remote Programming Interface RPI Overview

Agilent Technologies Remote Programming Interface (RPI) allows you to

create custom programs to control your Agilent’s 16600A and 16700A/B

series logic analyzers. RPI is optimized for use in conjunction with

Microsoft Win95/98/NT platforms or Unix platforms.

On the PC/Windows platform RPI takes advantage of Microsoft's

Component Object Model and ActiveX automation technologies to allow

you to write custom programs using Visual Basic, Visual C++, VBA or other

COM compatible programming language.

Under Unix, RPI provides a procedural (or ASCII) based programming

model. How you use RPI is dependent upon the development platform you

have chosen to do your coding on.

NOTE:

It is important that you reference the appropriate documentation describing

either the PC/Windows/COM RPI or Unix ASCII RPI (depending on what

development environment you have chosen to use).

Figure 1. Remote Programming Interface Architecture

www.valuetronics.com

 7

Setup and Configuration

RPI Architecture

Under Windows, the ActiveX Automation Server provides PC applications

with a COM interface to the logic Analyzer and uses RPI socket commands

to communicate with the logic analyzer itself (see Figure 1). This allows

you to write programs that communicate with the logic analyzer using a

COM model definition thus taking advantage of the ease of programming

offered by the Visual Studio Environment (i.e. Visual Basic or Visual C++).

From Unix environments, RPI uses simple, ASCII text commands to

communicate to the logic analyzer. This makes it easy to write shell scripts

or HLL programs without the need to install any other third party software

on your workstation.

RPI for Unix

The Procedural RPI is a simple mechanism that allows a user on a remote

host to open a TCP socket connection to an Agilent 16700A/B Series logic

analyzer instrument. Through this connection, simple ASCII string

commands are sent, ASCII responses from the instrument are received, and

binary or ASCII trace data is transferred to the host running the RPI

program.

Use Model

In order to create an easy to use, yet powerful remote control mechanism,

the design of the RPI adheres to the basic use model of "load-run-store".

This means that when you want to create a remote control application or a

program that runs repetitive tests, you simply go through each test once

saving the logic analyzer configuration for each test you wish to repeat later.

Then, from your program, you recall the appropriate logic analyzer

configuration, run it, and store or act on the results as appropriate.

Create a Configuration File. Set up an instrument configuration for the

desired measurement while sitting in front of the logic analyzer. Save this

configuration to a file. This process allows you to use all the power of the

instrument to setup your desired measurement.

www.valuetronics.com

8

Setup and Configuration

Load-Run-Store. Once a configuration file is saved, write an RPI program

that remotely loads this pre-saved file. Modify a few critical measurement

parameters, run the analyzer until the measurement is complete, then store

the results, or the raw trace data for post-processing on the host.

System Setup

The RPI language is easily used on any host platform. However, before you

can run your RPI program, the logic analyzer must be set up on the LAN.

This is done by getting the appropriate network information from your

system administrator, and entering this information into the logic analyzer.

1. Click the System Administration icon on the system screen, then select the

Networking tab.

2. Click Network Setup and enter the appropriate informantion.

3. Now select the Security tab and make sure the Remote Programming

Interface is enabled.

NOTE:

To increase security when the RPI is not being used, disable the RPI

interface from this screen.

Learning and Debugging RPI Programs

Once setup on the LAN, you are ready to connect and start writing and

debugging RPI programs. A simple way to learn how to program using RPI

is to experiment with the RPI command language by opening a telnet

connection from your remote computer to the logic analysis system

specifying the special port address of "6500".

For example, type: “telnet my_logic_analyzer 6500” where

"my_logic_analyzer" is its IP address or machine alias name, then press the

Enter key.

This process opens a direct socket connection to the RPI in the logic analysis

system. You know you have a connection when the "->" prompt appears on

a blank command line. This command line prompt indicates that the RPI is

ready to accept a command.

www.valuetronics.com

 9

Setup and Configuration

Exercise: At the prompt type: "modules"

The RPI polls the instrument cardcage and reports a list of all HW modules

currently in the frame.

At the prompt type: "lock".

The RPI puts a full screen message box on the instrument console to warn

people that the instrument is currently in use via the RPI.

This telnet mechanism is also useful in helping to debug RPI programs

under development. You can have a debug telnet connection open at the

same time an RPI program is running.

For More Information. You can print the complete list of RPI commands

by going into the Connectivity topic of the online help system and printing

out the entire volume.

Data Transfers

To provide both a fast and easy to use process for data transfer, an

uncompressed binary format is used. One of the benefits of this format is

that it’s easy to decode and the software required to decode the binary is very

simple.

It should be noted that since all data values are transferred in byte-aligned

columns, there will be some generation of white space, especially when

transferring large numbers of single-bit values.

Although data transfers from logic analyzers and scopes are in binary form,

data transfers from the Listing tool will come in ASCII form. For the Listing

tool, the ASCII form allows GUI control over the numeric formats used, as

well as the use of powerful SW Analysis tools such as the Serial Analysis

tool or the Filter tool.

Sample Programs

Source code for some sample RPI programs and an RPI utility library is

shipped with your Agilent Logic Analyzer. They can be found in the

directory

"/logic/demo/rpi/".

www.valuetronics.com

10

Setup and Configuration

You can transfer all files in this directory, including the makefile, onto your

remote host using the various connectivity methods available from the logic

analysis system. These include ftp, NFS, PC file sharing, or simply using

the built in floppy drive.

After the files are transferred, you can compile and run the programs to get

familiar with the basic capabilities of the RPI.

Remote Programming Interface RPI General

Characteristics

The Remote Programming Interface (RPI) is available in two forms. While

only information for the procedural (ASCII) user application is documented

in this book, the following general characteristics apply. For additional

information on the Agilent IntuiLink ActiveX Automation Server, refer to

the help system included with the Excel Add-in Toolbar.

Agilent IntuiLink ActiveX Automation Server. The Agilent IntuiLink

ActiveX Automation Server is based on the Microsoft Component Object

Model (COM). The Agilent IntuiLink package needs to be installed on the

PC host. This package can be downloaded from the instrument’s web page.

The Agilent 16600A or 16700A/B series logic analysis system must be fully

powered up before attempting to connect to the analyzer. A single user is

allowed to connect to the logic analysis system server. If another user tries

to connect when a user is already connected or before the logic analysis

system is fully powered up, he or she will receive an error indicating the

connection is refused.

The logic analysis system will continue to run after a remote programming

session disconnects.

Procedural (ASCII) User Application. The Agilent 16600A or 16700A/B

series logic analysis system must be fully powered up before attempting to

connect to the analyzer.

The logic analysis system will continue to run after a remote programming

session disconnects.

The procedural user application operates within the main thread of the logic

analysis system application.

www.valuetronics.com

 11

Setup and Configuration

Programming Conventions

Each command is followed by its command options, all separated by a

space. If any command option has argument types, they follow their option,

all separated by a space. In the following example, the scope command has

three options, “-n name”, “-c”, and “-meas”. The -meas option includes two

argument types in “period” and “risetime”. The program code would look

like the following:

scope -n Oscilloscope -c 1 -meas period risetime

where:

scope = is the base command,

-n Oscilloscope = is an option that names a scope module as the focus,

-c 1= is an option to specify channel 1

-meas = is an option that initiates an automatic measurement query,

period risetime = two automatic measurement argument types to return.

Return results (for Oscilloscope, channel 1):

period: 9.9E37

risetime: 0.000000420800

Other Considerations

Commands, options, and argument types can be full lowercase, full

uppercase, or capitalized first letter. All query returns are in lowercase.

www.valuetronics.com

12

Setup and Configuration

www.valuetronics.com

13

2

System Commands

In the following chapter you will find a description of remote control

commands that act on the system components such as file operations,

module identification, frame configuration, network connectivity and system

run function control.

www.valuetronics.com

14

System Commands

clear

clear

Description: This command clears the workspace of all modules and tools.

This command does NOT affect any system administration functions such as

LAN settings, printer settings, etc...

Syntax: clear

Options: No options

Example:

clear Clears the workspace of all modules and tools.

www.valuetronics.com

 15

System Commands

config

config

Description: Use this command to load a previously saved instrument configuration file.

This operation will restore the instrument to the same setup that was stored

in the configuration file. It also allows the currently configured instrument

to save it’s current state to a new configuration file.

NOTE:

Configuration files can be located on the local hard drive of the instrument

OR, through the use of NFS mounting and PC sharing, can be located on any

mountable UNIX or sharable PC disk drive.

When saving a configuration, if the file exists, an error message will result.

However, using the -f argument will force an overwrite even if file(s) exist.

Syntax: config [-l | -s [-f]] config_file

Options:

Examples:

-l config_file Loads a configuration file named “config_file”.

-s [-f] config_file Saves the current configuration and data to a file named

“config_file”.

config -l pentium._E

Loads a configuration file named “pentium._E”.

config -s myconfig

Saves the current workspace configuration with data to a file named

“myconfig”.

www.valuetronics.com

16

System Commands

ctl_port

ctl_port

Description: This command provides access to the instrument target control port. It will

read and return the value present on the pins of the control port or set the

port to a specific value. Values for the target control port can be set using the

same syntax as analyzer -trig commands:

Syntax: ctl_port [? | value]

Options:

Returns: <8 bit value>

Examples:

#hfx Hex where upper 4 bits are high and lower 4 bits stay the

same (don’t care).

#b11110000 Binary where upper 4 bits are high and lower 4 bits are low.

#q377 Octal where all 8 bits are high.

#bxxxx1xxx Set bit 4 high, leave all others the same.

? Reads the target control port and returns an 8-bit value.

value Sets the target control port to an 8-bit value.

ctl_port ?

Reads the 8-bit value from the target control port.

Returns:

#he

ctl_port #hfx

Sets the target control port output pins: upper 4bits go to High, lower 4

bits stay what they were.

www.valuetronics.com

 17

System Commands

lock, unlock

lock, unlock

Description: This command coordinates access of the instrument with other users. When

locked, a full screen message is displayed indicating that the instrument is

currently in use by an RPI program. If desired, a custom message can be

shown on the local display instead of a default message. As an example, a

custom message might give information as to who has the unit locked. The

instrument can then be unlocked when desired.

Syntax: lock ["message text"], unlock

Options:

Examples:

lock "message text" Locks all users out of the instrument. If a custom message is

sent, it must be contained in quotes.

unlock Unlocks the instrument to allow other users.

lock

Locks the instrument and displays a system default message.

unlock

Unlocks a currently locked instrument.

lock "Currently in use by Tom"

Locks the instrument and displays your custom message “Currently in use

by Tom”.

www.valuetronics.com

18

System Commands

modules

modules

Description: Use this command to poll the system to identify the HW modules in the

system, and return information on Type, Slot, and State. There are two states

that modules can be in, "active" or "available". Available means that the HW

module is plugged into a slot in the frame and is available to be included in a

measurement. The second state is "active". In this state, the HW module is

"activated" by being included in a measurement setup. When included in a

measurement setup, the HW module is both visible in the instrument

workspace and from the "Navigate" pulldown menu in the instrument GUI.

Active modules have either the default or user-defined ASCII names

associated with them.

Syntax: modules [-a | -slot slot_id | -expanders]

Options:

Returns: For each module listed, the following information is returned:

Type, Slot, State, "Name", "Model", and "Description"

The “Type”, is a 2-character string representing a logic analyzer (LA),

oscilloscope (SC), pattern generator (PG), and emulation (EM).
The “Slot”, is the letter or number identifier of the slot (A-J for measurement

modules, 1-4 for emulation modules). Most analyzers have 2 logical

machines. The second machine is displayed as B2 for slot B, machine 2. The

“State”, is shown as either a “1” if the module is active, or “0” if inactive and

available.

with no option Returns a list of both Active and Available modules. Type,

Slot, and State information for each listed module is returned.

-slot slot_id Returns information on a module in a specified “slot_id”. The

slot identifier is A-J for measurement modules and 1-4 for

emulation modules.

-a Returns a list of Active modules only. Type, Slot, and State

information for each listed module is returned.

-expanders Lists how many (and which) expander/slave cards each slot

has.

www.valuetronics.com

 19

System Commands

modules

Also returned is the following HW module information:

“Name”, “Model”, and “Description”

Example: LA B 1 "Analyzer" "16550A" "100MHz State/500MHz Timing”

Where: LA=logic analyzer, B=slot B, 1=active state, Name=Analyzer,

Model=16550A, and Description=100MHz State/500MHz Timing

Examples:

modules

In this case, the Logic Analyzer in slot B is active, as well as the

Scope in slot E.

Returns:

LA B 1 "Analyzer" "16550A" "100MHz State/500MHz Timing"

LA B 0 "Analyzer<B2>" "16550A" "100MHz State/500MHz Timing"

LA D 0 "Analyzer<D>" "16556A" "1M Sample 100 MHz State/400

MHz Timing"

LA D 0 "Analyzer<D2>" "16556A" "1M Sample 100 MHz State/400

MHz Timing"

SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"

EM 1 0 "Emulator<1>" "Emulation Module" "Not Configured"

modules -a

Query only the active modules. Note how only the two active

modules from above are listed.

Returns:

LA B 1 "Analyzer" "16550A" "100MHz State/500MHz Timing"

SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"

modules -expanders

Slot D is a master card, with 1 expander card in slot C:

Slot A: 0 expanders

Slot B: 0 expanders

Slot D: 1 expanders

C

Slot E: 0 expanders

Slot 1: 0 expanders

www.valuetronics.com

20

System Commands

session_mgr

session_mgr

Description: This command accesses the logic analyzer session manager. A query

(session_mgr ?) returns the current status of the logic analyzer as either

“Running” if a measurement session is currently running, or “Stopped” if no

measurement session is running.

If no session is running, one can be started with “session_mgr -start”. If you

try to start a session when one is currently running, an error is returned. You

can stop a currently running session with “session_mgr -stop”. If you try to

stop a session when one is not running, an error is returned.

When a new session is started, it automatically is started in the mode last

saved which will either be “exclusive” or “shared”.

When either a new session is started, or a currently running session is

stopped, your connection is automatically closed and you will have to re-

connect to the logic analyzer to initiate subsequent commands.

Syntax: session_mgr [? | -start | -stop]

Options:

Example:

? Returns current session status of either “Running” or

“Stopped”.

-start Starts a new session.

-stop Stops a currently running session.

session_mgr ?

Stopped

Queries for a system status, which returns “Stopped”.

www.valuetronics.com

 21

System Commands

start

start

Description: This command starts HW modules running. The definition of running is

dependent on the HW module selected. For analyzer modules, “running” is

when their trace analyzers begin looking for a trigger, when oscilloscopes

begin looking for a trigger, when pattern generators begin generating

vectors, and emulation probes start the processor running.

All active modules may be started at once by using no option, individual

modules started with -n name or -slot slot_id, and all modules in a "group

run" list can be started with the -g option.

The -rep option applies to analyzers, oscilloscopes, and pattern generator

modules but does not apply to emulation probes. When used, it sets these

modules to repetitive run mode.

Syntax: start [-n name | -slot slot_id] [-g] [-rep]

Options:

no option Starts all active modules running.

-n name Starts the active module named “name” running.

-slot slot_id Starts a specific module named “slot_id”. The slot identifier is

A-J for measurement modules and 1-4 for emulation modules.

-g Starts all modules configured in the group run list running.

-rep Starts LA, SC, and PG modules running in repetitive mode.

www.valuetronics.com

22

System Commands

start

Examples:

start

Starts all active modules running.

start -n Emulator<2>

Starts the processor in the emulation probe module named

"Emulator<2>" running.

start -g -rep

Starts all modules in the group run list running repetitively.

www.valuetronics.com

 23

System Commands

status

status

Description: This command queries active modules and returns their measurement status.

Status information returned depends on the module being queried. Analyzers

and oscilliscopes can be stopped or running. Pattern generators can be

stopped or running. Emulators can be running, reset, or in a break state. All

active modules may be queried at once by using no option, individual

modules with -n name or -slot slot_id, and all modules grouped in the "group

run" list are queried with the -g option.

Remember an emulator is not a measurement module, so the state of the

target processor on an emulator has no impact on the result of this command

unless it is explicitly selected via the -n name.

Syntax: status [-n name | -slot slot_id] [-g] [-v] [-text] [-clear]

Options:

with no option Returns status of the frame. Returns either “running” or

“stopped”.

-n name Returns the status of the active module named “name”.

-slot slot_id Returns the status of a specific module named “slot_id”. The

slot identifier is A-J for measurement modules and 1-4 for

emulation modules.

-g Returns the status of all modules in the group run list.

-v Returns verbose status information instead of running/

stopped.

-text Retrieve the text messages from the Run Status display.

-clear Clear the text messages in the Run Status display.

www.valuetronics.com

24

System Commands

status

Examples:

status

Query if the frame is running anything.

Returns:

stopped

status -v

Query status for all active modules in the system.

Returns:

Analyzer<A>: stopped

Emulator<3>: MPC860 In Background

status -n PatternGen<J>

Query status for current module named "PatternGen<J>".

Returns:

running

status -g -v

Query status for all active modules in the group run list.

Returns:

Pentium: waiting for trigger

Analyzer<F>: waiting in sequence level 3

Emulator<3>: running

status -text

Show the text in the Run Status messages area.

Returns:

Analyzer<E>: Calibration Error

status -clear

Clear the messages area in the Run Status display

www.valuetronics.com

 25

System Commands

stop

stop

Description: This command stops HW modules that are actively running. The definition

of running is dependent on the HW module selected. For analyzer modules,

“running” is when their trace analyzers begin looking for a trigger, when

oscilliscopes begin looking for a trigger, when pattern generators begin

generating vectors, and emulation probes start the processor running.

All running HW modules may be stopped at once by using no option,

individual modules may be stopped with -n name or -slot slot_id, and a

selected list of modules grouped together in the "group run" list are stopped

with the -g option.

The Stop command, using no option, will NOT stop the target processor

connected to an emulation module. To do this you must select the emulation

module with the -n name or -slot slot_id option.

Syntax: stop [-n name | -slot slot_id] [-g]

Options:

Examples:

with no option Stops all actively running modules.

-n name Stops the actively running HW module named “name”.

-slot slot_id Stops a specified module in the slot “slot_id”. The slot

identifier is A-J for measurement modules and 1-4 for

emulation modules.

-g Stops all running modules in the group run list.

stop

Stops all actively running modules.

stop -n PatternGen

Stops the actively running pattern generator named "PatternGen".

stop -g

Stops all actively running modules in the group run list.

www.valuetronics.com

26

System Commands

tools

tools

Description: This command queries the system and identifies the active SW tools. Tools

that are "active" are currently included in a measurement setup and appear in

the instrument workspace and from the "Navigate" pulldown menu in the

instrument GUI.

Syntax: tools

Options: No options.

Returns: Name: type (lister, compare, fileout)

Examples:

tools

Returns:

Filter<1>: Filter

Listing<1>: Listing

Compare<1>: Compare

Listing<2>: Listing

Waveform<1>: Waveform

Waveform<2>: Waveform

www.valuetronics.com

 27

System Commands

version

version

Description: This command returns the version number for the product named by the

option. If no option is used, the version number of the system software is

returned.

Syntax: version [product]

Options:

Returns: Version number for system or named SW package.

Examples:

with no option Returns the SW version of the system.

product Returns the SW version of the named product.

version

Query version numbers of installed system SW packages.

Returns:

A.01.30.00

version MCORE

Query the SW version of the MCORE processor support package.

Returns:

A.01.31.00

version PROC-SUPPORT

Query the SW version of the PROC-SUPPORT bundle.

Returns:

A.01.30.00

www.valuetronics.com

28

System Commands

wait

wait

Description: This command causes the remote programming interface to pause for a

number of seconds, or until the current measurement completes. You can

wait n seconds or until the measurement completes by using both a

delay and the -complete option.

Without specifying a specific module, slot, or group to wait for, "wait

-complete" will wait until the entire instrument is stopped. By

specifying a specific slot, module, or tool name, or -g, you can wait

until a single measurement completes.

WARNING:

With out a timeout value, if a measurement never completes, remote

programs will hang.

Syntax: wait [n] [-complete] [-n name | -slot slot_id] [-g]

Options:

Examples

n Waits “n” seconds.

-complete Waits until measurement is complete.

-n name Waits until the named module stops.

-slot slot_id Waits until module in the indicated “slot_id” completes.

-g Waits until the group run group completes.

wait 10

Waits 10 seconds.

wait -complete

Waits until measurement is complete.

wait 30 -complete

Wait until the measurement is complete, but not longer than 30 seconds.

www.valuetronics.com

 29

System Commands

wait

wait 120 -slot D -complete

Wait until slot D completes, but not longer than 2 minutes.

wait -n Analyzer -complete

Wait until Analyzer completes.

wait -g -complete

Wait until group run completes.

www.valuetronics.com

30

System Commands

wait

www.valuetronics.com

31

3

Hardware Module Commands

In the following chapter you will find a description of remote control

commands that act on the installed hardware modules.

www.valuetronics.com

32

Hardware Module Commands

analyzer

analyzer

Description: The analyzer command has three series of options available. Each series is

defined as follows:

• Options for Module Setup - This series of command options accesses the setup

information for the active analyzer module.

• Options for Data Query - This series of command options accesses the data

captured by the active analyzer module.

• Options for the Trigger Subsystem - This series of command options control the

active analyzer’s trigger subsystem.

Options for Module Setup

The following command options access the setup information of an

active analyzer. The analyzer is made active by specifying its logical

name, or by its slot ID. See the note below. This command series sets

or returns information on various setup parameters for the specified

analyzer module.

Syntax: analyzer [-n name | -slot slot_id]

-mode [stnorm | stfast | tmfull | tmhalf | tmtrans | ?]

-depth [min | max |depth in k-samples | ?]

-assign [none | pod#, pod#, ... | ?]

-label ?

-label name [{pos | neg} channels | ?]

-label -d [name1, name2, ... | all]

-label -f [label_file]

NOTE:

The -n name option is used to specify a specific analyzer module. If there is

only one active module, the -n name option is not required. However, if there

are multiple analyzer modules active, you must use the -n name at least once

to specify a module focus, then again each time you want to change the focus

to another analyzer module.

www.valuetronics.com

 33

Hardware Module Commands

analyzer

Options:

-n name Sets the focus to the analyzer named “name”.

-slot slot_id Selects a specific analyzer located in “slot_id”. The slot

identifier is A-J for measurement modules and 1-4 for

emulation modules.

-acqmode [stnorm | stfast | tmfull | tmhalf | tmtrans | ?]

Sets the acquisition mode. Option arguments are stnorn=state

normal, stfast=turbostate, tmfull=timing full channel,

tmhalf=timing half channel, and tmtrans=transitional timing.

-depth [min | max | depth | ?]

Sets acquisition depth. Option arguments are min=minimum,

max=maximum, and depth=number of samples in thousands

of states (example 8=8000 samples).

-assign [none | pod#, pod#, ... | ?]

Assigns pods. Pods are identified by a slot letter (A-J), and a

pod number (1 or 2). Example, A1 or G2.

Note: All pods are assigned in pairs, so A1 will assign A1

AND A2 to the active analyzer. G2 will assign G2 AND G1.

Pod letters are not case sensitive.

-label ? Queries the label structure.

-label name [pos | neg {channels} | ?]

Assigns a label name, defines it as positive or negative, then

assigns channels. This is a combination of a pod# and a bit

assignment as in pod#[bits]. “Bits” is a comma separated list

of channel numbers between 0 and 15, or a range like 15:0.

-label -d [name1, name2, ... | all]

Deletes specified label names (separated by commas), or “all”

label names.

-label -f [label_file] Loads a file of label assignments where label_file is the name

of the file.

www.valuetronics.com

34

Hardware Module Commands

analyzer

Returns: -assign ? returns all assigned pods.

Example:

A1,A2,C1,C2

-label ? returns information on all labels.

Example:
address,A1[15:0];A2[15:0]

data,C1[15:0]

read,C2[12]

write,C2[11]

control,C2[6,5,3:0]

Examples:

analyzer -n Analyzer -mode ?

Sets Analyzer as active analyzer, then queries the acquisition

mode.
Returns:

Run ID: 1234567890

States: -4095..4096

Times: -1.0e-06..1.0e-06

5 labels

"ADDR" 32 bits unsigned integer

"DATA" 16 bits unsigned integer

"STAT" 5 bits unsigned integer

"Time" 64 bits signed integer timescale picoseconds

"State Number" N bits signed integer

analyzer -slot C -mode stfast

Sets Analyzer <C> as active analyzer, then sets acquisition mode to

turbostate mode.

analyzer -n Analyzer<C> -clock slave

Sets Analyzer <C> as active analyzer, then sets state clock mode to

slave.

analyzer -depth ?

Queries the acquisition depth of the active analyzer.

Returns:

4000

www.valuetronics.com

 35

Hardware Module Commands

analyzer

Options for Data Query

This series of command options accesses the data captured by an active

analyzer. The analyzer is set active by the -n name or -slot slot_id options.

These command options can also return information on the last data captured

including data size and boundary ranges. You can then select which labels of

data you are interested in and transfer all states or a partial range of data out

the communication channel.

Syntax: analyzer [-n name | -slot slot_id] [-i]

analyzer [-n name] -d [-l labellist | all] [-r start..end | all] [-t start..end | all]

Options:

analyzer -assign ?

Queries which pods are assigned to the active analyzer.

Returns:

A1,A2,B1,B2,C1,C2

analyzer -label address,”A1[15:0];A2[15:0]”,data,”C1[15:0]”

Sets up the address and data labels in the active analyzer.

analyzer -label -d address,data

Deletes the labels address and data.

analyzer -label -f myLabels.txt

Loads all labels in myLabels.txt file into active analyzer.

-n name Sets the focus to the analyzer named “name”.

-slot slot_id Selects a specific analyzer located in “slot_id”. The slot

identifier is A-J for measurement modules and 1-4 for

emulation modules.

-i Queries for information on the last data captured.

-d [-l label1,label2...| all] [-r start..end | all] [-t start...end | all]

Begin upload of binary data out of the analyzer.

Use the -l option to list individual labels, -r to specify a range,

and -t to specify a time period.

www.valuetronics.com

36

Hardware Module Commands

analyzer

Returns: The -i information query structure returns the following:

NOTE:

Transferring Transitional Timing Data. When capturing data in transitional

timing mode, data is only stored when a transition occurs. Therefore, when

accessing data captured by an active analyzer configured with transitional

timing enabled, it is recommended that you transfer all states. Transferring

a partial range of captured data may result in ambiguous data values until

the first transition within that range is observed.

Run ID: 1234567890

States: -4095..4096

Times: -1.0e-06...1.0e-06

5 labels

"ADDR" 32 bits unsigned integer

"DATA" 16 bits unsigned integer

"STAT" 5 bits unsigned integer

"Time" 64 bits signed integer timescale picoseconds

"State Number" N bits signed integer

NOTE:

To select which data is sent, the -d option must be accompanied by a range

or time selection, and by a label selection.

A range selection looks like this:

-r start..end or -r all,

where start and end are integer state numbers. If the data has states from -

4095..4096, there are 8K states. The trigger position is at state number 0.

The range can also be selected by time values, such as:

-t start..end or -t all

where start and end are floating-point values in units of seconds. The trigger

location is always at time 0.0. So, to select from -1 microsecond to +1

microsecond:

-t -1.0e-06..1.0e-06

Finally, to select labels, the -l flag is used:-l ADDR,DATA,STAT,Time or -l

all

www.valuetronics.com

 37

Hardware Module Commands

analyzer

If a label contains white space, the label is enclosed in quotation marks:

-l "State Number","System Clock",ADDR

Once data is selected, a two-part binary data transfer occurs. First, a simple

8-byte header is sent, indicating how many states will be transferred, and

how many bytes for each state will be sent. Then for each state, a row of

bytes is sent containing the data for each of the selected labels as follows:

4 bytes - Number of records

4 bytes - Number of bytes per record

nrecords *bytes per record - Data

Each record contains one state or time of the data requested. For each label

selected (-l option), there are an integer number of bytes containing the

value. Labels are sorted in order by which they were requested, and if "all" is

selected, they arrive in order by which they are listed in the -i query.

The number of bytes for each label is the lowest possible integer number of

bytes given the bit width of the label. For example, a 17-bit label will require

3 bytes (24 bits), a 16-bit value will require 2 bytes.

Examples:

analyzer -n Analyzer -i

Returns:

Run ID: 1234567890

States: -4095..4096

Times: -1.0e-06..1.0e-06

5 labels

"ADDR" 32 bits unsigned integer

"DATA" 16 bits unsigned integer

"STAT" 5 bits unsigned integer

"Time" 64 bits signed integer timescale picoseconds

"State Number" N bits signed integer

www.valuetronics.com

38

Hardware Module Commands

analyzer

Options for the Trigger Subsystem

This series of command options control the analyzer trigger subsystem.

They allow control of the trigger position, occurrence counters on primary

and secondary conditions, simple pattern matching with ANDed/ORed pairs,

simple storage qualification, two level sequencing, simple durations and

edge triggering.

The following options also allow you to recall up to 10 defined trigger

setups from a recall buffer. This allows easy, fast switching of triggers

between measurements.

Syntax: analyzer [-n name] -trig condition [store condition2] followedby condition3

[store condition4]

analyzer [-n name] -trig condition1 [occurs X] [store condition2]

followedby condition3 [occurs Y] [store condition4]

analyzer [-n name] -trig position [percent | ?]

analyzer -slot C -d -l all -r all

<begin binary data transfer>

...

<end transfer>

Uploads data for all labels at all states.

analyzer -n Analyzer<C> -d -l all -t -0.001..0.001

<begin binary data transfer>

...

<end transfer>

Upload data for all labels, in the time range of -1 msec to +1 msec

analyzer -d -l addr,data -r -100..200

<begin binary data transfer>

...

<end transfer>

Upload specific data for labels "addr" and "data" in the range of -100 to

200 states.

www.valuetronics.com

 39

Hardware Module Commands

analyzer

Options:

Note: Occurrence counts can NOT be used with duration triggers.

-trig anything Set to trigger on anything and store everything.

-trig recall n Load a prestored trigger setup from the recall buffer “n”.

-trig recall “Macro Name”

Recall stored trigger setup by its name.

-trig condition1 [store condition2]

Trace for a condition 1 with optional store.

-trig condition1 [store condition2] [followedby condition3 [store condition4]]

Trace for condition 1 followed by a condition 2 (with optional

store at each level).

-trig duration condition1 [< | >] time

Trace when you find a value occurring for the desired time.

-trig condition1 [occurs X]

Trace for condition 1 that occurs X times. See note below.

-trig condition1 [occurs X] [store condition2]

Trace for condition 1 that occurs X times with a conditional

store. See note below.

-trig condition1 [occurs X] [store condition2] followedby condition3

[occurs Y]

Trace for condition 1 that occurs X times with a conditional

store, followed by condition 2 that occurs Y times. See note

below.

-trig condition1 [occurs X] [store condition2] followedby condition3

[occurs Y] [store condition4]

Trace for condition 1 that occurs X times with a conditional

store, followed by condition 2 that occurs Y times with a

conditional store. See note below.

-trig position [percent | ?]

Controls the trigger position. The command uses an integer

between 0 - 100 to represent the amount of data captured

before trigger. To set trigger at start of trace, set percent to

100. To set trigger at end of trace, set percent to 0. For a

trigger in the center, set percent to 50. See note below.

www.valuetronics.com

40

Hardware Module Commands

analyzer

Conditions: A "condition" is a combination of Pattern, Range, and Edge definitions.

Patterns and ranges are defined as hex, octal, or binary numbers with

optional don’t care digits. To specify the number base, a prefix is used:

#h: Hexadecimal

#q: Octal

#b: Binary

#e: Edge (see below)

The ’x’ character denotes a don’t care digit. So to define a simple pattern

condition, we might use something like this:

ADDR=#hFFFFXXXX

The above is a pattern condition that will search for a state when the value of

the ADDR label lies between 0xFFFF0000 and 0xFFFFFFFF.

To specify a range, two pattern specifiers are joined by a comma (,). For

example, to specify the same condition above as a range:

ADDR=#hFFFF0000,#hFFFFFFFF

To search for an edge or a glitch, we use an "edge specifier", defined by "#e"

followed by any combination of the following characters:

x don’t care

r rising edge

f falling edge

t toggling edge

e either edge (same as toggling)

* glitch

g glitch (same as *)

Two conditions may be combined with an AND or an OR.

For example:

ADDR=#hFFFF0000,#hFFFFFFFF and DATA=#exxxRxxxx

Would search for a rising edge in bit 5 of DATA while ADDR is within the

range 0xFFFF0000 - 0xFFFFFFFF.

www.valuetronics.com

 41

Hardware Module Commands

analyzer

Condition examples:

Pattern and Range Examples:

NOTE: Don’t care digits are not allowed in ranges

Edge Examples:

Examples:

#hFFXX0022

Hexadecimal number with 2 don’t care digits (8 don’t care bits)

#q7777xxxx

Octal number with 4 don’t care digits (12 don’t care bits)

#b10110110xxxx0000

Binary number with 4 don’t care bits

#hFF00,#hFFFF

Range from 0xff00 to 0xffff

#eXXXXRFEG

Edge specifier with 4 don’t care bits, then Rising, Falling, Either, and

Glitch bits

analyzer -n Analyzer -trig addr=#h12e4c and ctl=#h00

Trigger when addr=0x12e4c and ctl=0..

analyzer -trig addr=#h12xx or addr=#h13xx store addr=#h1200,#h13ff

Setup trigger for default analyzer to start on addresses with don’t cares and

store everything in the range 12xx to 13xx of label named “addr”.

analyzer -trig addr=#h210 followedby addr=#h344

Trigger on access to address 210 followed by access to address 344.

analyzer -trig recall=1

Loads trigger setup from the recall buffer 1.

analyzer -trig recall=”Enter Main”

Recalls a trigger setup named “Enter Main”.

www.valuetronics.com

42

Hardware Module Commands

analyzer

analyzer -n MyTarget -trig duration status=#h22 > 30 ns

Trigger analyzer named "MyTarget" when label status has value 22 for

more than 30 ns.

analyzer -trig duration rdwr!#h0 < 30 ns

Trigger when no rdwr is not 0 pattern is found for less than 30 ns.

analyzer -trig io=#exxxxxFxF and cycle=#h1

Trigger if bit 0 & 2 of label named “io” transition low while label cycle is

at pattern binary 1.

analyzer -n mybus -trig ctl=5 occurs 3

Triggers on the third occurrence of label “ctl=5”.

analyzer -trig addr_hi=0 and addr_lo=340 followedby ioreg=6 occurs 15

Triggers on the 15th occurrence of “ioreg=6” after finding “addr_hi=0”

and “addr_lo=340”.

analyzer -n mybus -trig position ?

100

Queries analyzer named “mybus” for its trigger position. It returns “100”.

analyzer -trig position 33

Sets the trigger position of the active analyzer to 33 percent.

Note: If an integer over 100 is set, the number will be set to 100. If a

negitive number (below 0) is set, the number is set to 0.

www.valuetronics.com

 43

Hardware Module Commands

scope

scope

Description: This command accesses the data captured by an active oscilloscope module.

The scope is selected by name or slot id, and can be queried for information

about data captured in the last run using the -i option, or data can be

uploaded using the -d option. In addition to the entire data, data can also be

uploaded from only channels of interest for a specific range of data.

A "channel" can be either a single digit channel number, as in 1,2,3, or 4, or

the channel label name, such as "Ground" or "rd/wr". Default label names

given to the channels are "Channel D1" where the "D" is actually the slot

number of the card and the "1" is the scope channel number between 1 and

10 (if you have enough expansion cards).

Syntax: scope [-n name | -slot slot_id] [-i] -d [-l channellist | all]

[-r range | all] [-t timerange | all] -c [channellist | all]

Options to Access Data Capture

Options:

NOTE:

The -n name option is used to specify a specific scope module. If there is only

one active module, the -n name option is not required. However, if there are

multiple scope modules active, you must use the -n name at least once to

specify a module focus, then again each time you want to change the focus to

another scope module.

-n name Selects the active scope module by name.

-slot slot_id Selects a specific scope module by a slot_id. The slot

identifier is A-J for measurement modules.

-i Query information on last data captured.

-c [1,2,... | all] Query names of available channels.

-d [-l ch1,ch2,... | all] [-r start..end | all] [-t start..end | all]

Begins upload of binary data out of scope.

www.valuetronics.com

44

Hardware Module Commands

scope

Returns: -i information query structure returns the following:

Run ID: 374199271

States: -16383..16384

Times: -8.191740e-06.. 8.192260e-06

4 labels

"State Number" 32 bits signed integer

"Time" 64 bits signed integer timescale picoseconds

"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -1.6203e+00

“Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -

1.6203e+00

Analog data such as scope data is given in its unsigned integer format, and

the -i information provides the scale factors needed to convert back to

floating-point voltages. For "Channel E1" above, there are 15-bit integer

values. To convert them to voltage, apply the following (where value is the

15-bit integer):

voltage = yorigin + yincrement*value

-c channel information query structure returns the following:

1: "Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -

1.6203e+00

2: "Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -

1.6203e+00

www.valuetronics.com

 45

Hardware Module Commands

scope

Examples:

scope -n Scope<E> -i

Query last data captured for scope named “Scope<E>”

Returns:

Run ID: 1250539440

States: -16383..16384

Times: -8.191659e-06..8.192341e-06

4 labels

"State Number" 32 bits signed integer

"Time" 64 bits signed integer timescale picoseconds
"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -

1.6203e+00

"Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -

1.6203e+00

scope -c

Query available scope channels.

Returns:

1: "Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -

1.6203e+00

2: "Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -

1.6203e+00

scope -n Scope<E> -d -c all -t all

Upload all scope data.

Returns:

<begin binary data transfer>

...

<end transfer>

scope -d 1"Ground" -r -100..200

Upload specific data for channels "1" and "ground" in the range of -100

to 200 states.

Returns:

<begin binary data transfer>

...

<end transfer>

www.valuetronics.com

46

Hardware Module Commands

scope

Options to Access Trigger and Measurement Subsystems

Syntax: scope [-n name | -slot slot_id] [-c 1,2,...] [-1 channel1,channel2,..]

-meas [-type | all] [-range,... -tgmode]

Options: These options to the scope command allow setting and querying of various

measurement parameters and access to the automatic measurement results.

A "channel" can be either a single digit channel number, as in 1,2,3, or 4, or

the channel label name, such as "Ground" or "rd/wr". Default label names

given to the channels are "Channel D1" where the "D" is actually the slot

number of the card and the "1" is the scope channel number between 1 and

10 (if you have enough expansion cards).

-n name Selects the active scope named “name”.

-slot slot_id Selects a specific scope module by a slot_id. The slot

identifier is A-J for measurement modules

-c channel number Selects the channel named channel number

-autoscale Autoscale the scope.

-meas [type | all]

Query automatic measurement results. See “Automatic

Measurement Types and Returned Value” below.

-range [range | ?]

Set or query channel range (vertical).

-offset [offset | ?]

Set or query channel offset.

-trange [range | ?] Set or query display range (horizontal).

-delay [delay | ?] Set or query display delay.

-sweep [triggered | auto |?] Set or query triggered or auto sweep.

-tglevel [N | ?] Set or query the channel trigger level.

-tgsource [channel | ext | ?]

Set or query the trigger source.

-tgslope [rising | falling | ?]

www.valuetronics.com

 47

Hardware Module Commands

scope

Automatic Measurement Types and Returned Values

To select which scope channel the measurement results come from, use the

” -c channel” option as follows:

scope -c 1 -meas all

or

scope -1 “Channel E2” -meas period

Set or query the trigger slope.

-tgmode [edge | pattern | immediate | ?]

Set or query the trigger mode.

all return structure with all measurement results.

falltime .90% to 10% time of left-most falling edge.

Falltime: 0.000000268200

risetime 10% to 90% time of leftmost rising edge.

Risetime: 0.000000420800

frequency Frequency: 9.9E37

preshoot Preshoot: 0.000000000000

overshoot Overshoot: 0.000000000000

period Period: 9.9E37

pwidth +Width: 9.9E37

nwidth -Width: 0.000003408333

vamp Vamp: 0.113105058670

vavg Vavg: -0.058784030290

vbase Vbase: -0.117573976517

vmax Vmax: -0.004468917847

vmin Vmin: -0.117573976517

vpp Vpp: 0.113105058670

vtop Vtop: -0.004468917847

vdcrms Vdcrms: 0.060179378230

vacrms Vacrms: 0.012887802882

www.valuetronics.com

48

Hardware Module Commands

scope

To query the current setting of any of the trigger options, use a “?” instead of

a value. For example, to query the display time range:

scope -trange ?

To set the display range to 0.001 seconds (1 msec):

scope -trange 0.001

Examples:

scope -n Oscilliscope -meas risetime

Query rise time of scope named “Oscilliscope” -c 1.

Returns:

Risetime:0.004

scope -tgsource 3

Set trigger source to channel 3.

scope -delay ?

Query current timebase delay.

Returns:

0.00346

www.valuetronics.com

 49

Hardware Module Commands

pattgen

pattgen

Description: This command provides access to the pattern generator module. It allows the

user to to query or change the clock source, frequency, and delay. The

internal clock can be run from 1 to 180 MHz (or 300 MHz in half channel

mode). It also allows the user to load an ASCII stimulus file into the pattern

generator module. The user can query a vector number for its value, or

modify single vectors within a currently loaded stimulus file.

Syntax: pattgen [-n name | -slot slot_id] -f vectorfile

pattgen [-n name] -v vector_num [label1=value1,label2=value2,...]

pattgen [-n name] -clock [frequency | ext | ?] -delay [delay | ?]

Options:

-n name Selects a pattern generator module. See the note below.

-slot slot_id Selects a specific pattern generator module by a slot_id.

The slot identifier is A-J for measurement modules.

-f vectorfile Loads an ASCII stimulus file named “vectorfile” into the

target module.

-v vector_num [label1=value1,label2=value2,...]

Queries single vectors, or modifies single vectors with

new values for each specified label.

-clock [frequency | ext | ?]

Sets clock source to external mode or sets internal clock

frequency. Also queries for internal clock frequency.

-delay [delay | ?]

Sets or queries for clock output delay. Delay is set with an

integer between 1 and 14.

-v -i vector_num [label1=value1, label2=value2, ...]

Insert a new vector at a specific position.

-v -d vector_num

Delete a specific vector.

www.valuetronics.com

50

Hardware Module Commands

pattgen

NOTE:

The -n name option is used to specify a specific pattern generator module. If

there is only one active module, the -n name option is not required. However,

if there are multiple pattern generator modules active, you must use the-n

name at least once to specify a module focus, then again each time you want

to change the focus to another pattern generator module.

Returns: -v vector_num query information structure returns the following:

label1=value

label2=value

etc...

Examples:

pattgen -f mem_ctl

Loads vectors from the file named “mem_ctl”.

pattgen -n Pattgen -v 3

First sets the focus to the pattern generator module named

“Pattgen”, then queries for the value of vector number 3.

Returns:

data=3

ctl=3

chip_sel=0

pattgen -v 3 chip_sel=1

Modify the value in vector 3 under label "chip_sel" to a value of 1.

pattgen -clock 35

Set to use internal clock at 35 MHz.

pattgen -clock ?

35

Queries for internal clock rate. Returns 35 MHz.

pattgen -clock ext

Sets clock source to external mode.

pattgen -delay 4

Sets clock output delay to setting number 4.

www.valuetronics.com

 51

Hardware Module Commands

emulator

emulator

Description: This command provides access to emulation probe HW modules. Processor

control includes resetting the processor, breaking into the monitor, step, or

starting the processor running (using the system "start” command or the -run

flag). It can also download binary processor code into the target memory.

Syntax: emulator [-n name | -slot slot_id] [-reset | -break | -run | -step]

Options:

NOTE:

The -n name option is used to specify a specific emulation module. If there is

only one active module, the -n name option is not required. However, if there

are multiple emulation modules, you must use -n name at least once to

specify an emulation module focus, then again each time you want to change

the focus to another emulation module.

Examples:

-n name Selects the emulator named “name”. See the note below.

-slot slot_id Selects the emulator in “slot_id”.The slot identifier is 1-4

for emulation modules.

-reset Resets the processor on the target system.

-break Breaks the target system’s processor into the monitor.

-run Runs the processor.

-step Steps the processor.

emulator -n Emulator<1> -r

First sets the focus to the emulation module “Emulator<1>, then resets

the processor on the target system.

emulator -break

Breaks the processor on the target system into the monitor.

www.valuetronics.com

52

Hardware Module Commands

emulator

emulator -run

Runs the processor on the target system.

emulator -step

Steps the processor on the target system.

www.valuetronics.com

53

4

Software Tool Commands

In the following chapter you will find a description of remote control

commands that act on the installed software tools.

www.valuetronics.com

54

Software Tool Commands

listing

listing

Description: This command accesses the data displayed by an active lister. The lister is

accessed by it’s logical name.

This command can return information on the last data captured including

data size, labels, and boundary ranges. You can then select which labels of

data you are interested in and transfer all states or a partial range of data out

the communication channel.

Syntax: listing [-n name] [-i] -d -l [labellist | all] -r [range | all]

Options:

NOTE:

The -n name option is used to specify a specific lister display. If there is only

one lister display, the -n name option is not required. However, if there are

multiple lister displays, you must use -n name at least once to specify a lister

display focus, then again each time you want to change the focus to another

lister display.

Returns: The -i query returns the following:

Run ID: 1799474489

States: -2032..2063

Times: -8.128000e-06..8.256000e-06

"State Number" 12 characters format Decimal

"Lab1" 4 characters format Hex

"Time" 11 characters format Absolute

NOTE:

A maximum of 30,000 states can be transferred by this command.

-n name Specifies a specific lister tool display by name.

-i Query for information on the last data captured.

-d -l [label1,label2,... |

all]

Begins upload of ASCII LBP data out of the lister

for a list of specific labels, or all labels.

-r [start..end | all] Specifies a range between start-state and end-state,

or all states.

www.valuetronics.com

 55

Software Tool Commands

listing

Examples:

listing -n Lister<2> -i

Sets focus to Lister<2>, then queries for information on its last data

captured.

Returned:

Run ID: 1799474489

States: -2032..2063

Times: -8.128000e-06..8.256000e-06

"State Number" 12 characters format Decimal

"Lab1" 8 characters format Hex

"Time" 11 characters format Absolute

listing -n MEMBD -d -l all -r all

Sets focus to Lister named MEMBD, then uploads data on all labels in

all states.

Returns:

<begin ASCII transfer>

...

<end transfer>

listing -d -l addr,data -r -100..200

Uploads specific data for labels "addr" and "data" in the range of -100

to 200 states.

Returns:

<begin ASCII transfer>

...

<end transfer>

www.valuetronics.com

56

Software Tool Commands

compare

compare

Description: This command accesses the SW compare tool. A compare tool that is active

on the workspace automatically executes a compare against the reference

buffer whenever an analyzer captures a new trace.

The -i option returns the number of differences found. If the number -1(-one)

is returned, it means the compare has not been executed. The -l option

returns a list of label pairs and their masks.

There are two ways to do a compare. One is to compare a dataset with a

reference buffer, and another is to compare one dataset to another from

another tool (perhaps FileIn from a simulation).

The more typical compare is against a reference. In this case, label pairs

usually look like the following:

addr,addr_ref

Because it is possible to compare any two labels (ie, "ADDR,DATA"), it is

possible to set a compare mask by selecting both pairs. For example, we

have the following two label pairs:

ADDR,ADDR

and

ADDR,DATA

In order to set the mask on ADDR,DATA, we enter the following command

and option:

compare -m ADDR,DATA=#hffff0000

If all label pairs are unique, masks can be set by their first label in the pair:

compare -m ADDR=#hffff0000

The comparison masks are values that are "ANDed" to the captured trace

label before it is diffed with the reference buffer. Therefor, a "1" in a bit

position means this bit is significant to compare and a "0" means this bit is a

don’t care.

www.valuetronics.com

 57

Software Tool Commands

compare

The -d, -r, and -s options allow the user to control the depth of the compare,

and then query the results of the last compare. The first use model would be

to start the compare with the “-x” option, then give it an option to either stop

after the “N” differences are found (or “N” matches if the compare was setup

that way) or compare only a certain range of states. The user could then issue

the “-s” option to query for the results of differences that were found.

Note:

A maximum of 30000 differences can be reported for each invocation of the

“ -s” option.

A second typical use model would be to start the compare but stop it after

the first difference was found using “compare -x -d 1”. The user would then

query the compare information to see how many differences were found

using “compare -i”. If “0” was returned, then no differences were found. If

“1” was returned, the user could query the results to get the actual label

values in the state that had differences using “compare -s”. This would

return something like “4,Ctl=3,Ctl_ref=04,Data=32,Data_ref=32”.

A third typical use model would be to compare the states in ranges of 30000

and then cycle through the ranges to get the results of all the differences. In

this case, the user would use “compare -x -r 0..29999”, then “compare -i” to

see how many differences were found. Again, use “compare -s” to unload all

differences, then resume with a new compare in the next range of states

using “compare -x -r 30000..59999.

Syntax: compare [-n name] [-i] [-l] -m [label1=mask1,label2=mask2,...]

compare -x [-d {N | all }] [-r {start..end | all}]

compare -s

Options:

-n name Sets focus to the active compare tool named “name”.

-i Query information on last comparison.

-x Executes the compare.

-l Lists current label pairs.

-m [lab1=mask | lab1,labl2=mask]

Query or set up label comparison masks.

www.valuetronics.com

58

Software Tool Commands

compare

NOTE:

The -n name option is used to specify a specific compare tool. If there is only

one compare tool, the -n name option is not required. However, if there are

multiple compare tools, you must use -n name at least once to specify a

compare tool focus, then again each time you want to change the focus to

another compare tool.

Returns: The -i query returns the following:

67

The -s query returns the following:

state#,label1=value,label1_ref=value,label2=value,label2_ref=value, ...

The -l query structure returns the following:

label1,label1_ref (mask=0xff00)

label2,label2_ref

Examples:

-x [-d {N | all }] [-r {start..end | all}]

Executes the compare with the option to stop the compare

after N matches. You can also have the compare only

work in ranges of states.

-s Queries for the results of the differences that were found.

compare -n DMA_Comp<1> -i

Sets focus to compare tool named “DMA_Comp<1>”, then queries for

status differences found.

Returns:

1

compare -m ctl=#hff00,-m data=#h00ff

Set up mask #hff00 on label ctl, and mask #h00ff on label data.

compare -m Lab1,Lab2=#hff00

Sets mask for a label pair using both primary and secondary labels.

www.valuetronics.com

 59

Software Tool Commands

compare

compare -l

Lists the current label pairs and their masks. (If there are no masks,

nothing is listed).

Returns:

Current label pairs:

Lab1, Lab1_ref (mask=0Xff00)

Lab1, Lab2_ref

compare -x

Re-execute compare

compare -i

See if anything failed.

Returns:

0

compare -m data=#hff00 -x -i

Changes the mask for label data, executes a compare, and returns the

number of differences.

Returns:

23

compare -x -d 5

Executes a compare until 5 differences are found.

compare -s

2,Lab=20,Lab1_ref=21

50,Lab1=0,Lab1_ref=1

1123,Lab1=30,Lab1_ref=31

Returns the results of the last 3 differences found.

compare -x -d 3 -r 0..1000

Executes a compare over states 0 through 1000, OR until 3 differences

are found.

www.valuetronics.com

60

Software Tool Commands

fileout

fileout

Description: This command controls the saving of data from a fileout tool into a specified

file, and exporting data.

Syntax: fileout [-n name] [-f file] [-s]

fileout [-n name] -r [start..end | all]

Options:

NOTE:

The -n name option is used to specify a specific fileout tool. If there is only

one fileout tool, the -n name option is not required. However, if there are

multiple fileout tools, you must use -n name at least once to specify a fileout

tool focus, then again each time you want to change the focus to another

fileout tool.

Examples:

-n name Sets focus to a specific fileout tool named “name”.

-f file Defines a filename named “file” to save to.

-s Save data to file previously specified.

-r [start..end | all] Select a range of states to export with fileout.

Note: Ranging only works for the Fast Binary output file

format.

fileout -n Fileout<1> -f pentium.out

Sets focus to the fileout tool named “Fileout<1>”, then defines the save

filename to “pentium.out”.

fileout -s

Save data to whatever file was defined with -f option. In this example, it

was “pentium.out”.

-r [0..1000]

Exports first 1000 states in Fast Binary output file format.

www.valuetronics.com

Index

 61

A

analyzer, 32
analyzer, data query, 35
analyzer, module setup, 32
analyzer, trigger subsystem, 38
automatic measurement types, 47

C

clear, 14
compare, 56
config, 15
ctl_port, 16

D

data transfers, 9

E

emul, 51

F

fileout, 60

H

Hardware Module Commands, 31

I

In This Book, 2

L

listing, 54
lock, unlock, 17

M

modules, 18

O

overview, RPI diagram, 6

P

pattgen, 49
programming conventions, 11

R

RPI architecture, 7
RPI general characteristics, 10
RPI overview, 2

S

sample programs, 9
scope, 43
scope, data capture, 43
scope, trigger and measurement, 46
session_mgr, 20
Setup and Configuration, 5
setup, system, 8
Software Tool Commands, 53
start, 21
status, 23
stop, 25
System Commands, 13
system setup, 8

T

tools, 26

U

unlock, 17
use model, 7

V

version, 27

W

wait, 28

www.valuetronics.com

	Programmer’s Guide
	Setup and Configuration
	Remote Programming Interface RPI Overview
	RPI Architecture
	RPI for Unix
	Use Model
	System Setup
	Learning and Debugging RPI Programs
	Data Transfers
	Sample Programs
	Remote Programming Interface RPI General Characteristics
	Programming Conventions

	System Commands
	clear
	config
	ctl_port
	lock, unlock
	modules
	session_mgr
	start
	status
	stop
	tools
	version
	wait

	Hardware Module Commands
	analyzer
	scope
	pattgen
	emulator

	Software Tool Commands
	listing
	compare
	fileout

